
Csci 5521 Machine Learning

1

Using	Matlab in	Unix/Linux
� Add modules

� module load math/matlab/v.2014a
� module initadd math/matlab/v.2014a

� Matlab 2014a/b, 2015a/b is recommended
� check your version

� “.cshrc” in home directory (assuming the shell is tcsh)

� Availability
� computing resources

� http://www.cs.umn.edu/resources/facilities/labs.php
� student copy (CSE Labs account is required)

� https://wwws.cs.umn.edu/matlab/student/

2

Matlab GUI
� Command window

� the main window where you type commands directly to the MATLAB
interpreter

� an example of Matlab command
� disp(‘Hello World!’);

� Editor window
� a simple text editor where you can load, edit and save complete MATLAB

programs
� debug/run
� open editor window

� from menu (File->New->Blank M-File)
� edit MyProgram.m (or any filename of your script)

� Help window
� It also has a number of example programs and tutorials.
� show short help in command window

� help sort (or any function name)

3

Loading	data	from	disk
� Supported types

� Text
� white-space/tab delimited

� Spreadsheet
� *.xls, *. xlsx, *. csv

� MATLAB formatted data
� *.mat

� Other types
� images
� sound

4

Loading	data	from	disk
� How to load data in Matlab

�use “dlmread” function
� a.txt:

1,2,3
4,5,6
>> data = dlmread('a.txt');
data =

1 2 3
4 5 6

�other functions:
� load, readtable, textread, textscan, fscanf, xlsread

5

Variables	and	Assignment
� Variable types

� double
� a=6;
� array

� MyArray = [1 2 3]; (1x3 double)
� char

� letter = ‘A’;
� char array (string)

� Name=‘Mark’; (1x4 char)
� other types

� cell, struct, class
� Display the contents of a variable

� disp(variable); (e.g. disp(MyArray);)
� type the name of variable and press “enter” without semicolon

� Note: MATLAB does not require you to declare the names of variables
in advance of their use.

6

Array	operations
� Define one dimensional array

� row vector
� MyArray = [1 2 3 4 5];
� MyArray = zeros(1, 5);

� column vector
� MyArray = [1; 2; 3; 4; 5]; or MyArray = [1 2 3 4 5]’;
� MyArray = zeros(5, 1);

� Access/modify values
� a = MyArray(1);
� MyArray(1)=3;
� MyArray(2)=6;

� Note1: Use [] to define array and use () to access array
� Note2: Indexes must be positive integers. The smallest index is 1.

7

Array	operations
� Generate arrays containing sequences with the ‘:’ operator

� start:stop
� a = 1 : 9;
is equivalent to a = [1 2 3 4 5 6 7 8 9];

� start:increment:stop
� b = 1 : 2 : 9;
is equivalent to b = [1 3 5 7 9];

� Select sub-parts of the array with the ‘:’ operator
� b(3:5)
is equivalent to b([3 4 5]), whose value is [5 7 9]
� b(1:2:5)
is equivalent to b([1 3 5]), whose value is [1 5 9]
� b(3:end)
is equivalent to b([3 4 5]) since b contains 5 elements

8

Matrix	operations
� Define two dimensional array

� A = [1 2 3; 4 5 6];
A =

1 2 3
4 5 6

� Building Matrices
� A = zeros(2,3);
� A = rand(2,5);
� A = eye(6);
� A = ones(5);

9

Matrix	operations
� Access/modify values

� variable_name(row_index, column_index)
� a = A(2,1); (a will be 4)
� A(2,1) = 7;
before
A =

1 2 3
4 5 6

after
A =

1 2 3
7 5 6

10

Matrix	operations
� Select sub-parts of the array with the ‘:’ operator

A =
76 71 82 44 49
74 3 69 38 45
39 28 32 77 65
66 5 95 80 71
17 10 3 19 75

� A(2:4, 2)
� A(3, 1:4)
� A([1 2], [3 4])
� Q? A(1:2:5, end)

11

Matrix	operations
� Assign values to a sub-part of a matrix

� A(2:4, 1:3) = [1 2 3; 4 5 6; 7 8 9];
� both sides are 3x3 matrices
� A =

76 71 82 44 49
1 2 3 38 45
4 5 6 77 65
7 8 9 80 71

17 10 3 19 75

� A(2:4, 1:3) = 5;
� the right side is a scalar
� A =

76 71 82 44 49
5 5 5 38 45
5 5 5 77 65
5 5 5 80 71

17 10 3 19 75

12

Matrix	operations
� Matrix multiplication

� C = A*B

A = [1 3 5; 2 4 7] (2x3 matrix)
A =

1 3 5
2 4 7

B = [-5 8 11; 3 9 21;4 0 8] (3x3 matrix)
B =

-5 8 11
3 9 21
4 0 8

C = A*B
C =

24 35 114
30 52 162

� Vector inner product

A = [5 3 2 6] (1x4 row vector (matrix))
A =

5 3 2 6

B = [-4 9 0 1]’
B = (4x1 col vector (matrix))

-4
9
0
1

A*B
ans =

13

13

Matrix	operations
� Element-by-element product

� A.*B
� A and B must have the same size
A = B =

1 2 5 6
3 4 7 8

A.*B = A*B =
5 12 19 22

21 32 43 50

� Multiply a matrix by a scalar
� A*b or b*A (b is a scalar)
A*5 =

5 10
15 20

� A*b, b*A, A.*b, b.*A are the same if b is a scalar.
� Q: How about A*A, A^2 and A.^2?

14

Control	Statements
� If Statement

if x < 10
disp(x); % only displays x when x < 10

end

� While Statement
p=1;
while p < 50

p = 2 * p;
end
disp(p); % displays 64

� For Statement
for i=1:10

disp(i);
end % displays 1 to 10

� Note1: They must be paired with ‘end’
� Note2: Use “==” and “~=” for logical expression

15

Functions
� build-in functions

� can be called in different forms
� e.g. max

� C = max(A)
� returns the largest elements along different dimensions of an array

� C = max(A,B)
� returns an array the same size as A and B with the largest elements taken from

A or B
� [C,I] = max(...)

� finds the indices of the maximum values of A, and returns them in output
vector I

� refer to the help if you are not sure about the usage
� e.g. help max

� what if you forget the name of the function?
� google matlab + (the description of that function)

� e.g. “matlab eigenvalues” or “matlab k-means”

16

Functions
� Write your own function

� e.g. calculates the mean and standard deviation of a vector
� stat.m:

� call the function in command window or in a script file
[mean stdev] = stat([12.7 45.4 98.9 26.6 53/1])
mean =

47.3200
stdev =

29.4085

� Note: The filename must be the same with the function name.
� It is recommended that each function is written in separated *.m

files.

function [mean,stdev] = stat(x)
n = length(x);
mean = sum(x)/n;
stdev = sqrt(sum((x-mean).̂ 2/n));

17

Scripts	vs.	Functions
� Scripts

� no input or output arguments
� useful for automating series of MATLAB commands

� computations that you have to perform repeatedly from the
command line

� analogy in C language: main function
� Functions

� accepts input from and returns output to its caller
� begins with a line containing the function key word
� cannot be defined within a script file or at the MATLAB

command line
� analogy in C language: other utility functions called in main

function

18

Some	useful	command
� save

� save workspace variables to file
� they can be restored later by ‘load’ command

� who, whos
� list variables in workspace

� clear
� remove items from workspace, freeing up system memory
� use it to remove unused variables when you are short of memory

� quit
� quit Matlab

� Note: don’t forget to save your source code (scripts/functions)

19

20

