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Supervised Learning 
n Classification 
 

n Regression 
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Supervised Learning 

n Classification 
 

n Regression 
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X = {x t,r t }t=1
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0 /−1 if x is negative
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Data:     
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Output: 

(Class label) (Response) 



Classification 
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Learning a Class from Examples 

n Class C of a “family car” 
¨ Prediction: Is car x a family car? 
¨ Knowledge extraction: What do people expect from a 

family car? 

n Output:  
  Positive (+) and negative (–) examples 

n  Input representation:  
  x1: price, x2 : engine power 
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Training set X 
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X = {x t,r t }t=1
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1 if x is positive
0 if x is negative
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Class in a Rectangle 

€ 

p1 ≤  price ≤  p2( ) AND e1 ≤  engine  power ≤  e2( )
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0 if h says x is negative
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Hypothesis class H 
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h(x) =
1 if h says x is positive
0 if h says x is negative
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€ 

E(h |X ) = 1 h x t( ) ≠ rt( )
t=1

N

∑

Error of h on H 
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Consider H: the set of all rectangles 



Version Space 
most specific hypothesis, S 

most general hypothesis, G 

h ∈ H, between S and G is 
consistent and make up the 
version space 
(Mitchell, 1997) 
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Linear Classifier 

h(x)=<w,x>+b is a linear 
classifier 
 
 
h(x)>0 positive  
h(x)<0 negative 
 
h ∈ H, H? 
 
 

x 1 

x 2 



Perceptron Learning 
n  Perceptron algorithm, Rosenblatt, 1957. 
n  Initialization: 

n  Iterate until converge (no mistake on a certain 
number of iterations) 

w = 0

for each example (xt, rt ) :
if (<w,xt > *rt ≤ 0)

w =w+ rtxt



Perceptron Learning 

w+rtxt w+rtxt 

rtxt 



Best in the Version Space 



Margin 
n Choose h with largest margin 
n Why? 



Model Capacity 

n Different models have different capacity 
meaning the ability to handle more 
complex data.  

n How to measure model capacity?  
n The maximum number of data points that 

can be classified perfectly in any labeling. 



VC (Vapnik Chervonenkis) Dimension 

n N points can be labeled in 2N ways as +/– 

n  In a particular arrangement, H shatters N 
if there exists h ∈ H consistent for any of  

   the 2N ways:  
    VC(H ) = N 
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VC Dimension 
How many points can be shattered by a line? 



VC (Vapnik Chervonenkis) Dimension 

n How about axis-aligned rectangles? 
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VC Summary 
n The capacity of function is measured by 

the number of data points that can be 
shattered by the function 

n Rectangle classifier in 2-D space: 4. 
n A line : 3. 
n More ... 



VC Dimension 
n More generally, in RD space, what is the 

VC of a hyperplane? 
n What is the VC of a triangle classifier? 
n  Is an algorithm that can shatter only 4 or 3 

data points useful? 

n How easy it is to determine the VC 
dimension for the hypothesis class? 



VC Dimension: Why Large Margin 

VC ≤min(ceil[ d
2

M 2 ],D)+1
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Multiple Classes, Ci i=1,...,K 

X = {xt ,rt }t=1
N

rt =Ci  if x
t ∈  Ci

or

ri
t =

1 if xt ∈  Ci

0 if xt ∈  C j, j  ≠  i 

⎧
⎨
⎪

⎩⎪

hi x
t( ) =

1 if xt ∈  Ci

0 if xt ∈  C j, j  ≠  i 

#
$
%

&%

Train hypotheses  
hi(x),	i	=1,...,K:	
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KNN Classification 
n K nearest neighbor 

hi x( ) =| {(xt, rt ) | rt =Ci & xt ∈ Nx
(k )} |

http://mirlab.org/jang/books/dcpr/prKnnc.asp?title=5-2%20K-nearest-neighbor%20Classifiers&language=english 



How to Choose K for KNN? 

n  What is the VC dimension of KNN? 
n  Is VC proportional to the # of parameters (appeared 

complexity)? 
http://ljdursi.github.io/ML-for-scientists/ 

K=1 K=2 

K=3 K=4 



Regression 

€ 

g x( ) = w1x + w0

  

€ 

E g |X( ) =
1
N

rt − g x t( )[ ]
2

t=1

N

∑

  

€ 

E w1,w0 |X( ) =
1
N

rt − w1x
t + w0( )[ ]

2

t=1

N

∑

X = xt,rt{ }t=1

N
,       rt ∈ℜ

rt = g xt( )+ε,  (ε: random noise)

Lecture	Notes	for	E	Alpaydın	2010	IntroducCon	to	Machine	Learning	2e	©	The	MIT	Press	(V1.0)	

Training Error: 



Regression 

  

€ 

E w1,w0 |X( ) =
1
N

rt − w1x
t + w0( )[ ]

2

t=1

N

∑

n How does the error function look like? 

E(w1,w0) 

w1 w0 



Regression 

  

€ 

E w1,w0 |X( ) =
1
N

rt − w1x
t + w0( )[ ]

2

t=1

N

∑

∂E w1,w0 |X( )
∂w0

=
1
N

(rt − w1x
t − w0)(−1)[ ]

t=1

N

∑ = 0

∂E w1,w0 |X( )
∂w1

=
1
N

(rt − w1x
t − w0)(−x

t )[ ]
t=1

N

∑ = 0

n Find the g to minimize training error 

w1 =
xtrt
t∑ − Nxr

(xt )2 − Nx 2
t∑

,w0 = r −w1x



Regression: Understand Solution 

€ 

g x( ) = w1x + w0

rt = g xt( )+ε,  (ε: random noise)

⇒ ε t = rt − g xt( ),  (ε t : error on sample t)

n  Property 1:  

 Average error is 0. 

n  Property 2:  
 Error is uncorrelated with data 

€ 

1
N

(rt − w1x
t − w0)[ ]

t=1

N

∑ = ε t

t=1

N

∑ = 0

1
N

(rt −w1x
t −w0 )(−x

t )⎡⎣ ⎤⎦
t=1

N

∑ = ε t

t=1

N

∑ xt = 0



Polynomial Regression 

€ 

g x( ) = w2x
2 + w1x + w0

n  Is polynomial fitting 
very different? 

n  It is the same as linear 
regression with a 
polynomial mapping. 

€ 

g x( ) = wT x
w = [wP ,...,w1,w0]
x = [xP ,...,x1,x 0]

€ 

g x( ) = wp (x)
p

i=1

P

∑ + w0



Summary of Supervised Learning 
1.  Model:  

   
2.  Loss function: 

  
  

3.  Optimization procedure: 
 

 Algorithms: KNN, percepton, linear regression 
 

€ 

g x |θ( )

  

€ 

E θ |X( ) = L rt ,g x t |θ( )( )
t
∑

  

€ 

θ* = arg min
θ
E θ | X( )

  

€ 

E(h |X ) = 1 h x t( ) ≠ rt( )
t=1

N

∑
  

€ 

E g |X( ) =
1
N

rt − g x t( )[ ]
2

t=1

N

∑
€ 

g x( ) = w1x + w0



Noise and Model Complexity 

Data is not perfect 

n  Data recording might not be 
perfect (shifted data points) 

 
n  Wrong labeling of the data  
 
n  There might be additional 

unobervable hidden variables. 
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Noise and Model Complexity 

Options: 
n  Simple model with training errors 
n  Complex comdel with no training error 



Noise and Model Complexity 
Given similar training error, 

use the simpler one 
 
n  Simpler to use (lower 

computational complexity) 
n  Easier to train (lower space 

complexity) 
n  Easier to explain (more 

interpretable) 
n  Generalizes better (lower 

variance - Occam’s razor) 
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Model Selection & Generalization 
n  Learning is an ill-posed problem; data is not 

sufficient to find a unique solution 
n  Given d binary inputs, there are at most           

 samples, and        binary functions 
n  Each sample eliminates half of the functions;  
n  Thus, N samples leaves           viable functions 

n  Not possible to check all functions. Need for 
inductive bias, assumptions about H 

2D 22
D

22
D−N



Generatlization and Overfitting 
n Generalization: How well a model 

performs on new data 
n Overfitting: H more complex than C or f  
n Underfitting: H less complex than C or f 



Cross-Validation 

n To better estimate generalization error, we 
need data unseen during training. We split 
the data as 
¨ Training set (50%) 
¨ Validation set (25%) 
¨ Test set (25%) 

n Resampling when there is few data 
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Cross-Validation 



Triple Trade-Off 

n  There is a trade-off between three factors 
(Dietterich, 2003): 

1.  Complexity of H, c (H), 
2.  Training set size, N,  
3.  Generalization error, E, on new data 

¨  As N↑, E↓ 
¨  As c (H)↑, first E↓ and then E↑ 
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Triple Trade-Off 


