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CHAPTER 1:  

INTRODUCTION 

Big Data 
3 

 Widespread use of personal computers and 
wireless communication leads to “big data” 

 We are both producers and consumers of data 

 Data is not random, it has structure, e.g., customer 
behavior 

 We need “big theory” to extract that structure from 
data for 

 (a) Understanding the process 

 (b) Making predictions for the future  

Why “Learn” ? 
4 

 Machine learning is programming computers to optimize 
a performance criterion using example data or past 
experience. 

 There is no need to “learn” to calculate payroll 

 Learning is used when: 

 Human expertise does not exist (navigating on Mars), 

 Humans are unable to explain their expertise (speech 
recognition) 

 Solution changes in time (routing on a computer network) 

 Solution needs to be adapted to particular cases (user 
biometrics) 

What We Talk About When We  Talk 

About “Learning” 
5 

 Learning general models from a data of particular 
examples  

 Data is cheap and abundant (data warehouses, 
data marts); knowledge is expensive and scarce.  

 Example in retail: Customer transactions to consumer 
behavior:  

 People who bought “Blink” also bought “Outliers”  
(www.amazon.com) 

 Build a model that is a good and useful 
approximation to the data.   

Data Mining 
6 

 Retail: Market basket analysis, Customer 
relationship management (CRM) 

 Finance: Credit scoring, fraud detection 

 Manufacturing: Control, robotics, troubleshooting 

 Medicine: Medical diagnosis 

 Telecommunications: Spam filters, intrusion detection 

 Bioinformatics: Motifs, alignment 

 Web mining: Search engines 

 ... 

What is Machine Learning? 
7 

 Optimize a performance criterion using example 

data or past experience. 

 Role of Statistics: Inference from a sample 

 Role of Computer science: Efficient algorithms to 

 Solve the optimization problem 

 Representing and evaluating the model for inference 

Applications 
8 

 Association 

 Supervised Learning 

 Classification 

 Regression 

 Unsupervised Learning 

 Reinforcement Learning 

Learning Associations 
9 

 Basket analysis:  

 P (Y | X ) probability that somebody who buys X 

also buys Y where X and Y are products/services. 

  

 Example: P ( chips | beer ) = 0.7 

Classification 
10 

 Example: Credit 
scoring 

 Differentiating 
between low-risk and 
high-risk customers 
from their income and 
savings 

Discriminant: IF income > θ1 AND savings > θ2  

    THEN low-risk ELSE high-risk 

Classification: Applications 
11 

 Aka Pattern recognition 

 Face recognition: Pose, lighting, occlusion (glasses, 
beard), make-up, hair style  

 Character recognition: Different handwriting styles. 

 Speech recognition: Temporal dependency.  

 Medical diagnosis: From symptoms to illnesses 

 Biometrics: Recognition/authentication using physical 
and/or behavioral characteristics: Face, iris, 
signature, etc 

 Outlier/novelty detection: 

Face Recognition 
12 

Training examples of a person 

Test images 

ORL dataset, 
AT&T Laboratories, Cambridge UK 

Regression 

 Example: Price of a 

used car 

 x : car attributes 

 y : price 

  y = g (x | q ) 

 g ( ) model, 

  q parameters 

13 

y = wx+w0 

Regression Applications 
14 

 Navigating a car: Angle of the steering 

 Kinematics of a robot arm 

α1= g1(x,y) 

α2= g2(x,y) 

α1 

α2 

(x,y) 

 Response surface design 

Supervised Learning: Uses 
15 

 Prediction of future cases: Use the rule to predict 

the output for future inputs 

 Knowledge extraction: The rule is easy to 

understand 

 Compression: The rule is simpler than the data it 

explains 

 Outlier detection: Exceptions that are not covered 

by the rule, e.g., fraud 



Unsupervised Learning 
16 

 Learning “what normally happens” 

 No output 

 Clustering: Grouping similar instances 

 Example applications 

 Customer segmentation in CRM 

 Image compression: Color quantization 

 Bioinformatics: Learning motifs 

Reinforcement Learning 
17 

 Learning a policy: A sequence of outputs 

 No supervised output but delayed reward 

 Credit assignment problem 

 Game playing 

 Robot in a maze 

 Multiple agents, partial observability, ... 

Resources: Datasets 
18 

 UCI Repository: http://www.ics.uci.edu/~mlearn/MLRepository.html 

 Statlib: http://lib.stat.cmu.edu/ 

Resources: Journals 
19 

 Journal of Machine Learning Research www.jmlr.org 

 Machine Learning  

 Neural Computation 

 Neural Networks 

 IEEE Trans on Neural Networks and Learning Systems 

 IEEE Trans on Pattern Analysis and Machine Intelligence 

 Journals on Statistics/Data Mining/Signal 

Processing/Natural Language 

Processing/Bioinformatics/... 

Resources: Conferences 
20 

 International Conference on Machine Learning (ICML)  

 European Conference on Machine Learning (ECML) 

 Neural Information Processing Systems (NIPS) 

 Uncertainty in Artificial Intelligence (UAI) 

 Computational Learning Theory (COLT) 

 International Conference on Artificial Neural Networks 
(ICANN)  

 International Conference on AI & Statistics (AISTATS) 

 International Conference on Pattern Recognition (ICPR) 

 ... 

L Mon Sep 24 12:39:54 2018 2

i2ml3e-chap02.pdf

INTRODUCTION  

TO  

MACHINE  

LEARNING 
3RD EDITION 

ETHEM ALPAYDIN 

© The MIT Press, 2014 
 

alpaydin@boun.edu.tr 

http://www.cmpe.boun.edu.tr/~ethem/i2ml3e 

Lecture Slides for 

CHAPTER 2:  

SUPERVISED LEARNING 

Learning a Class from Examples 
3 

 Class C of a “family car” 

 Prediction: Is car x a family car? 

 Knowledge extraction: What do people expect from a 

family car? 

 Output:  

  Positive (+) and negative (–) examples 

 Input representation:  

  x1: price, x2 : engine power 

Training set X 

N
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Error of h on H 

S, G, and the Version Space 
7 

most specific hypothesis, S 

most general hypothesis, G 

h H, between S and G is 

consistent and make up the  

version space 

(Mitchell, 1997) 

Margin 
8 

 Choose h with largest margin 

VC Dimension 
9 

 N points can be labeled in 2N ways as +/– 

 H shatters N if there  

 exists h  H consistent  

 for any of these:  

 VC(H ) = N 

 

 

An axis-aligned rectangle shatters 4 points only ! 

Probably Approximately Correct (PAC) 

Learning 
10 

 How many training examples N should we have, such that with probability 

at least 1 ‒ δ, h has error at most ε ? 

 (Blumer et al., 1989) 

 

 Each strip is at most ε/4 

 Pr that we miss a strip 1‒ ε/4 

 Pr that N instances miss a strip (1 ‒ ε/4)N 

 Pr that N instances miss 4 strips 4(1 ‒ ε/4)N 

 4(1 ‒ ε/4)N ≤ δ and (1 ‒ x)≤exp( ‒ x) 

 4exp(‒ εN/4) ≤ δ  and N ≥ (4/ε)log(4/δ) 



Noise and Model Complexity 
11 

Use the simpler one because 

 Simpler to use  

 (lower computational  

 complexity) 

 Easier to train (lower  

 space complexity) 

 Easier to explain  

 (more interpretable) 

 Generalizes better (lower  

 variance - Occam’s razor) 

Multiple Classes, Ci i=1,...,K 

N
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Train hypotheses  

hi(x), i =1,...,K: 

Regression 
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Model Selection & Generalization 
14 

 Learning is an ill-posed problem; data is not 

sufficient to find a unique solution 

 The need for inductive bias, assumptions about H 
 Generalization: How well a model performs on new 

data 

 Overfitting: H more complex than C or f  

 Underfitting: H less complex than C or f 

Triple Trade-Off 
15 

 There is a trade-off between three factors 

(Dietterich, 2003): 

1. Complexity of H, c (H), 

2. Training set size, N,  

3. Generalization error, E, on new data 

 As NE 

 As c (H)first Eand then E 

Cross-Validation 
16 

 To estimate generalization error, we need data 

unseen during training. We split the data as 

 Training set (50%) 

 Validation set (25%) 

 Test (publication) set (25%) 

 Resampling when there is few data 

Dimensions of a Supervised Learner 

1. Model:  

   

2. Loss function: 

   

3. Optimization procedure: 

    

 |xg

    
t

tt grLE  |,| xX

17 

 X|min arg* 

E
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CHAPTER 3: 

BAYESIAN DECISION 

THEORY 

Probability and Inference 
3 

 Result of tossing a coin is {Heads,Tails} 

 Random var X {1,0} 

  Bernoulli: P {X=1} = po
X (1 ‒ po)

(1 ‒ X) 

 Sample: X = {xt }N
t =1

 

 Estimation: po = # {Heads}/#{Tosses} = ∑
t 
xt / N 

 Prediction of next toss: 

  Heads if po > ½, Tails otherwise 

Classification 

 Credit scoring: Inputs are income and savings.  

  Output is low-risk vs high-risk 

 Input: x = [x1,x2]
T ,Output: C Î {0,1} 

 Prediction:   
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6 

Losses and Risks 

 Actions: αi   

 Loss of αi when the state is Ck : λik  

 Expected risk (Duda and Hart, 1973) 

   

   xx

xx

|min|  if  choose

||

kkii

k

K

k
iki

RR

CPR








1

7 

Losses and Risks: 0/1 Loss 
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8 

For minimum risk, choose the most probable class 



Losses and Risks: Reject 

10

1

1

0














     

otherwise    

 if    

 if    

,Ki

ki

ik

   

     xxx

xx

|||

||

i
ik

ki

K

k
kK

CPCPR

CPR















1

1

1





     

otherwise         reject

| and   || if    choose  1xxx ikii CPikCPCPC

9 

Different Losses and Reject 
10 

Equal losses 

Unequal losses 

With reject 

Discriminant Functions 
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11 

K decision regions R1,...,RK 

K=2 Classes 

 Dichotomizer (K=2) vs Polychotomizer (K>2) 

 g(x) = g1(x) – g2(x) 

 

 

 

 Log odds:  
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Utility Theory 

 Prob of state k given exidence x: P (Sk|x) 

 Utility of αi when state is k: Uik 

 Expected utility: 
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13 

Association Rules 

 Association rule: X  Y 

 People who buy/click/visit/enjoy X are also likely to 

buy/click/visit/enjoy Y. 

 A rule implies association, not necessarily causation. 

14 

Association measures 
15 

 Support (X  Y):  

  

 

 Confidence (X  Y): 

 

 

 Lift (X  Y): 
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Example 
16 

Apriori algorithm (Agrawal et al., 

1996) 
17 

 For (X,Y,Z), a 3-item set, to be frequent (have 

enough support), (X,Y), (X,Z), and (Y,Z) should be 

frequent. 

 If (X,Y) is not frequent, none of its supersets can be 

frequent. 

 Once we find the frequent k-item sets, we convert 

them to rules: X, Y  Z, ... 

 and X  Y, Z, ... 
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CHAPTER 4:  

PARAMETRIC METHODS 

Parametric Estimation 
3 

 X = { xt }t where xt ~ p (x) 

 Parametric estimation:  

 Assume a form for p (x |q ) and estimate q , its sufficient 

statistics, using X 

 e.g., N ( μ, σ2) where q = { μ, σ2} 

Maximum Likelihood Estimation 
4 

 Likelihood of q given the sample X 
  l (θ|X) = p (X |θ) = ∏

t
 p (xt|θ) 

 

 Log likelihood 

   L(θ|X) = log l (θ|X) = ∑
t
 log p (xt|θ) 

 

 Maximum likelihood estimator (MLE) 

  θ* = argmaxθ L(θ|X) 

Examples: Bernoulli/Multinomial 
5 

 Bernoulli: Two states, failure/success, x in {0,1}  

P (x) = po
x (1 – po ) 

(1 – x) 

    L (po|X) = log ∏
t
 po

xt (1 – po ) 
(1 – xt)  

MLE: po = ∑
t
 xt / N  

 

 Multinomial: K>2 states, xi in {0,1} 

P (x1,x2,...,xK) = ∏
i
 pi

xi 

    L(p1,p2,...,pK|X) = log ∏
t 
∏

i
 pi

xi
t
  

MLE: pi = ∑
t
 xi

t / N 

Gaussian (Normal) Distribution 
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 p(x) = N ( μ, σ2) 

  

 

 

 MLE for μ and σ2: 

6 

μ σ 
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Bias and Variance 
7 

Unknown parameter q 

Estimator di = d (Xi) on sample Xi  

 

Bias: bq(d) = E [d] – q 

Variance: E [(d–E [d])2] 

 

Mean square error:  

r (d,q) = E [(d–q)2] 

 = (E [d] – q)2 + E [(d–E [d])2] 

 = Bias2 + Variance  

q 

Bayes’ Estimator 
8 

 Treat θ as a random var with prior p (θ) 

 Bayes’ rule: p (θ|X) = p(X|θ) p(θ) / p(X)  

 Full: p(x|X) = ∫ p(x|θ) p(θ|X) dθ 

 Maximum a Posteriori (MAP): 

  θMAP = argmaxθ p(θ|X) 

 Maximum Likelihood (ML): θML = argmaxθ p(X|θ) 

 Bayes’: θBayes’ = E[θ|X] = ∫ θ p(θ|X) dθ  

Bayes’ Estimator: Example 

 xt ~ N (θ, σo
2) and θ ~ N ( μ, σ2) 

 θML = m 

 θMAP = θBayes’ = 
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Parametric Classification 
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11 

 Given the sample 

 

 

 

 ML estimates are 
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12 

Equal variances 

Single boundary at 

halfway between means 

13 

Variances are different 

Two boundaries 

14 

Regression 
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Regression: From LogL to Error 
16 
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Polynomial Regression 
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Other Error Measures 
19 
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 Relative Square Error: 

 

 Absolute Error: E (θ |X) = ∑t
 |rt – g(xt| θ)| 

 ε-sensitive Error:  

   E (θ |X) = ∑ 
t
 1(|rt – g(xt| θ)|>ε) (|rt – g(xt|θ)| – ε) 
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Bias and Variance 
20 
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Estimating Bias and Variance 
21 
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Variance

Bias

 M samples Xi={xt
i , r

t
i}, i=1,...,M  

 are used to fit gi (x), i =1,...,M 

Bias/Variance Dilemma 
22 

 Example: gi(x)=2 has no variance and high bias 

 gi(x)= ∑t
 rt

i/N has lower bias with variance 

 

 As we increase complexity,  

  bias decreases (a better fit to data) and  

  variance increases (fit varies more with data) 

 Bias/Variance dilemma: (Geman et al., 1992) 



23 

bias 

variance 

f 

gi g 

f 

Polynomial Regression 
24 

Best fit “min error” 

25 

Best fit, “elbow” 

Model Selection 
26 

 Cross-validation: Measure generalization accuracy 
by testing on data unused during training 

 Regularization: Penalize complex models 

  E’=error on data + λ model complexity 

 Akaike’s information criterion (AIC), Bayesian 
information criterion (BIC) 

 Minimum description length (MDL): Kolmogorov 
complexity, shortest description of data 

 Structural risk minimization (SRM) 

Bayesian Model Selection 
27 

 
   

 data

model model|data
data|model

p

pp
p 

 Prior on models, p(model) 

 

 

 

 Regularization, when prior favors simpler models 

 Bayes, MAP of the posterior, p(model|data) 

 Average over a number of models with high 
posterior (voting, ensembles: Chapter 17) 

 

Regression example 
28 

Coefficients increase in 

magnitude as order 

increases: 

1: [-0.0769, 0.0016] 

2: [0.1682, -0.6657, 

0.0080] 

3: [0.4238, -2.5778, 

3.4675, -0.0002 

4: [-0.1093, 1.4356,  

-5.5007, 6.0454, -0.0019] 
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CHAPTER 5:  

MULTIVARIATE METHODS 

Multivariate Data 
3 
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 Multiple measurements (sensors) 

 d inputs/features/attributes: d-variate  

 N instances/observations/examples 

Multivariate Parameters 
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Parameter Estimation 
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Estimation of Missing Values 
6 

 What to do if certain instances have missing 

attributes? 

 Ignore those instances: not a good idea if the 

sample is small 

 Use ‘missing’ as an attribute: may give information 

 Imputation: Fill in the missing value 

 Mean imputation: Use the most likely value (e.g., mean) 

 Imputation by regression: Predict based on other 

attributes 

Multivariate Normal Distribution 
7 
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8 

 Mahalanobis distance: (x – μ)T ∑–1 (x – μ)  

 measures the distance from x to μ in terms of ∑ (normalizes 

for difference in variances and correlations) 

 Bivariate: d = 2 
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Independent Inputs: Naive Bayes 
11 
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 If xi are independent, offdiagonals of ∑ are 0, 
Mahalanobis distance reduces to weighted (by 1/σi) 
Euclidean distance: 

 

 

 

 

 If variances are also equal, reduces to Euclidean 
distance 

 

Parametric Classification 

 If p (x | Ci ) ~ N ( μi , ∑i ) 

 

 

 

 Discriminant functions 
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Estimation of Parameters 
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Different Si  

 Quadratic discriminant 
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14 15 

likelihoods 

posterior for C1 

discriminant:  

P (C1|x ) = 0.5 

Common Covariance Matrix S 
16 

  i
i

iCP̂ SS 

 Shared common sample covariance S 

 

 Discriminant reduces to 

 

 

which is a linear discriminant 
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Common Covariance Matrix S 
17 

Diagonal S  
18 
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 When xj j = 1,..d, are independent, ∑ is diagonal 

 p (x|Ci) = ∏
j
 p (xj |Ci) (Naive Bayes’ assumption) 

 

 

 

 

 Classify based on weighted Euclidean distance (in sj 
units) to the nearest mean 

Diagonal S 
19 

variances may be 
different 

Diagonal S, equal variances 
20 
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 Nearest mean classifier: Classify based on Euclidean 
distance to the nearest mean 

 

 

 

 

 

 Each mean can be considered a prototype or template 
and this is template matching 

Diagonal S, equal variances 
21 

* ? 

Model Selection 
22 

Assumption Covariance matrix No of parameters 

Shared, Hyperspheric Si=S=s2I 1 

Shared, Axis-aligned Si=S, with sij=0 d 

Shared, Hyperellipsoidal Si=S d(d+1)/2 

Different, Hyperellipsoidal Si K d(d+1)/2 

 

 

 

 

 

 As we increase complexity (less restricted S), bias 
decreases and variance increases 

 Assume simple models (allow some bias) to control 
variance (regularization) 

23 

Discrete Features 
24 
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 Binary features: 

  if xj are independent (Naive Bayes’) 

 

 

  the discriminant is linear 
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Discrete Features 
25 

   ikjijkijk CvxpCzpp ||  1

 Multinomial (1-of-nj) features: xj Î {v1, v2,..., vnj
} 

 

 if xj are independent 
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Multivariate Regression 
26 
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Multivariate linear model 
 

 

 

 

Multivariate polynomial model:  
  Define new higher-order variables  

   z1=x1, z2=x2, z3=x1
2, z4=x2

2, z5=x1x2 

  and use the linear model in this new z space  

  (basis functions, kernel trick: Chapter 13) 
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CHAPTER 6: 

DIMENSIONALITY 

REDUCTION 

Why Reduce Dimensionality? 
3 

 Reduces time complexity: Less computation 

 Reduces space complexity: Fewer parameters 

 Saves the cost of observing the feature 

 Simpler models are more robust on small datasets 

 More interpretable; simpler explanation 

 Data visualization (structure, groups, outliers, etc) if 

plotted in 2 or 3 dimensions 

Feature Selection vs Extraction 
4 

 Feature selection: Choosing k<d important features, 

ignoring the remaining d – k 

  Subset selection algorithms 

 Feature extraction: Project the  

  original xi , i =1,...,d dimensions to  

  new k<d dimensions, zj , j =1,...,k 

Subset Selection 
5 

 There are 2d subsets of d features 

 Forward search: Add the best feature at each step 
 Set of features F initially Ø. 

 At each iteration, find the best new feature 
j = argmini E ( F  xi )  

 Add xj to F  if E ( F  xj ) < E ( F )  

 

 Hill-climbing O(d2) algorithm 

 Backward search: Start with all features and remove 
 one at a time, if possible. 

 Floating search (Add k, remove l) 

6 

Iris data: Single feature 

Chosen 

7 

Iris data: Add one more feature to F4 

Chosen 

Principal Components Analysis 
8 

 Find a low-dimensional space such that when x is 
projected there, information loss is minimized. 

 The projection of x on the direction of w is: z = wTx 

 Find w such that Var(z) is maximized 

  Var(z) = Var(wTx) = E[(wTx – wTμ)2]  

   = E[(wTx – wTμ)(wTx – wTμ)] 

   = E[wT(x – μ)(x – μ)Tw] 

   = wT E[(x – μ)(x –μ)T]w = wT ∑ w  

 where Var(x)= E[(x – μ)(x –μ)T] = ∑ 

9 

 Maximize Var(z) subject to ||w||=1 

 

 

∑w1 = αw1 that is, w1 is an eigenvector of ∑ 

Choose the one with the largest eigenvalue for Var(z) to be 
max 

 Second principal component: Max Var(z2), s.t., 
||w2||=1 and orthogonal to w1 

 

 

 

∑ w2 = α w2 that is, w2 is another eigenvector of ∑ 

 and so on. 

 11111
1

 wwww
w

TT max

   01 122222
2

 wwwwww
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TTT max

What PCA does 
10 

   z = WT(x – m) 

 where the columns of W are the eigenvectors of ∑ 

and m is sample mean 

 Centers the data at the origin and rotates the axes 

How to choose k ? 
11 

dk

k













21

21

 Proportion of Variance (PoV) explained 

 

 

  

 when λi are sorted in descending order  

 Typically, stop at PoV>0.9 

 Scree graph plots of PoV vs k, stop at “elbow” 

12 13 

Feature Embedding 
14 

 When X is the Nxd data matrix, 

XTX is the dxd matrix (covariance of features, if mean-
centered) 

XXT is the NxN matrix (pairwise similarities of instances) 

 PCA uses the eigenvectors of XTX which are d-dim and can 
be used for projection 

 Feature embedding uses the eigenvectors of XXT which are 
N-dim and which give directly the coordinates after 
projection 

 Sometimes, we can define pairwise similarities (or distances) 
between instances, then we can use feature embedding 
without needing to represent instances as vectors. 



Factor Analysis 
15 

 Find a small number of factors z, which when 
combined generate x : 

  xi – µi = vi1z1 + vi2z2 + ... + vikzk + εi  

 

 where zj, j =1,...,k are the latent factors with  

  E[ zj ]=0, Var(zj)=1, Cov(zi ,, zj)=0, i ≠ j ,  

 εi are the noise sources  

  E[ εi ]= ψi, Cov(εi , εj) =0, i ≠ j, Cov(εi , zj) =0 , 

 and vij are the factor loadings 

 

PCA vs FA 
16 

 PCA From x to z     z = WT(x – µ) 

 FA  From z to x   x – µ = Vz + ε  

 

 
x z 

z x 

Factor Analysis 
17 

 In FA, factors zj are stretched, rotated and 

translated to generate x 

Singular Value Decomposition and 

Matrix Factorization 
18 

 Singular value decomposition: X=VAWT 

 V is NxN and contains the eigenvectors of XXT 

 W is dxd and contains the eigenvectors of XTX 

 and A is Nxd and contains singular values on its first 

k diagonal 

 X=u1a1v1
T+...+ukakvk

T where k is the rank of X 

Matrix Factorization 
19 

 Matrix factorization: X=FG 

 F is Nxk and G is kxd 

 

 

Latent semantic indexing 

Multidimensional Scaling 
20 
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 X

 Given pairwise distances between N points,  

  dij, i,j =1,...,N 

 place on a low-dim map s.t. distances are preserved 

(by feature embedding) 

 z = g (x | θ ) Find θ that min Sammon stress  

Map of Europe by MDS 
21 

Map from CIA – The World Factbook: http://www.cia.gov/ 

Linear Discriminant Analysis  

 Find a low-dimensional 

space such that when x 

is projected, classes are 

well-separated.  

 Find w that maximizes 

 
 

 

 










t

ttT

t

t
t

ttT

rms
r

r
m

ss

mm
J

2

1

2

11

2

2

2

1

2

21

xw
xw

w

    

22 

23 

 Between-class scatter: 

 

 

 

 

 Within-class scatter: 
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Fisher’s Linear Discriminant 
24 
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 Find w that max 

 

 

 LDA soln: 

 

 Parametric soln: 
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 Within-class scatter:  

 

 

 Between-class scatter: 

 

 

 Find W that max 

K>2 Classes 
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-1SB; maximum rank of K-1 

26 

PCA vs LDA 
27 

Canonical Correlation Analysis 
28 

 X={xt,yt}t ; two sets of variables x and y x 

 We want to find two projections w and v st when x 

is projected along w and y is projected along v, the 

correlation is maximized: 

CCA 
29 

 x and y may be two different views or modalities; 

e.g., image and word tags, and CCA does a joint 

mapping 

Isomap 
30 

 Geodesic distance is the distance along the 

manifold that the data lies in, as opposed to the 

Euclidean distance in the input space 

  



Isomap  
31 

 Instances r and s are connected in the graph if  

||xr-xs||<e or if xs is one of the k neighbors of xr  

The edge length is ||xr-xs|| 

 For two nodes r and s not connected, the distance is 

equal to the shortest path between them 

 Once the NxN distance matrix is thus formed, use 

MDS to find a lower-dimensional mapping 

32 
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Matlab source from http://web.mit.edu/cocosci/isomap/isomap.html 

Locally Linear Embedding 
33 

1. Given xr find its neighbors xs
(r) 

2. Find Wrs that minimize 

 

 

 

3. Find the new coordinates zr that minimize 
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LLE on Optdigits 
35 
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Laplacian Eigenmaps 
36 

 Let r and s be two instances and Brs is their similarity, we 
want to find zr and zs that  

 

 

  Brs can be defined in terms of similarity in an original 
space: 0 if xr and xs are too far, otherwise 

 

 

 Defines a graph Laplacian, and feature embedding 
returns zr  

 

Laplacian Eigenmaps on Iris 
37 

Spectral clustering (chapter 7) 
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CHAPTER 7: 

CLUSTERING 

Semiparametric Density Estimation 
3 

 Parametric: Assume a single model for p (x | Ci) 

(Chapters 4 and 5) 

 Semiparametric: p (x|Ci) is a mixture of densities 

 Multiple possible explanations/prototypes: 

 Different handwriting styles, accents in speech 

 Nonparametric: No model; data speaks for itself 

(Chapter 8) 

Mixture Densities 
4 
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i
ii GPGpp

1

|xx 

where Gi the components/groups/clusters,  

  P ( Gi ) mixture proportions (priors), 

  p ( x | Gi) component densities 

Gaussian mixture where p(x|Gi) ~ N ( μi , ∑i ) 
parameters Φ = {P ( Gi ), μi , ∑i }

k
i=1  

 unlabeled sample X={xt}t (unsupervised learning) 

Classes vs. Clusters  

 Supervised: X = {xt,rt }t  

 Classes Ci i=1,...,K 

 

 

where p(x|Ci) ~ N(μi ,∑i )  

 Φ = {P (Ci ), μi , ∑i }
K

i=1 

 

  

 

 Unsupervised : X = { xt }t  

 Clusters Gi i=1,...,k 

 

 

 

 where p(x|Gi) ~ N ( μi , ∑i )  

 Φ = {P ( Gi ), μi , ∑i }
k
i=1 

 

  Labels rt
i ? 
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 Find k reference vectors (prototypes/codebook 

vectors/codewords) which best represent data 

 Reference vectors, mj, j =1,...,k 

 Use nearest (most similar) reference: 

 

 

 Reconstruction error 

k-Means Clustering 
6 
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Expectation-Maximization (EM) 
10 
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 Log likelihood with a mixture model 

 

 

 

 

 Assume hidden variables z, which when known, make 
optimization much simpler 

 Complete likelihood, Lc(Φ |X,Z), in terms of x and z 

 Incomplete likelihood, L(Φ |X), in terms of x  

E- and M-steps 
11 
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X,ZX,LQ
1

Iterate the two steps 

1. E-step: Estimate z given X and current Φ 

2. M-step: Find new Φ’ given z, X, and old Φ.  

 

 

  

 An increase in Q increases incomplete likelihood  

   XLXL || ll  1

 zt
i = 1 if xt belongs to Gi, 0 otherwise (labels r ti of 

supervised learning); assume p(x|Gi)~N(μi,∑i) 

 E-step:  

 

 

 M-step:  

  

 

EM in Gaussian Mixtures 
12 
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Use estimated labels in 

place of unknown labels 

13 

P(G1|x)=h1=0.5 

Mixtures of Latent Variable Models 
14 

   iT
iiiit Gp ψmx  VV,| N

Regularize clusters 

1. Assume shared/diagonal covariance matrices 

2. Use PCA/FA to decrease dimensionality: Mixtures 
of PCA/FA 

 

 

 Can use EM to learn Vi (Ghahramani and Hinton, 
1997; Tipping and Bishop, 1999) 

After Clustering 
15 

 Dimensionality reduction methods find correlations 
between features and group features 

 Clustering methods find similarities between 
instances and group instances 

 Allows knowledge extraction through  

 number of clusters, 

 prior probabilities,  

 cluster parameters, i.e., center, range of features. 

 Example: CRM, customer segmentation 

Clustering as Preprocessing 
16 

 Estimated group labels hj (soft) or bj (hard) may be 

seen as the dimensions of a new k dimensional 

space, where we can then learn our discriminant or 

regressor. 

 Local representation (only one bj is 1, all others are 

0; only few hj are nonzero) vs 

 Distributed representation (After PCA; all zj are 

nonzero) 

Mixture of Mixtures 
17 
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 In classification, the input comes from a mixture of 

classes (supervised).  

 If each class is also a mixture, e.g., of Gaussians, 

(unsupervised), we have a mixture of mixtures: 

Spectral Clustering 
18 

 Cluster using predefined pairwise similarities Brs 

instead of using Euclidean or Mahalanobis distance 

 Can be used even if instances not vectorially 

represented 

 Steps: 

I. Use Laplacian Eigenmaps (chapter 6) to map to a 

new z space using Brs 

II. Use k-means in this new z space for clustering 

 Cluster based on similarities/distances 

 Distance measure between instances xr and xs 

 Minkowski (Lp) (Euclidean for p = 2) 

 

 

 City-block distance 

Hierarchical Clustering 
19 
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 Start with N groups each with one instance and merge 
two closest groups at each iteration 

 Distance between two groups Gi and Gj: 

 Single-link:  

 

 

 Complete-link: 

 

 

 Average-link, centroid 

 

Agglomerative Clustering 
20 
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Example: Single-Link Clustering 
21 

Dendrogram 

Choosing k 
22 

 Defined by the application, e.g., image quantization 

 Plot data (after PCA) and check for clusters 

 Incremental (leader-cluster) algorithm: Add one at a 

time until “elbow” (reconstruction error/log 

likelihood/intergroup distances) 

 Manually check for meaning 
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CHAPTER 8: 

NONPARAMETRIC 

METHODS 

Nonparametric Estimation 
3 

 Parametric (single global model), semiparametric 
(small number of local models) 

 Nonparametric: Similar inputs have similar outputs 

 Functions (pdf, discriminant, regression) change 
smoothly 

 Keep the training data;“let the data speak for 
itself” 

 Given x, find a small number of closest training 
instances and interpolate from these 

 Aka lazy/memory-based/case-based/instance-
based learning 

Density Estimation 
4 
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 Given the training set X={xt}t drawn iid from p(x) 

 Divide data into bins of size h 

 Histogram: 

 

 Naive estimator: 
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Kernel Estimator 
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 Kernel function, e.g., Gaussian kernel: 

 

 

 

 Kernel estimator (Parzen windows) 
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k-Nearest Neighbor Estimator 
9 

 
 xNd

k
xp

k2
ˆ

 Instead of fixing bin width h and counting the 

number of instances, fix the instances (neighbors) k 

and check bin width 

 

 

 dk(x), distance to kth closest instance to x 

10 

 Kernel density estimator 

 

 

 

 Multivariate Gaussian kernel 

 

 spheric 

 

 ellipsoid 

Multivariate Data 
11 
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 Estimate p(x|Ci) and use Bayes’ rule 

 Kernel estimator 

 

 

 

 

 k-NN estimator 

Nonparametric Classification 
12 
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Condensed Nearest Neighbor 
13 

    ZZXXZ  ||' EE

 Time/space complexity of k-NN is O (N) 

 Find a subset Z of X that is small and is accurate in 

classifying X (Hart, 1968) 

 

Condensed Nearest Neighbor 
14 

 Incremental algorithm: Add instance if needed 

Distance-based Classification 
15 

 Find a distance function D(xr,xs) such that  

 if xrand xsbelong to the same class, distance is small 

and if they belong to different classes, distance is 

large  

 Assume a parametric model and learn its 

parameters using data, e.g., 

Learning a Distance Function 
16 

 The three-way relationship between distances, 
dimensionality reduction, and feature extraction. 

 M=LTL is dxd and L is kxd  

 

 

 

 Similarity-based representation using similarity 
scores 

 Large-margin nearest neighbor (chapter 13) 

17 

Euclidean distance (circle) is not suitable,  

Mahalanobis distance using an M (ellipse) is suitable. 

After the data is projected along L, Euclidean distance can be used. 

 



Outlier Detection 
18 

 Find outlier/novelty points 

 Not a two-class problem because outliers are very 

few, of many types, and seldom labeled 

 Instead, one-class classification problem: Find 

instances that have low probability 

 In nonparametric case: Find instances far away from 

other instances 

Local Outlier Factor 
19 

Nonparametric Regression 
20 
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 Aka smoothing models 

 Regressogram 

 

21 

22 

Running Mean/Kernel Smoother 

 Running mean smoother 

 

 

 

 

 

 

 

 Running line smoother 

 Kernel smoother 

 

 

 

 

where K( ) is Gaussian 

 Additive models (Hastie 
and Tibshirani, 1990)  

23 
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24 25 

26 

How to Choose k or h ? 
27 

 When k or h is small, single instances matter; bias is 

small, variance is large (undersmoothing): High 

complexity 

 As k or h increases, we average over more instances 

and variance decreases but bias increases 

(oversmoothing): Low complexity 

 Cross-validation is used to finetune k or h. 

28 
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CHAPTER 9: 

DECISION TREES 

Tree Uses Nodes and Leaves 
3 

Divide and Conquer 
4 

 Internal decision nodes 

 Univariate: Uses a single attribute, xi 

Numeric xi : Binary split : xi  > wm 

 Discrete xi : n-way split for n possible values 

 Multivariate: Uses all attributes, x 

 Leaves 

 Classification: Class labels, or proportions 

 Regression: Numeric; r average, or local fit 

 Learning is greedy; find the best split recursively 
(Breiman et al, 1984; Quinlan, 1986, 1993)  



Classification Trees (ID3,CART,C4.5) 
5 
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N
pmCP ,|ˆ x

 For node m, Nm instances reach m, Ni
m belong to Ci 

 

 

 

 Node m is pure if pi
m is 0 or 1 

 Measure of impurity is entropy 
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 If node m is pure, generate a leaf and stop, otherwise 

split and continue recursively 

 Impurity after split: Nmj of Nm take branch j. Ni
mj 

belong to Ci 

 

 

 Find the variable and split that min impurity (among 

all variables -- and split positions for numeric 

variables) 

Best Split 
6 
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 Error at node m: 

 

 

 

 

 After splitting: 

Regression Trees 
8 
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otherwise

  branch  and   node  reaches  :i f 

21
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1 X

9 

Model Selection in Trees 
Pruning Trees 

10 

 Remove subtrees for better generalization 

(decrease variance) 

 Prepruning: Early stopping 

 Postpruning: Grow the whole tree then prune subtrees that 

overfit on the pruning set 

 Prepruning is faster, postpruning is more accurate 

(requires a separate pruning set) 

Rule Extraction from Trees 

11 

C4.5Rules  

(Quinlan, 1993) 

Learning Rules 
12 

 Rule induction is similar to tree induction but  

  tree induction is breadth-first,  

  rule induction is depth-first; one rule at a time 

 Rule set contains rules; rules are conjunctions of terms 

 Rule covers an example if all terms of the rule evaluate 
to true for the example 

 Sequential covering: Generate rules one at a time until 
all positive examples are covered 

 IREP (Fürnkrantz and Widmer, 1994), Ripper (Cohen, 
1995) 

13 14 

Multivariate Trees 
15 
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CHAPTER 10:  

LINEAR DISCRIMINATION 

Likelihood- vs. Discriminant-based 

Classification 
3 

 Likelihood-based: Assume a model for p(x|Ci), use 

Bayes’ rule to calculate P(Ci|x)  

  gi(x) = log P(Ci|x) 

 Discriminant-based: Assume a model for gi(x|Φi); 

no density estimation 

 Estimating the boundaries is enough; no need to 

accurately estimate the densities inside the 

boundaries 

 Linear discriminant: 

 

 

 Advantages: 

 Simple: O(d) space/computation  

 Knowledge extraction: Weighted sum of attributes; 

positive/negative weights, magnitudes (credit scoring) 

 Optimal when p(x|Ci) are Gaussian with shared cov matrix; 

useful when classes are (almost) linearly separable 

Linear Discriminant 
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 Quadratic discriminant: 

 

 

 Higher-order (product) terms: 

 

  

 Map from x to z using nonlinear basis functions and use a linear 

discriminant in z-space 

Generalized Linear Model 
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Sigmoid (Logistic) Function 
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 E(w|X) is error with parameters w on sample X 

   w*=arg minw E(w | X) 

 

 Gradient 

 

 

 Gradient-descent:  
 Starts from random w and updates w iteratively in the 

negative direction of gradient  

Gradient-Descent 
14 
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Logistic Discrimination 
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Two classes: Assume log likelihood ratio is linear 

Training: Two Classes 
16 
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Example 
22 

 Quadratic: 

 

 

 Sum of basis functions: 

 

 

 where φ(x) are basis functions. Examples:  

 Hidden units in neural networks (Chapters 11 and 12) 

 Kernels in SVM (Chapter 13) 

Generalizing the Linear Model 
23 
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Discrimination by Regression 
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 Classes are NOT mutually exclusive and exhaustive 

Learning to Rank 
25 

 Ranking: A different problem than classification or 

regression 

 Let us say xu and xv are two instances, e.g., two 

movies  

 We prefer u to v implies that g(xu)>g(xv) 

 where g(x) is a score function, here linear: 

   g(x)=wTx  

 Find a direction w such that we get the desired 

ranks when instances are projected along w 

Ranking Error 
26 

 We prefer u to v implies that g(xu)>g(xv), so  

 error is g(xv)-g(xu), if g(xu)<g(xv)  

 

 

 

 

27 
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CHAPTER 11:  

MULTILAYER PERCEPTRONS 

Neural Networks 
3 

 Networks of processing units (neurons) with 

connections (synapses) between them 

 Large number of neurons: 1010 

 Large connectitivity: 105 

 Parallel processing 

 Distributed computation/memory 

 Robust to noise, failures 

Understanding the Brain 
4 

 Levels of analysis (Marr, 1982) 

1. Computational theory 

2. Representation and algorithm 

3. Hardware implementation 

 Reverse engineering: From hardware to theory 

 Parallel processing: SIMD vs MIMD 

 Neural net: SIMD with modifiable local memory 

 Learning: Update by training/experience 

Perceptron 
5 
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What a Perceptron Does  

 Regression: y=wx+w0 
 Classification:y=1(wx+w0>0) 
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Classification: 

Regression: 

 Online (instances seen one by one) vs batch (whole 
sample) learning: 

 No need to store the whole sample 

 Problem may change in time 

 Wear and degradation in system components  

 Stochastic gradient-descent: Update after a single 
pattern 

 Generic update rule (LMS rule): 

Training 
8 
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 Regression (Linear output): 
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 Single sigmoid output 

 

 

 

 K>2 softmax outputs 

 

Classification 
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(Minsky and Papert, 1969) 

Multilayer Perceptrons 
13 
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14 x1 XOR x2 = (x1 AND ~x2) OR (~x1 AND x2) 

Backpropagation 
15 
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Two-Class Discrimination 
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Multiple Hidden Layers 
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 MLP with one hidden layer is a universal 

approximator (Hornik et al., 1989), but using 

multiple layers may lead to simpler networks 

 Momentum 

 

 

 

 Adaptive learning rate 

Improving Convergence 
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Overfitting/Overtraining 
25 

Number of weights: H (d+1)+(H+1)K 

26 

Structured MLP 
27 

 Convolutional networks (Deep learning) 

(Le Cun et al, 1989) 

Weight Sharing 
28 

Hints 
29 
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 Invariance to translation, rotation, size 

 

 

 

 Virtual examples 

 Augmented error: E’=E+λhEh 

If x’ and x are the “same”: Eh=[g(x|θ)- g(x’|θ)]2 

Approximation hint: 

(Abu-Mostafa, 1995) 

Tuning the Network Size 

 Destructive 

 Weight decay: 

 

 

 Constructive 

 Growing networks 

30 

(Ash, 1989) (Fahlman and Lebiere, 1989) 
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 Consider weights wi as random vars, prior p(wi) 

 

 

 

 

 

 

 

 Weight decay, ridge regression, regularization 

  cost=data-misfit + λ complexity 

 More about Bayesian methods in chapter 14 

Bayesian Learning 
31 

 
   

 
 

     

     

2

2

212

w

w

www

w
w

w
ww

w























EE

w
cwpwpp

Cppp

p
p

pp
p

i
i

i
i

MAP

'

)/(

ˆ

exp    where

 log| log| log

| log max arg   
|

|

XX

X
X

X
X

Dimensionality Reduction 
32 

Autoencoder networks 

33 

Learning Time 
34 

 Applications: 

 Sequence recognition: Speech recognition 

 Sequence reproduction: Time-series prediction 

 Sequence association 

 Network architectures 

 Time-delay networks (Waibel et al., 1989) 

 Recurrent networks (Rumelhart et al., 1986) 

Time-Delay Neural Networks 
35 

Recurrent Networks 
36 

Unfolding in Time 
37 

Deep Networks 
38 

 Layers of feature extraction units 

 Can have local receptive fields as in convolution 

networks, or can be fully connected 

 Can be trained layer by layer using an autoencoder 

in an unsupervised manner 

 No need to craft the right features or the right basis 

functions or the right dimensionality reduction method; 

learns multiple layers of abstraction all by itself given 

a lot of data and a lot of computation 

 Applications in vision, language processing, ... 
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CHAPTER 12:  

LOCAL MODELS 

Introduction 
3 

 Divide the input space into local regions and learn 
simple (constant/linear) models in each patch 

 

 

 

 

 

 Unsupervised: Competitive, online clustering 

 Supervised: Radial-basis functions, mixture of 
experts 

Competitive Learning 
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(Carpenter and Grossberg, 1988) 

Self-Organizing Maps 
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 Units have a neighborhood defined; mi is “between” 

mi-1 and mi+1, and are all updated together 

 One-dim map: 
(Kohonen, 1990) 

Radial-Basis Functions 
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Local vs Distributed Representation 
9 

Training RBF 
10 

 Hybrid learning: 

 First layer centers and spreads:  

  Unsupervised k-means 

 Second layer weights:  

 Supervised gradient-descent 

 Fully supervised 

 (Broomhead and Lowe, 1988; Moody and Darken, 

1989) 

 

Regression 
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 Incorporation of prior knowledge (before training) 

 Rule extraction (after training) (Tresp et al., 1997) 

 Fuzzy membership functions and fuzzy rules 

Normalized Basis Functions 
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EM for RBF (Supervised EM) 
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 H units per class prelabeled (Kohonen, 1990) 

 Given x, mi is the closest: 

x 

mi 
mj 

Mixture of Experts 

 In RBF, each local fit is a 

constant, wih, second 

layer weight 

 In MoE, each local fit is 

a linear function of x, a 

local expert: tt
ih

t
ihw xv

21 

(Jacobs et al., 1991) 

MoE as Models Combined 

 Radial gating: 

 

 

 

 

 Softmax gating: 
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Competitive MoE: Regression 
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Hierarchical Mixture of Experts 
26 

 Tree of MoE where each MoE is an expert in a 

higher-level MoE 

 Soft decision tree: Takes a weighted (gating) 

average of all leaves (experts), as opposed to 

using a single path and a single leaf 

 Can be trained using EM (Jordan and Jacobs, 

1994) 

L Mon Sep 24 12:39:54 2018 13

i2ml3e-chap13.pdf

INTRODUCTION  

TO  

MACHINE  

LEARNING 
3RD EDITION 

ETHEM ALPAYDIN 

© The MIT Press, 2014 
 

alpaydin@boun.edu.tr 

http://www.cmpe.boun.edu.tr/~ethem/i2ml3e 

Lecture Slides for 

CHAPTER 13:  

KERNEL MACHINES 

Kernel Machines 
3 

 Discriminant-based: No need to estimate densities 

first 

 Define the discriminant in terms of support vectors 

 The use of kernel functions, application-specific 

measures of similarity 

 No need to represent instances as vectors 

 Convex optimization problems with a unique solution 

 

4 

Optimal Separating Hyperplane 

(Cortes and Vapnik, 1995; Vapnik, 1995) 
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Margin 

 Distance from the discriminant to the closest instances 

on either side 

 Distance of x to the hyperplane is 

 

 We require 
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Most αt are 0 and only a small number have αt >0; they are 

the support vectors 
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Kernel Trick 

 Preprocess input x by basis functions 

  z = φ(x)  g(z)=wTz   

     g(x)=wT φ(x) 

 The SVM solution  
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Vectorial Kernels 

 Polynomials of degree q: 
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Vectorial Kernels 

 Radial-basis functions: 
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Defining kernels 
16 

 Kernel “engineering” 

 Defining good measures of similarity 

 String kernels, graph kernels, image kernels, ... 

 Empirical kernel map: Define a set of templates mi 

and score function s(x,mi) 

  (xt)=[s(xt,m1), s(x
t,m2),..., s(x

t,mM)] 

 and  

 K(x,xt)= (x)T  (xt) 

 Fixed kernel combination 

 

 

 Adaptive kernel combination 

 

 

 

 

 Localized kernel combination 

Multiple Kernel Learning 
17 
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Multiclass Kernel Machines 
18 

 1-vs-all 

 Pairwise separation 

 Error-Correcting Output Codes (section 17.5) 

 Single multiclass optimization 
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SVM for Regression 

 Use a linear model (possibly kernelized) 

   f(x)=wTx+w0 

 Use the є-sensitive error function 
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Kernel Regression 

 Polynomial kernel  Gaussian kernel 

21 

Kernel Machines for Ranking 
22 

 We require not only that scores be correct order 

but at least +1 unit margin. 

 Linear case: 
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One-Class Kernel Machines 
23 

 Consider a sphere with center a and radius R 
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24 

Large Margin Nearest Neighbor 
25 

 Learns the matrix M of Mahalanobis metric 

 D(xi, xj)=(xi-xj)TM(xi-xj) 

 For three instances i, j, and l, where i and j are of 

the same class and l different, we require 

 D(xi, xl) > D(xi, xj)+1 

 and if this is not satisfied, we have a slack for the 

difference and we learn M to minimize the sum of 

such slacks over all i,j,l triples (j and l being one of k 

neighbors of i, over all i) 

 LMNN algorithm (Weinberger and Saul 2009) 

 

 

 

 

 LMCA algorithm (Torresani and Lee 2007) uses  a 

similar approach where M=LTL and learns L 

Learning a Distance Measure  
26 

Kernel Dimensionality Reduction 
27 

 Kernel PCA does 

PCA on the 

kernel matrix 

(equal to 

canonical PCA 

with a linear 

kernel) 

 Kernel LDA, CCA 
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Graphical Models 
3 

 Aka Bayesian networks, probabilistic networks 

 Nodes are hypotheses (random vars) and the 
probabilities corresponds to our belief in the truth 
of the hypothesis 

 Arcs are direct influences between hypotheses 

 The structure is represented as a directed acyclic 
graph (DAG) 

 The parameters are the conditional probabilities in 
the arcs (Pearl, 1988, 2000; Jensen, 1996; 
Lauritzen, 1996) 

4 

Causes and Bayes’ Rule 

Diagnostic inference: 

Knowing that the grass is wet,  

what is the probability that rain is  

the cause? 

causal 

diagnostic 
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Conditional Independence 
5 

 X and Y are independent if  

    P(X,Y)=P(X)P(Y) 

 X and Y are conditionally independent given Z if  

    P(X,Y|Z)=P(X|Z)P(Y|Z) 

    or 

    P(X|Y,Z)=P(X|Z) 

 Three canonical cases: Head-to-tail, Tail-to-tail, 

head-to-head 

 

Case 1: Head-to-Head 
6 

 P(X,Y,Z)=P(X)P(Y|X)P(Z|Y) 

 

 

 

 

 

 

 

 P(W|C)=P(W|R)P(R|C)+P(W|~R)P(~R|C) 

Case 2: Tail-to-Tail  
7 

 P(X,Y,Z)=P(X)P(Y|X)P(Z|X) 

Case 3: Head-to-Head 
8 

 P(X,Y,Z)=P(X)P(Y)P(Z|X,Y) 

9 

Causal vs Diagnostic Inference 

Causal inference: If the  

sprinkler is on, what is the  

probability that the grass is wet? 

 

P(W|S) = P(W|R,S) P(R|S) +  

 P(W|~R,S) P(~R|S) 

 = P(W|R,S) P(R) +  

 P(W|~R,S) P(~R) 

 = 0.95 0.4 + 0.9 0.6 = 0.92  
 

Diagnostic inference: If the grass is wet, what is the probability 

that the sprinkler is on?  P(S|W) = 0.35 > 0.2 P(S) 

P(S|R,W) = 0.21 Explaining away: Knowing that it has rained 

 decreases the probability that the sprinkler is on.  

10 

Causes 

Causal inference: 

P(W|C) = P(W|R,S) P(R,S|C) + 

 P(W|~R,S) P(~R,S|C) +  

 P(W|R,~S) P(R,~S|C) +  

 P(W|~R,~S) P(~R,~S|C) 

 

and use the fact that 

  P(R,S|C) = P(R|C) P(S|C) 

 

 Diagnostic: P(C|W ) = ? 



11 

Exploiting the Local Structure 

           RFPRSWPCRPCSPCPFWRSCP |||| ,,,,, 

P (F | C) = ? 
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Classification 

diagnostic 

 

P (C|x ) 

Bayes’ rule inverts the arc: 
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13 

Naive Bayes’ Classifier 

Given C, xj are independent: 

 
 p(x|C) = p(x1|C) p(x2|C) ... p(xd|C)  
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Linear Regression 
14 

d-Separation 
15 

 A path from node A to node B 
is blocked if 

a) The directions of edges on 
the path meet head-to-tail 
(case 1) or tail-to-tail (case 
2) and the node is in C, or 

b) The directions of edges meet 
head-to-head (case 3) and 
neither that node nor any of 
its descendants is in C. 

 If all paths are blocked, A 
and B are d-separated 
(conditionally independent) 
given C. 

BCDF is blocked given C.  

BEFG is blocked by F. 

BEFD is blocked unless F (or G) is 

given. 

Belief Propagation (Pearl, 1988) 
16 

 Chain: 
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Trees 
17 
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Polytrees 
18 
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How can we model P(X|U1,U2,...,Uk) cheaply? 

Junction Trees 
19 

 If X does not separate E+ and E-, we convert it into 

a junction tree and then apply the polytree 

algorithm 

Tree of moralized, 

clique nodes 

Undirected Graphs: Markov Random 

Fields 
20 

 In a Markov random field, dependencies are 

symmetric, for example, pixels in an image 

 In an undirected graph, A and B are independent if 

removing C makes them unconnected. 

 Potential function yc(Xc) shows how favorable is the 

particular configuration X over the clique C  

 The joint is defined in terms of the clique potentials 

 
X C

CC
C

CC XZX
Z

Xp )()()( yy  normalizer  where
1

Factor Graphs 
21 

 Define new factor nodes and write the joint in terms 

of them  

 )()( 
S

SS Xf
Z

Xp
1

Learning a Graphical Model 
22 

 Learning the conditional probabilities, either as 

tables (for discrete case with small number of 

parents), or as parametric functions 

 Learning the structure of the graph: Doing a state-

space search over a score function that uses both 

goodness of fit to data and some measure of 

complexity 

 

Influence Diagrams 
23 

chance node 

decision node 

utility node 
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Introduction 
3 

 Modeling dependencies in input; no longer iid 

 Sequences:  

 Temporal: In speech; phonemes in a word (dictionary), words 

in a sentence (syntax, semantics of the language).  

 In handwriting, pen movements 

 Spatial: In a DNA sequence; base pairs 

Discrete Markov Process 
4 

 N states: S1, S2, ..., SN  State at “time” t, qt = Si 

 First-order Markov 

      P(qt+1=Sj | qt=Si, qt-1=Sk ,...) = P(qt+1=Sj | qt=Si)  

 

 Transition probabilities 

      aij ≡ P(qt+1=Sj | qt=Si)       aij ≥ 0 and Σj=1
N 

aij=1 

 

 Initial probabilities 

      πi ≡ P(q1=Si)         Σj=1
N πi=1 

Stochastic Automaton 
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Example: Balls and Urns 
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Balls and Urns: Learning 
7 
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Hidden Markov Models 
8 

 States are not observable 

 Discrete observations {v1,v2,...,vM} are recorded; a 
probabilistic function of the state 

 Emission probabilities  

  bj(m) ≡ P(Ot=vm | qt=Sj) 

 Example: In each urn, there are balls of different 
colors, but with different probabilities. 

 For each observation sequence, there are multiple 
state sequences 

HMM Unfolded in Time 
9 

Elements of an HMM 
10 

 N: Number of states 

 M: Number of observation symbols 

 A = [aij]: N by N state transition probability matrix 

 B = bj(m): N by M observation probability matrix 

 Π = [πi]: N by 1 initial state probability vector 

 

 λ = (A, B, Π), parameter set of HMM 

Three Basic Problems of HMMs 
11 

1. Evaluation: Given λ, and O, calculate P (O | λ) 

2. State sequence: Given λ, and O, find Q* such that  

  P (Q* | O, λ ) = maxQ P (Q | O , λ )  

3. Learning: Given X={Ok}k, find λ* such that  

  P ( X | λ* )=maxλ P ( X | λ ) 

 
(Rabiner, 1989) 

Evaluation 
12 
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 Forward variable: 
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Backward variable:  
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Finding the State Sequence 
14 
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Choose the state that has the highest probability,  

for each time step: 

 qt
*= arg maxi γt(i) 

Viterbi’s Algorithm 
15 

 δt(i) ≡ max
q1q2∙∙∙ qt-1 p(q1q2∙∙∙qt-1,qt =Si,O1∙∙∙Ot | λ) 

 

 Initialization:  
  δ1(i) = πibi(O1), ψ1(i) = 0 
 Recursion: 
   δt(j) = maxi δt-1(i)aijbj(Ot), ψt(j) = argmaxi δt-

1(i)aij 
 Termination: 
  p* = maxi δT(i), qT

*= argmaxi δT (i)
 

 Path backtracking: 
 qt

* = ψt+1(qt+1
* ), t=T-1, T-2, ..., 1  

Learning 
16 
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17 

 Discrete: 

 

 

 Gaussian mixture (Discretize using k-means): 

 

 

 Continuous: 

Continuous Observations 
18 
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HMM with Input 
19 

 titjt xSqSqP ,| 1

 Input-dependent observations: 

 

 

 Input-dependent transitions (Meila and Jordan, 
1996; Bengio and Frasconi, 1996): 

 

 

 Time-delay input: 
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HMM as a Graphical Model 
20 

21 

Model Selection in HMM 
22 
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 Left-to-right HMMs: 

 

 

 

 

 In classification, for each Ci, estimate P (O | λi) by a 

separate HMM and use Bayes’ rule 
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CHAPTER 16:  

BAYESIAN ESTIMATION 

Rationale 
3 

 Parameters q not constant, but random variables 

with a prior, p(q) 

 

 Bayes’ Rule: 
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Generative Model 
4 

Bayesian Approach 
5 

1. Prior p(q) allows us to concentrate on region where 

q is likely to lie, ignoring regions where it’s unlikely 

2. Instead of a single estimate with a single q, we 

generate several estimates using several q and 

average, weighted by how their probabilities 

Even if prior p(q) is uninformative, (2) still helps. 

MAP estimator does not make use of (2): 

Bayesian Approach 

 

 

  In certain cases, it is easy to integrate 

 Conjugate prior: Posterior has the same density as prior 

 Sampling (Markov Chain Monte Carlo): Sample from 
the posterior and average 

 Approximation: Approximate the posterior with a 
model easier to integrate 

 Laplace approximation: Use a Gaussian 

 Variational approximation: Split the multivariate density 
into a set of simpler densities using independencies  

6 

Estimating the Parameters of a 

Distribution: Discrete case 

 xt
i=1 if in instance t is in state i, probability of state i is qi  

 Dirichlet prior, ai are hyperparameters 

 

 Sample likelihood 

  

 

 

 Posterior 

 

 

 Dirichlet is a conjugate prior 

 With K=2, Dirichlet reduced to Beta 
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8 

Estimating the Parameters of a 
Distribution: Continuous case 

 p(xt)~N(m,s2) 

 Gaussian prior for m, p(m)~ N(m0, s0
2) 

 Posterior is also Gaussian p(m|X)~ N(mN, sN
2) 

where 
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Gaussian: Prior on Variance 
9 

 Let’s define a prior (gamma) on precision l=1/s2 

Joint Prior and Making a Prediction 
10 

Multivariate Gaussian 
11 



 r=wTx+ e, p(e)~N(0,1/b), and p(rt|xt,w, b)~N(wTxt, 1/b) 

 Log likelihood 

 

 

  

 ML solution 

• Gaussian conjugate prior: p(w)~N(0,1/a) 

• Posterior: p(w|X)~N(mN,SN where 

 

 

12 

Estimating the Parameters of a 
Function: Regression 
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Aka ridge regression/parameter shrinkage/ 

L2 regularization/weight decay 
13 

Prior on Noise Variance 
14 

Markov Chain Monte Carlo (MCMC) sampling 

15 

 For new x’, the estimate r’ is calculated as 

 

 

 

 

 Linear kernel 

 For any other f(x), we can write K(x’,x)=f(x’)Tf(x) 
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16 16 

Basis/Kernel Functions 
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Kernel Functions 
17 

What’s in a Prior? 
18 

 Defining a prior is subjective 

 Uninformative prior if no prior preference 

 How high to go? 

 

 

 Empirical Bayes: Use one good a* 

Bayesian Model Comparison 
19 

 Marginal likelihood of a model: 

 

 Posterior probability of model given data: 

 

 Bayes’ factor: 

 

 Approximations: 

 BIC: 

 AIC: 

Mixture Model 
20 

21 

Models in increasing complexity.  

A complex model can fit more 

datasets but is spread thin,  

a simple model can fit few datasets 

but has higher marginal 

likelihood where it does  

(MacKay 2003) 

Nonparametric Bayes 
22 

 Model complexity can increase with more data (in 

practice up to N, potentially to infinity) 

 Similar to k-NN and Parzen windows we saw 

before where training set is the parameters 

23 

23 23 23 

Gaussian Processes 

 Nonparametric model for supervised learning 

 Assume Gaussian prior p(w)~N(0,1/a) 

 y=Xw, where E[y]=0 and Cov(y)=K with Kij= (xi)Txi 

 K is the covariance function, here linear 

 With basis function f(x), Kij= (f(xi))Tf(xi) 

  r~NN(0,CN) where CN= (1/b)I+K 

 With new x’ added as xN+1,  rN+1~NN+1(0,CN+1) 

 

 

 

 where k = [K(x’,xt)t]
T and c=K(x’,x’)+1/b. 

 p(r’|x’,X,r)~N(kTCN-1r,c-k
TCN-1k) 

 

 

 

 









 c

N

N
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24 

Dirichlet Processes 
25 

 Nonparametric Bayesian approach for clustering 

 Chinese restaurant process 

 Customers arrive and either join one of the existing 

tables or start a new one, based on the table  

 occupancies: 

 

 

Nonparametric Gaussian Mixture 
26 

 Tables are Gaussian components and decisions 

based both on prior and also on input x: 

Latent Dirichlet Allocation 
27 

 Bayesian feature extraction 



Beta Processes 
28 

 Nonparametric Bayesian approach for feature 
extraction 

 Matrix factorization: 

 

 

 

 Nonparametric version: Allow j to increase with more 
data probabilistically  

 Indian buffet process: Customer can take one of the 
existing dishes with prob mj or add a new dish to the 
buffet 
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COMBINING MULTIPLE 

LEARNERS 

Rationale 
3 

 No Free Lunch Theorem: There is no algorithm that is 
always the most accurate 

 Generate a group of base-learners which when 
combined has higher accuracy 

 Different learners use different 
 Algorithms 

 Hyperparameters 

 Representations /Modalities/Views 

 Training sets 

 Subproblems 

 Diversity vs accuracy 

 

Voting 

 Linear combination 

 

 

 

 

 

 Classification 
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 Bayesian perspective: 

 

 

 If dj are iid  

 

 

 

 Bias does not change, variance decreases by L 

 If dependent, error increase with positive correlation 
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Fixed Combination Rules 
6 

 K classes; L problems (Dietterich and Bakiri, 1995) 

 Code matrix W codes classes in terms of learners 

 

 One per class 

  L=K 

 

 

 Pairwise 

 L=K(K-1)/2 

Error-Correcting Output Codes 
7 
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8 

 Full code L=2(K-1)-1 

 

 

 

 

 With reasonable L, find W such that the Hamming 
distance btw rows and columns are maximized. 

 Voting scheme 

 

 

 Subproblems may be more difficult than one-per-K 
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Bagging  
9 

 Use bootstrapping to generate L training sets and 

train one base-learner with each (Breiman, 1996) 

 Use voting (Average or median with regression) 

 Unstable algorithms profit from bagging 

AdaBoost 
10 

Generate a 

sequence of 

base-

learners 

each 

focusing on 

previous 

one’s errors 

(Freund and 

Schapire, 

1996) 

Mixture of Experts 
11 
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j
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Voting where weights are input-dependent (gating) 

 

 

 

(Jacobs et al., 1991) 

Experts or gating  

can be nonlinear 

  

Stacking 
12 

 Combiner f () is 

another learner 

(Wolpert, 1992) 

Fine-Tuning an Ensemble 
13 

 Given an ensemble of dependent classifiers, do not 

use it as is, try to get independence 

1. Subset selection: Forward (growing)/Backward 

(pruning) approaches to improve 

accuracy/diversity/independence 

2. Train metaclassifiers: From the output of correlated 

classifiers, extract new combinations that are 

uncorrelated. Using PCA, we get “eigenlearners.” 

 Similar to feature selection vs feature extraction 

Cascading 
14 

Use dj only if 

preceding ones are 

not confident 

 

Cascade learners in 

order of complexity 



Combining Multiple Sources/Views 
15 

 Early integration: Concat all features and train a 

single learner 

 Late integration: With each feature set, train one 

learner, then either use a fixed rule or stacking to 

combine decisions 

 Intermediate integration: With each feature set, 

calculate a kernel, then use a single SVM with 

multiple kernels 

 Combining features vs decisions vs kernels 

L Mon Sep 24 12:39:54 2018 18

i2ml3e-chap18.pdf

INTRODUCTION  

TO  

MACHINE  

LEARNING 
3RD EDITION 

ETHEM ALPAYDIN 

© The MIT Press, 2014 
 

alpaydin@boun.edu.tr 

http://www.cmpe.boun.edu.tr/~ethem/i2ml3e 

Lecture Slides for 

CHAPTER 18:  

REINFORCEMENT LEARNING 

Introduction 
3 

 Game-playing: Sequence of moves to win a game 

 Robot in a maze: Sequence of actions to find a goal 

 Agent has a state in an environment, takes an action 

and sometimes receives reward and the state 

changes 

 Credit-assignment 

 Learn a policy 

Single State: K-armed Bandit 
4 

        aQaraQaQ tttt   11 

 Among K levers, choose  

   the one that pays best 

 Q(a): value of action a 

 Reward is ra 

 Set Q(a) = ra 

 Choose a* if  

  Q(a*)=maxa Q(a) 

  

 Rewards stochastic (keep an expected reward): 

Elements of RL (Markov Decision 

Processes) 
5 

 st : State of agent at time t 

 at: Action taken at time t 

 In st, action at is taken, clock ticks and reward rt+1 is 
received and state changes to st+1 

 Next state prob: P (st+1 | st , at ) 

 Reward prob: p (rt+1 | st , at ) 

 Initial state(s), goal state(s) 

 Episode (trial) of actions from initial state to goal 

 (Sutton and Barto, 1998; Kaelbling et al., 1996) 

 Policy, 

 Value of a policy, 

 Finite-horizon: 

 

 

 Infinite horizon:   

Policy and Cumulative Reward 
6 
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Bellman’s equation 

 Environment, P (st+1 | st , at ), p (rt+1 | st , at ) known 

 There is no need for exploration 

 Can be solved using dynamic programming 

 Solve for 

 

 

 Optimal policy 

Model-Based Learning 
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Value Iteration 
9 

Policy Iteration 
10 

Temporal Difference Learning 
11 

 Environment, P (st+1 | st , at ), p (rt+1 | st , at ), is not 

known; model-free learning 

 There is need for exploration to sample from  

 P (st+1 | st , at ) and p (rt+1 | st , at ) 

 Use the reward received in the next time step to 

update the value of current state (action) 

 The temporal difference between the value of the 

current action and the value discounted from the 

next state  

Exploration Strategies 
12 
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 ε-greedy: With pr ε,choose one action at random 
uniformly; and choose the best action with pr 1-ε 

 Probabilistic: 

 

 

 Move smoothly from exploration/exploitation.  

 Decrease ε 

 Annealing  
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Deterministic Rewards and Actions 
13 
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 Deterministic: single possible reward and next state 

 

 

 used as an update rule (backup) 

 

 

 Starting at zero, Q values increase, never decrease 
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14 

Consider the value of action marked by ‘*’: 

If path A is seen first, Q(*)=0.9*max(0,81)=73 

Then B is seen, Q(*)=0.9*max(100,81)=90 

Or, 

If path B is seen first, Q(*)=0.9*max(100,0)=90 

Then A is seen, Q(*)=0.9*max(100,81)=90 

Q values increase but never decrease 

γ=0.9 



 When next states and rewards are nondeterministic 
(there is an opponent or randomness in the environment), 
we keep averages (expected values) instead as 
assignments 

 Q-learning (Watkins and Dayan, 1992): 

 

 

 Off-policy vs on-policy (Sarsa) 

 Learning V (TD-learning: Sutton, 1988) 

Nondeterministic Rewards and 

Actions 
15 
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Q-learning 
16 

Sarsa 
17 

Eligibility Traces 
18 
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  and  if

Keep a record of previously visited states (actions) 

Sarsa (λ) 
19 

 Tabular: Q (s , a) or V (s) stored in a table 

 Regressor: Use a learner to estimate Q(s,a) or V(s) 

 

 

Generalization 
20 
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Partially Observable States 
21 

 The agent does not know its state but receives an 

observation  p(ot+1|st,at) which can be used to infer 

a belief about states 

 Partially observable  

 MDP 

 

The Tiger Problem 
22 

 Two doors, behind one of which there is a tiger 

 p: prob that tiger is behind the left door 

 

 

 R(aL)=-100p+80(1-p), R(aR)=90p-100(1-p) 

 We can sense with a reward of R(aS)=-1 

 We have unreliable sensors 

 

23 

 If we sense oL, our belief in tiger’s position changes 
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 Let us say the tiger can move from one room to the 

other with prob 0.8 
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27 

 When planning for episodes of two, we can take aL, 

aR, or sense and wait: 
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DESIGN AND ANALYSIS OF 
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Introduction 
3 

 Questions: 

 Assessment of the expected error of a learning algorithm: Is 

the error rate of 1-NN less than 2%? 

 Comparing the expected errors of two algorithms: Is k-NN 

more accurate than MLP ? 

 Training/validation/test sets 

 Resampling methods: K-fold cross-validation 

Algorithm Preference 
4 

 Criteria (Application-dependent): 

 Misclassification error, or risk (loss functions) 

 Training time/space complexity 

 Testing time/space complexity 

 Interpretability 

 Easy programmability 

 Cost-sensitive learning 

 

Factors and Response 

 Response function based 
on output to be 
maximized 

 Depends on controllable 
factors 

 Uncontrollable factors 
introduce randomness 

 Find the configuration of 
controllable factors that 
maximizes response and 
minimally affected by 
uncontrollable factors 

5 

Strategies of Experimentation 
6 

Response surface design for approximating  and maximizing  

the response function in terms of the controllable factors 

How to search the factor space? 

Guidelines for ML experiments 
7 

A. Aim of the study 

B. Selection of the response variable 

C. Choice of factors and levels 

D. Choice of experimental design 

E. Performing the experiment 

F. Statistical Analysis of the Data 

G. Conclusions and Recommendations 

 The need for multiple training/validation sets 

 {Xi,Vi}i: Training/validation sets of fold i 

 K-fold cross-validation: Divide X into k, Xi,i=1,...,K 

 

 

 

 

 

 

 Ti share K-2 parts 

Resampling and  

K-Fold Cross-Validation 
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 5 times 2 fold cross-validation (Dietterich, 1998) 

Bootstrapping 
10 

3680
1

1 1 .







 e
N

N

 Draw instances from a dataset with replacement 

 Prob that we do not pick an instance after N draws 

 

 

  

 that is, only 36.8% is new! 

Performance Measures 
11 

 

 

 

 

 

 Error rate  = # of errors / # of instances = (FN+FP) / N 

 Recall  = # of found positives / # of positives  

   = TP / (TP+FN) = sensitivity = hit rate 

 Precision  = # of found positives / # of found 

   = TP / (TP+FP) 

 Specificity  = TN / (TN+FP) 

 False alarm rate = FP / (FP+TN) = 1 - Specificity 

ROC Curve 
12 

13 

Precision and Recall 
14 

Interval Estimation 
15 
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 X = { xt }t where xt ~ N ( μ, σ2) 

 m ~ N ( μ, σ2/N) 

 

100(1- α) percent 

confidence interval 
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When σ2 is not known: 
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100(1- α) percent one-sided 

confidence interval 

 Reject a null hypothesis if not supported by the sample 
with enough confidence 

 X = { xt }t where xt ~ N ( μ, σ2) 

  H0: μ = μ0 vs. H1: μ ≠ μ0  

 Accept H0 with level of significance α if μ0 is in the  

  100(1- α) confidence interval 

 

 

 Two-sided test 

 

Hypothesis Testing 
17 
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 One-sided test: H0: μ ≤  μ0 vs. H1: μ > μ0  

 Accept if 

 

 Variance unknown: Use t, instead of z  

 Accept H0: μ = μ0 if  
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Assessing Error: H0:p ≤ p0 vs. H1:p > p0  

19 
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1

1

 Single training/validation set: Binomial Test 

 If error prob is p0, prob that there are e errors or 

less in N validation trials is   

     

1- α 

Accept if this prob is less than 1- α 

N=100, e=20 

Normal Approximation to the Binomial 

20 
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 Number of errors X is approx N with mean Np0 and 

var Np0(1-p0) 

 

 

Accept if this prob for X = e is  

less than z1-α 

1- α 

 Multiple training/validation sets 

 xt
i = 1 if instance t misclassified on fold i 

 Error rate of fold i: 

 

 With m and s2 average and var of pi , we accept p0 or 
less error if 

 

 

 is less than tα,K-1 

Paired t Test 
21 
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 Single training/validation set: McNemar’s Test 

 

 

 

 Under H0, we expect e01= e10=(e01+ e10)/2 

Comparing Classifiers: H0:μ0=μ1 vs. 

H1:μ0≠μ1  
22 
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Accept if < X2
α,1 

  

K-Fold CV Paired t Test 
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 in if  Accept

     

  vs.  

 Use K-fold cv to get K training/validation folds 

 pi
1, pi

2: Errors of classifiers 1 and 2 on fold i 

 pi = pi
1 – pi

2 : Paired difference on fold i 

 The null hypothesis is whether pi has mean 0 

5×2 cv Paired t Test 
24 

          
 

55

1

2

1

1

2221221

5

2

t
s

p

ppppsppp

i i

iiiiiiii

~
/

      /

 



 Use 5×2 cv to get 2 folds of 5 tra/val replications 

(Dietterich, 1998)  

 pi
(j) :  difference btw errors of 1 and 2 on fold j=1, 

2 of replication i=1,...,5 

Two-sided test: Accept H0: μ0 =  μ1 if in (-tα/2,5,tα/2,5)  

One-sided test:  Accept H0: μ0  ≤ μ1 if < tα,5  

5×2 cv Paired F Test 
25 
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Two-sided test: Accept H0: μ0 =  μ1 if < Fα,10,5 

 

Comparing L>2 Algorithms:  

Analysis of Variance (Anova) 
26 

LH   210 : 

 Errors of L algorithms on K folds 

 

 We construct two estimators to σ2 .  

 One is valid if H0 is true, the other is always valid. 

 We reject H0  if the two estimators disagree.  

  KiLjX jij ,...,  ,,...,,,~ 112 N
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ANOVA table 
29 

If ANOVA rejects, we do pairwise posthoc tests 
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Comparison over Multiple Datasets 
30 

 Comparing two algorithms:  

 Sign test: Count how many times A beats B over N 
datasets, and check if this could have been by chance if 
A and B did have the same error rate 

 Comparing multiple algorithms 

 Kruskal-Wallis test: Calculate the average rank of all 
algorithms on N datasets, and check if these could have 
been by chance if they all had equal error 

 If KW rejects, we do pairwise posthoc tests to find 
which ones have significant rank difference 

 Instead of testing using a single performance 

measure, e.g., error, use multiple measures for 

better discrimination, e.g., [fp-rate,fn-rate] 

 Compare p-dimensional distributions 

 Parametric case: Assume p-variate Gaussians 

Multivariate Tests 
31 

Multivariate Pairwise Comparison 
32 

 Paired differences: 

 

 

 Hotelling’s multivariate T2 test  

 

 For p=1, reduces to paired t test 

Multivariate ANOVA 
33 

 Comparsion of L>2 algorithms 


