MATLAB(MATrix LABoratory) - MathWorks, Inc. an interactive, matrix-based system for scientific and enginnering computation

Invoking MATLAB

% matlab

to get out, type "exit"

>> exit

On-line Help

>> help

Objects in MATLAB

Matrices with integer, real, or complex entries

- $scalar 1 \times 1 matrix$
- vector $-m \times 1$ matrix or $1 \times m$ matrix
- scalar square $(n \times n)$ or rectangular $(m \times n)$ $(m, n \ge 1)$

Entering matrices

- entered by an explicit list of elements
- generated by built-in statements and functions
- created in M-files
- loaded from external data files

creates a 3×3 matrix A

- rand(n) creates a random $n \times n$ matrix
- rand(m,n) creates a random $m \times n$ matrix Any line can be continued onto the next by using "..."

is the same as

Expressions

Expression typed by the users are interpreted and evaluated by MATLAB

variable = expression

or

expression

Variable names begin with a letter, are up to 19 characters long, and are case sensitive. Expressions are composed of operators, special characters, functions, variable names. Evaluation of expression produces a matrix, which is displayed on the screen and assigned to a variable for future use. If "variable=" is omitted, a variable "ans" is created.

```
>> 1900/81
ans = 23.4568
```

A statement is terminated with the carriage return. If the last character of a statement is ";", the printing is suppressed.

```
>> x = 1+2+3;
>> x = 1+2+3
x = 6
```

"who" lists variables in the workspace

>> who

ans x

Arithmetic Expressions

```
+ addition - subtraction

* multiplication / right division

\ left division ^ power

' transpose ( ) parentheses
```

Hardcopy

```
>> diary filename
>> ...
>> diary off
```

Everything that appeared on the screen after 'diary filename' until 'diary off' is written into the file named in *filename*.

Graphics

Planar plots

'plot' creates x - y plots. If x and y are vectors of the same length, "plot(x,y)" opens a graphics window and draws an x - y plot of the elements of x versus the elements of y.

```
ex1. graph of y=\sin(x) over [-4,4]
>> x = -4:.001:4; y=sin(x); plot(x,y)
ex2. graph of y=\exp(-x^2) over [-1.5, 1.5]
>> x = -1.5:.01:1.5; y=exp(-x.^2); plot(x,y)
Overlap of two graphs
plot two functions sin(x) and x^2/100 in the interval [-15, 15]
>> x = -15:.05:15;
>> y = sin(x);
>> z = x.^2/100;
\Rightarrow plot (x,y,x,z)
title - adds a title to the graph
grid - turns on the grid lines
xlabel - adds a label to x-axis
ylabel - adds a label to y-axis
>> title ('survey')
>> xlabel ('year')
>> ylabel ('income')
```

Creating a hardcopy of MATLAB figures(graphs)

You can generate a PostScript file of the contents of any MATLAB figure window using the 'print' command. Then you can print this file on a PostScript printer to get a hardcopy.

```
>> print -dps filename.ps
```

and then at the UNIX prompt after exiting MATLAB

```
% lpr -Pprintername filename.ps
```

where printname is the name of a PostScript printer and filename is the name of the file - you must have a ".ps" extension on the file.

3-D mesh plots

'mesh(z)' creates a three-dimensional perspective plot of the elements of the matrix z. The mesh surface is defined by the z-coordinates of points above a rectangle rid in the x-y plane. To draw a graph of z = f(x, y):

- 1. define vectors xx and yy which give partitions of the sides of a rectangle
- 2. [x,y] = meshgrid(xx,yy)
- 3. compute z, and apply mesh

```
ex. z=exp(-x^2 - y^2) over [-2,2] x [-2,2] 
>> xx=-2:.1:2; 
>> yy=xx; 
>> z=exp(-x.^2 - y.^2) 
>> [x,y]=meshgrid(xx,yy); 
>> mesh(z)
```

Relations and Logical Operators

```
<
     less than > greater than
                        .GE.
        .LE.
 <=
                >=
 ==
       equal
                ~=
                     not equal
  \
              1
        \operatorname{end}
                          or
        not
FOR
\Rightarrow for i = 1:n, x(i)=i^2, end
or
>> for i=1:n
x(i)=i^2
end ;
WHILE
>> n = 0;
>> while 2^n < a
n = n+1;
end;
>> n
\mathbf{IF}
>> if n < 0
x = 0;
elseif n == 0
x = 1;
else
x = 2;
end
```

Polynomials

MATLAB represents polynomials as row vectors containing the coefficients ordered by descending powers.

```
ex. x^3 - 6x^2 + 11x - 6

>> p = [1 -6 11 -6];

>> r = roots(p)

r = 3.0000

2.0000

1.0000
```

Data Analysis

```
generate a 1 \times n random vector x >> x=rand(1,n) sort the list x in increasing order >> s=sort(x);
```

```
find the maximum value in the list x
>> max_value = max(x);
Find the minimum value in the list x
>> min_value = min(x);
sum all the elements in x
>> sum_all = sum(x);
compute the mean of the list x
>> mean_value = mean(x);
compute the median of the list x
>> median_value = median(x);
compute the standard deviation
>> std_dev = std(x);
```

M-files

MATLAB can execute a sequence of statements stored in files, called "M-files" because they have a ".m" extension. There are two types of M-files:

1. Script files - a script file consists of a sequence of MATLAB statements. If the file name is file1.m, then the MATLAB command

```
>> file1
```

will execute the statements in file1.m

2. Function files - you can create new functions. Variables in a function file are local.

```
ex. in file "stat.m"

function [mean, stdev] = stat(x)
% For a vector x, stat(x) returns the mean and stdev of x
[m,n] = size(x);
mean = sum(x)/m; % compute the mean
stdev = sqrt(sum(x.^2)/m-mean^2); % compute the standard deviation
in MATLAB, typing
>> [xm,xd]=stat(x)
```

will assign the mean and standard deviation of the entries in the vector x to xm and xd, a % indicates that the rest of the line is a comment.

>> help stat

For a vector x, stat(x) returns the mean and stdev of x

Entry-wise operation

*, ^, /, \$ can be made to operate entry-wise by preceding them by a period.

ex.
$$[1 2 3 4].*[1 2 3 4] = [1 2 3 4].^2=[1 4 9 16]$$

Flops

 flops - floating point operations, 1 flop is roughly 1 addition or 1 multiplication. flops(0) will reset flops to 0

Text Strings

text strings are surrounded by single quotes

text strings can be displayed with "disp"

>> disp('This is a test')