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Why “Learn” 2

Machine learning is programming computers to optimize
a performance criterion using example data or past
experience.

There is no need to “learn” to calculate payroll
Learning is used when:
Human expertise does not exist (navigating on Mars),
Humans are unable to explain their expertise (speech
recognition)
Solution changes in time (routing on a computer network)

Solution needs to be adapted to particular cases (user
biometrics)

Applications

Association

Supervised Learning
Classification
Regression

Unsupervised Learning

Reinforcement Learning

Face Recognition
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What We Talk About When We Talk
About “Learning”

Learning general models from a data of particular
examples

Datais cheap and abundant (data warehouses,
data marts); knowledge is expensive and scarce.

Example in retail: Customer transactions to consumer
behavior:

People who bought “Blink” also bought “Outliers”
(www.amazon.com)

Build a model that is
to the data.

Learning Associations
Basket analysis:
P (Y | X) probability that somebody who buys X

also buys Y where X and Y are products/services.

Example: P ( chips | beer) = 0.7

Regression

Example: Price of a
used car .

x : car attributes -

y : price LN
y=glx|80) | ~

g () model, [

Oparameters

Example: Credit

scoring

Differentiating o
between low-risk and
high-risk customers

from their income and
savings
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Data Mining

Market basket analysis, Customer
relationship management (CRM)

Credit scoring, fraud detection
Control, robotics, troubleshooting
Medical diagnosis
Spanm filters, intrusion detection
Maotifs, alignment
Search engines

Classification

Savings
o)

®

3

)
®

HighRisk

Discriminant:

low-risk high-risk

Regression Applications

Navigating a car: Angle of the steering

Kinematics of a robot arm

Big Data

Widespread use of personal computers and
wireless communication leads to “big data”

We are both producers and consumers of data

Data is not random, it has structure, e.g., customer
behavior

We need “big theory” to extract that structure from
data for

(a) Understanding the process
(b) Making predictions for the future

What is Machine Learning?

Optimize a performance criterion using example

data or past experience.

Role of Statistics: Inference from a sample

Role of Computer science: Efficient algorithms to
Solve the optimization problem

Representing and evaluating the model for inference

Classification: Applications

Aka Pattern recognition

Pose, lighting, occlusion (glasses,
beard), make-up, hair style

Different handwriting styles.
Temporal dependency.
From symptoms to illnesses

Recognition/authentication using physical
and/or behavioral characteristics: Face, iris,
signature, etc

Supervised Learning: Uses

Use the rule to predict
the output for future inputs
The rule is easy to
understand
The rule is simpler than the data it

explains

Exceptions that are not covered
by the rule, e.g., fraud



Unsupervised Learning Reinforcement Learning Resources: Datasets Resources: Journals

Learning “what normally happens” Learning a policy: A of outputs UCI Repository: hitp://wwwics.uci.edu/~mlearn/MLRepository.html Journal of Machine Learning Research www.jmlr.org
No output No supervised output but delayed reward Statlib: hitp://lib.stat.cmu.edy Machine Learning
Clustering: Grouping similar instances Credit assignment problem Neural Computation
Example applications Game playing Neural Networks
Customer segmentation in CRM Robotin a maze IEEE Trans on Neural Networks and Learning Systems
Image compression: Color quantization Multiple agents, partial observability, ... IEEE Trans on Pattern Analysis and Machine Intelligence

Bioinformatics: Learning motifs Journals on Statistics/Data Mining/Signal

Processing/Natural Language
Processing/Bioinformatics/...
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Resources: Conferences
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Learning a Class from Examples Training set X Class C Hypothesis class H{

« " ” 5 1if hsays xis positive
Class C of a “family car X =0 Z (p, <price<p,) AND (e, <engine power<e,) h(x)={0ifhsaysxisnegative
Is car x a family car? r 2 [ e o
5 False positive
’ What do people expect from a o s 1if xis positive t ° ° ) . h ° o P
family car? = oif i e, 3 C e 3 e False negative
L @ if xis negative s r o

Output: e 2o 9 s Co e ® @ e

Positi . ® D D ® e Error of hon H

ositive (+) and negative (=) examples @ ) £ <) .
Input representation: o e “ L e r © © L
putrep : - e x=| s e s b ° E(hIX):Zl(h(x')#r')
X,: price, x, : engine power ° X, ° e 1
o v Price o P s price " " b
Probably Approximately Correct (PAC)
S, G, and the Version Space Margin VC Dimension )
Learning
Choose h with largest margin N points can be labeled in 2N ways as +/— How many training examples N should we have, such thar with
most specific hypothesis, S 1-3,hhas €2
H N if there

t al.,
most general hypothesis, G (Blumer et al., 1989)
existsh € H consistent

e - Each strip is at most £/4 -
for any of these:

h € H, between S and G is
consistent and make up the
version space

(Mitchell, 1997)

Pr that we miss a strip 1— £/4
VC(.'}'[) =N Pr that N instances miss a strip (1 — £/4)¥

Pr that N instances miss 4 strips 4(1 — £/4)"

4(1—€/4N < 8 and (1 — x)<exp( — x)
dexp(—EN/4) < B and N 2 (4/€)log(4/5)

vi: Price



Noise and Model Complexity

Use the simpler one because
Simpler to use
(lower computational <
complexity)

Easier to train (lower

space complexity)
Easier to explain

(more interpretable)

Generalizes better (lower
variance - Occam’s razor)

Triple Trade-Off

There is a trade-off between three factors
(Dietterich, 2003):
Complexity of H, ¢ (H),
Training set size, N,
Generalization error, E, on new data
AsNT EL
Asc (.'}[)T, first L and then ET
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Bayes’ Rule

prior likelihood

pos'en'or\‘ F\;(C) ( l/C )
- pX
P(C|x)= o >'(\)

P(C=0)+P(C=1)=1
p(x)=p(x|C=1)P(C=1)+p(x| C=0)P(C=0)
p(C=0]x)+P(C=1|x)=1

Multiple Classes, C i=1,...,K

Sponts car X= {thrr}:v:l

. Jlifx eC
" loifx eC, j#i

reject

Train hypotheses

hx),i=1,...K:
Luvary sedan
lifx‘ eC
hlx)= i
Family car ‘(X ) {0 if x' eC,j#i

Cross-Validation

To estimate generalization error, we need data
unseen during training. We split the data as
Training set (50%)
Validation set (25%)
Test (publication) set (25%)
Resampling when there is few data

CHAPTER 3:

BAYESIAN DECISION
THEORY

Bayes’ Rule: K>2 Classes

x)= PXIC)P(C)
plc b= 210X
__pxlc)P(c)
kzﬂ:p(xlck)P(Ck)

K
P(c;)>0and Y P(C,)=1
i=1

choose ¢, if P(C, | x)=max, P(C, |x)

Regression

= g(x)=wx+w,

o) =wax +wx

rt =f(x')+e
E1X)= 13 T ~olc
E(wy,w, [X)zﬁi[r! _(Wixt "'Wo)]Z

* misge

Dimensions of a Supervised Learner

g(x16)

E(01X)= ZL(r',g(X‘ 16)

9*=argm”inE(9|X)

Probability and Inference

Result of tossing a coin is € {Heads,Tails}
Random var X €{1,0}

Bernoulli: P {X=1} = p.X(1 — p,) =%
Sample: X = {x'}N, _,

Estimation: p, = # {Heads}/#{Tosses} =  x'/ N

Prediction of next toss:

Headsif p, > 2, Tails otherwise

Losses and Risks

Actions: Q;
Loss of a; when the state is C, : A,
Expected risk (Duda and Hart, 1973)
x
Rle; 1X)=2 AP(C X)
=1

chooseaq; if R(e, |x)=minR(e, |x)

Model Selection & Generalization

Learning is an data is not
sufficient to find a unique solution

The need for assumptions about H
How well a model performs on new

data

Overfitting: H more complex than C or f

Underfitting: Hless complex than C or f
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Classification

Credit scoring: Inputs are income and savings.
Output is low-risk vs high-risk
Input: x = [x,,x,]",Output: C1{0,1}
Prediction: .
choo {C:hf P(C=1]x,x,) > 05

C=0otherwise
or
C=1if P(C=1|x,,x,) >P(C=0]x,x,)

hi
¢ oose{c =0otherwise

Losses and Risks: 0/1 Loss
- {oi
R, |x):zK:,1,kp(ck [x)
:Ep(ck [x)
17p(G 1)

For minimum risk, choose the most probable class



Losses and Risks: Reject

0 ifi=k
Q=44 ifi=k+1, 0<A<l
1 otherwise

R(era |X)=i/1P(Ck 1X)=2

k=1

R(e; 1X)=23_P(C, 1X)=L-P(C; |x)

ki

choosec, if P(C,|x)>P(C, |x) Vk=iandP(C,|x)>1-4
reject otherwise

Utility Theory

Prob of state k given exidence x: P (S, | x)
Utility of @; when state is k: U,
Expected utility:
EU(; 1X)= 2 U,P(S,1X)
k

Choose a, if EU(e; | x)=max EU(e | x)
j

(Agrawal et al.,
1996)

For (X,Y,Z), a 3-item set, to be (have
enough support), (X,Y), (X,Z), and (Y,Z) should be
frequent.

If (X,Y) is not frequent, none of its supersets can be

frequent.

Once we find the frequent k-item sets, we convert
themtorules: X, Y = Z, ...

and X > VY, Z, ...

Parametric Estimation

X ={x'},where x'~ p (x)
Parametric estimation:

Assume a form for p (x | @) and estimate @, its sufficient
statistics, using X

e.g., N (Y, 02) where 6= { p, 0%}

Different Losses and Reject

Equal losses

Unequal losses

With reject

PO
& o
N o

Association Rules

Associationrule: X —> Y

People who buy/click /visit/enjoy X are also likely to
buy/click/visit/enjoy Y.

A rule implies association, not necessarily causation.

Mon Sep 24 12:39:54 2018 .
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Maximum Likelihood Estimation
of & given the sample X
16120 =p (X 16)=1,p (x'16)

LIBIX) = log ! (8] X) = 3, log p (x'| 6)

6" = argmaxy L(6] X)

K Ry, Ry

Discriminant Functions

chooseg, if g,(x)=max,g, (x) g,(x)i=1,...K

—R(a;1x)
g,(x)=1P(C;1x)

plx|C)P(C;)

R, ={xg,(x)=maxg,(x)}

Association measures

Support(X = Y):

{customerswho bought X andy}

#
P(X,Y)=
x¥) #{customers;

Confidence (X = Y):
P(YIX):LX'Y)
P(X)
_ #{customerswho bought X andY}
#{customerswho bought x}

Lift (X = Y):
_ P(Xy) _PYIX)
T PXPLY) PY)

ﬁﬁ y Lecture Slides for
! iy 4

INTRODUCTION
TO
oy MACHINE

Fe Loarning

LEARNING

3RD EDITION

ETHEM ALPAYDIN
© The MIT Press, 2014

alpaydin@boun.edu.tr
http:/ /www.cmpe.boun.edu.tr/~ethem /i2mi3e

Examples: Bernoulli/Multinomial

Two states, failure /success, x in {0,1}
P (x) = p,*(1=p,) " =¥
L (p,1X)=log [T, p,*' (1 =p,) "=
MLE:p,= ¥ x'/ N

K>2 states, x; in {0,1}
P () Xgmeri) = T, P
Lipyparipe] X) = log 1,17, pr'
MLE:p; =3 x// N

K=2 Classes

Dichotomizer (K=2) vs Polychotomizer (K>2)
g(x) = g1(x) = g,(x)
€, ifg(x)>0

choose )
C, otherwise

P(C, IX)

P(C,1%)

Log odds:

Example

Transaction | Items in basket

milk, bananas, chocolate
milk, chocolate

milk, bananas

chocolate

chocolate

6 milk, chocolate

Gk W

SOLUTION:
milk — bananas : Support = 2/6, Confidence = 2
bananas — milk : Support = 2/6, Confidence = 2/
milk — chocolate : Support = 3/6, Confidence =

GoE R E

chocolate — milk : Support = 3/6, Confidence = 3/

CHAPTER 4:

PARAMETRIC METHODS

Gaussian (Normal) Distribution

pix)= N(u, 0?)
_1 (x=np
P ﬂaex‘{ 20?

MLE for i/ and 0%

}



Bias and Variance

Bayes’ Estimator
lsq |
Treat 6 as a random var with prior p (6)

Bayes’ rule: p (6] X) = p(X|6) p(6) / p(X)

Unknown parameter 0
Estimator d; = d (X;) on sample X;

variance
b by = £ - 0 — Full:p(x 1 X) = | plx 16) p(6] X) 06
Variance: E [(d—E [d])?] & . - > Maximum a Posteriori (MAP):
Eld] _
Mean square error: (Hg eMAP - argmaxep(el X)
r(d,0) = E [(d-07] bias Maximum Likelihood (ML): B, = argmaxg p(X| 6)
= —op 2 . _ _
= f}Em[:Iz] + 3ar;::c5d-f s Bayes™: 950795' - E[elx] - J 6 P(el X) dé
Given the sample X ={x',r'}}, o
XeR . Jlifx eC -10' _—
" |oifxt eC =i zo 1
0.1 4
o ML estimates are L o
Zri: Zxr o Z(Xx 7"’,)261
BC)=f_ m-x 2ot .
() =S S )
t t
g™ X Single boundary af
) /\ halfway between means -
., Discriminant B . : AT
seriminan g,.(x)=—%logZ7r—logs,.—()(27”2")2+I09P(Ci) > VAN o
n Si -0 -8 -6 -4 2 [ 2 4 3 s 10
Regression Regression: From Logl to Error
N x FIRul=wor, gy e |
r=f(x)+e ) - x
Pl
estimatorg(x|8) X x N - _alx' 10
s LO1X)=1og] | ex| —[ g( 2| )]2
g"'.’N(0,0' ) taN2no 20
p(r1x)~ Ng(x10),0%) o

1 & i
) =—Nlog\/27r0'——20_2 é[r' —g(x' |0)]
£(6’|X)=Iong(x',r‘)
t=1

: . E010-2 3] -ole'10]
=|ogl:1[p(r' |x‘)+|og1:1[p(x‘) 2

Other Error Measures

I ol

 Square Error: E@1X)= 2;[’ Q(XNI 9)] ; El(r—g(x))z |xJ=El(r—E[r Ix]P |xJ+(E[r|x]—g(x))2
Z[’ ! —g(x' |‘9)] noise
E@IX)=F

27l ELEf 10 000 = (1] ol E-oto)- ool
o Absolute Error: E (8 |X) = 3, |r'=g(x'| )] bias variance
o €-sensitive Error:

EO1X= 3, 1(1F-gll B)I>8) (I7-glx'1O)] - )

Bias and Variance

squared error

Relative Square Error:

Bayes’ Estimator: Example

x'~N(6,0,2) and 6 ~ N'( y, 0?)

O =m
Owse = Gayes = 2 2
X N/o, 1/o
florx]= 2 2 2 7H
N/og+1/a* " Nlog+1/o
Likelihoods
0.4, T T T T T : . .
I / \ : Variances are different [
01 ; / 2 :
L TN
B 0 2 4 10
x
‘Posteriors with equal priors
1 T T T T . .
o N
S 0f (N A SO
£ : \< ; : \/ Two boundaries
= 04 " " :
o : / : i ; \ . ; :
/. AN
s s s 2 0 2 4 5 s 10

Linear Regression
1
g(x' |w1,wo)=w1x' +w,

St =Nw, +w, Y '
t t
Zr'x' = WOZX' +wlz(x')2
t t t
N w >r
t : t w= o Y= et
s st |* ]| S

w=A"y

A=

wy

Estimating Bias and Variance

o Msamples X;={x", '}, i=1,...M
are used to fit g;(x), i =1,...M

Bia3(;;)=%Z[§(}<’)-/(X')]2
Variancég)= ﬁzzj:[y,—("t )~§(X')]Z
5(0)=3: 20,0

Parametric Classification

g; (X)= p(x IC, )P(Ci)
or
g,(x)=logp(x|C,)+logP(C,)

P(xlci)=ﬁex{_%}

g,.(x)=—llog2;z—log0',. —MHOgP(@)
2 20,

(@) Likelihoods

- 2 < S Y
z : . :
oo
= / " H \\‘ i
10 8 6 4 o 2 4 6 8 10
x
(©) Expected risks
! ! T T T 1T
z %
g
z
T B
4 -2 0 2 4 6 3 10

Polynomial Regression

1 I ——
G0 Wy, W )= (¢ f ey (5 F +wix +wy

2 e (] TP

1
b 1 X2 (X2)2 (xzy‘ - r:z
i x" (x")2 (x”)z r.”

w=([D'D)'D'r

Bias/Variance Dilemma
=1 |
o1 Example: g,(x)=2 has no variance and high bias

gi(x)= Y, /N has lower bias with variance

o As we increase complexity,
bias decreases (a better fit to data) and
variance increases (fit varies more with data)

© Bias/Variance dilemma: (Geman et al., 1992)



(a) Function and data (b) Order 1

5 5
+
+
PN ¥
0 teb
-+
LA
R
+
o 1 2 3 4 5 o 1 2 3 4 s
(€) Order 3 (@) Order 5

variance

Bayesian Model Selection

Prior on models, p(model)

p(modeldata)=p(datalmodebp(modeb
p(data)

Regularization, when prior favors simpler models
Bayes, MAP of the posterior, p(model | data)

Average over a number of models with high
posterior (voting, ensembles: Chapter 17)

CHAPTER 5:

MULTIVARIATE METHODS

Estimation of Missing Values

What to do if certain instances have missing
attributes?
Ignore those instances: not a good idea if the
sample is small
Use ‘missing’ as an attribute: may give information
Fill in the missing value
Mean imputation: Use the most likely value (e.g., mean)

Imputation by regression: Predict based on other
attributes

Polynomial Regression

Best fit “min error”

error

o5} P - variance

Coefficients increase in
magnitude as order
increases:
1:[-0.0769,0.0016]
2:[0.1682,-0.6657,
0.0080]
3:[0.4238,-2.5778,
3.4675,-0.0002
4:[-0.1093, 1.4356,
-5.5007,6.0454,-0.0019]

2
Regularization (L2): E(wW|X)= %i[r' —g(X' |W)] + /'Lz, w?
t=1

Multivariate Data

Multiple measurements (sensors)
inputs/features/attributes: d-variate
instances/observations/examples

1 1 1
Xl XZ s Xd
2 2 2
X< X2 X5 - X:

X1N X;" X;V

Multivariate Normal Distribution

TARASAN

AN

TSN
ARUKEEN

iV
KR

X~ N, (1,5)
1 1 T 51, h
P(X):WGXF{—E(X—M) z (X—H)}

(a) Data and fited polynomials

Best fit, “elbow”

L Mon Sep 24 12:39:34 2018 s
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Multivariate Parameters

Mean:E[x]=p=[z,..., 4, ]
Covariance: o, =Cov(X,, X, )

(e
Correlation: Corr(X,, X, )= p, =—~
0,0,
ol oy o o
2 “ee
ZECOV(X)zf[(x,“XX,“y]: U‘u o3 Oy
On O v 04

Multivariate Normal Distribution

Mahalanobis distance: (x — g)” >~ (x — p)

measures the distance from x to U in terms of ) (normalizes
for difference in variances and correlations)

y=

Bivariate:d = 2
2
LJO-IO-Z 0,

2
o P%Uz}

Bl e e e zgm, )|
27r¢:>'l<7'21l1—p2 2(1—/7 )

2,=(x,-u)/ o,

Model Selection

Measure generalization accuracy
by testing on data unused during training

Penalize complex models
E'=error on data + A model complexity
Akaike’s information criterion (AIC), Bayesian
information criterion (BIC)
Kolmogorov
complexity, shortest description of data
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Parameter Estimation

N t
I
=—,i=1..d

ZN (x'—m Xx' -m )
=1\ ' ! J J

Samplemeanm:m, =

2

CovariancematrixS:s; =

N
CorrelationmatrixR:r, = i
s;S;
Bivariate Normal
connpo I

© ©




Coutr, =0, Var(x=Var(c)

Covi, %,)=0, Var(x)>Var(x,)

Coule, x>0 Covte, xy}<0

Different S,

Quadratic discriminant
g,(x)= —%Iog|S,| - %(X’S,"x -2x’S,'m, +m/S,"'m, )+Iog15(c,)

=X Wx+w,x+w,

where
w--ls?
2
w,=S"m,
1 e 1 s
wo=-2m/S,'m - iogs  +10gA(c)

Diagonal S

When x;j = 1,.d, are independent, } is diagonal
p(x|C)= |'|’_ p (x; | C))(Naive Bayes’ assumption)

016053 2 roapc)

i j

Classify based on weighted Euclidean distance (in s;
units) to the nearest mean

Model Selection
1

Assumption Covariance matrix No of paramefers

Shared, Hyperspheric §=5=s2 1
Shared, Axis-aligned $,=5, with 5,=0 d
Shared, Hyperellipsoidal s=5 d(d+1)/2
Different, Hyperellipsoidal s, K d(d+1)/2

o As we increase complexity (less restricted §), bias
decreases and variance increases

o1 Assume simple models (allow some bias) to control
variance (regularization)

Independent Inputs: Naive Bayes
lod |
If x; are independent, offdiagonals of Y are O,

Mahalanobis distance reduces to weighted (by 1/0))
Euclidean distance:

If variances are also equal, reduces to Euclidean
distance

discriminant:

P(C,Ix)=0.5

posterior for C;

Diagonal S

variances may be
different
Population likelihoods and posteriors
P
3| /
A/
=2\ Q)
1
‘Shared covar
23 x

Parametric Classification
|

fpx | C)~N(m, )

1 1 7 -1
P(X|C;)=W9XP[—E(X—P;) % (X—lli)]

Discriminant functions
g,(x)=10gp(x|C,)+10gP(C,)
~~L1og2r - J10gi% |- (x-1 ) 2, (-, )+logp(C,)

Common Covariance Matrix S
et |
1 Shared common sample covariance S
S= Zﬁ(ciﬁi
o1 Discriminant reduces to i

a0 =~ (x-m 'S (x—m,)+log P(C,)
which is a linear discriminant
9,(x)=w/x+w,
where

w,=S"m, w,= —%mfs “m, +logh(C,)

Diagonal S, equal variances
l x4 |

Nearest mean classifier: Classify based on Euclidean
distance to the nearest mean

g;(X)=
1 o
=—72(x5—m,.,) +logh(C,)
S”

Each mean can be considered a prototype or template
and this is template matching

2
X—m, N
——" 252’" +IogP(C,)

Discrete Features
'

p,=plx;=1IC,)
if x; are independent (Naive Bayes’)

d
plxIc)=]Tey @-p, )
Y

the discriminant is linear
g,(x)=logp(x|C,)+logP(C,)
= Z[x’ logp, +(1—x/ )I og(l—p,,j)]JrIogP(C,)
7

0 Binary features:

t .t
Estimated parameters Xili

B;= Z:"l

Estimation of Parameters
|

Diagonal S, equal variances

Discrete Features

T
o Multinomial (1-of-n)) features: x; T{v1, Vorenr v"i}
pu=plz,=11C,)=plx,=v,IC,)
if x; are independent

d n
pix1c)=TTT ri:

FEwE)
9,(x)=2, >, 2,108, +10gP(C,)
rz;'krit

i’fjk: Zr_r
i
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1
E(wo,w,,...,w, IX):EZ‘ [’r —Wo—Wix,

Multivariate polynomial model:
Define new higher-order variables
Z)=X, 27Xy, 237X, %, 2,7X57, Z57X X, alpaydin@boun.edu.tr

CHAPTER 6:

DIMENSIONALITY
REDUCTION

and use the linear model in this new z space http:/ /www.cmpe.boun.edu.tr/~ethem /i2ml3e

(basis functions, kernel trick: Chapter 13)

Why Reduce Dimensionality? Feature Selection vs Extraction Subset Selection Iris data: Single feature
Reduces time complexity: Less computation Choosing k<d important features, N 2 sub cut B Op F¥ sEertr trxsexsxro0o °
. . P There are subsets o eatures L L L L L )
ity: ignoring the remaining d — k i X
Reduces space complexity: Fewer parameters 9 ° . ° i Forward search: Add the best feature at each step " : ’ > ) ° ’ ” ‘
Saves the cost of observing the feature Subset selection algorithms Set of features F initially @. S ol ensecesessectierenss .
Simpler models are more robust on small datasets Project the At each if:;i'if’"'jﬁ"d the best new feature Al - " - " o
. . . . j= argmin, E(F U x;
More interpretable; simpler explanation original x; , i ...,d dimensions to Add x;toF if E(FUX; ) <E(F) T
Data visualization (structure, groups, outliers, etc) if new k<d dimensions, z; , j =1,...k B oprreee .

Hill-climbing O(d?) algorithm -
Backward search: Start with all features and remove '

one at a time, if possible. zol+s s . W xe 000000000 Chosen
Floating search (Add k, remove [)

plottedin 2 or 3 dimensions

Iris data: Add one more feature to F4 Principal Components Analysis Maximize Var(z) subject to | [w| | =1 What PCA does
maxw; Iw, —a(w,’w, —1)
W

Find a low-dimensional space such that when x is z = W(x — m)

. . projected there, information loss is minimized. 2w, = aw, thatis, w, is an eigenvector of 3 where the columns of W are the eigenvectors of ¥
) . The projection of x on the direction of w is: z = w'x Ch::: the one with the largest eigenvalue for Var(z} 1o be and m is sample mean
o, 24 Find w such that ! ; z - Second principal component: Max Var(z,), s.t., Centers the data at the origin and rotates the axes
s ) s Var(z) = VU"(TW x) —T E[(WTX - WT”) ] | [w,| | =1 and orthogonalto w, . o
« = E[(w'x = wl)(wix — wil)] T T, T
RO 2 3 0 i 2 s 0 1 2 s _ T T maxw,w, _a(szz —1)—ﬂ(W2W1 —0) =
F4 F4 F4 = E[w'(x — M)(x = p)'w] W2
=wl _ —iNw = wT
Chosen = wlEllx— M)(x—p)Tlw = w' F w Y w, = O w, that is, w, is another eigenvector of )
where Var(x)= E[(x — g)(x =) = ¥ and so on.
9 x, z,
(a) Scree graph for Optdigts Optagits after PCA .
How to choose k 2 . ke R “ e e Feature Embedding
g b H H
g 2 N 95y : H
H ahe Za,7 B' : : When X is the Nxd data matrix,
g AR ; : i
Proportion of Variance (PoV) explained g 10} el Y 823 533 fhiad XX is the dxd matrix (covariance of features, if mean-
~ N 25 ;O“ ] ok centered)
: 5 d ‘ s
Attt A ) o ) & 7o £ of pd 7.:4 : J : XXTis the NxN matrix (pairwise similarities of instances)
Eigenvectors g o
}1 + A'z +eeet A’k +eeet j’d o mnmi,mmmxwm E : ? 7. Tg8 oo Tee : % : PCA uses the eigenvectors of X"X which are d-dim and can
I W SronTn + g0 Rt 1“ 0 : be used for projection
: : : ¢ 7 ek : i i i
08p- 9t fr¥ Feature embedding uses the eigenvectors of XX which are
1 1 H H H 1
when )\’ are sorted in descending order Zost *’KM( i - : A 44!; 4 i : N-dim and which give directly the coordinates after
Typically, stop at PoV>0.9 §m,/ CR . projection
Scree graph plots of PoV vs k, stop at “elbow” oy : : : : Sometime's, we can define pairwise similarities (or di'stances)
: : : : : between instances, then we can use feature embedding

50 60 70 T E 20 20 EJ a0 without needing to represent instances as vectors.

20 a 10 [ K
Eigenvectors First Eigenvector



Factor Analysis

4 |
1 Find a small number of factors z, which when
combined generate x :

XM= vz F vzt vz T E

where z;, j =1,...,k are the latent factors with

E[ ;]=0, Var(z)=1, Cov(z; , )=0,i # |,
€; are the noise sources

E[€ 1=y, Cov(g;, €) =0,i # j, Cov(g;, z) =0,
and v; are the factor loadings

Matrix Factorization
leJ |
o Matrix factorization: X=FG
Fis Nxk and G is kxd

i d k

X F

N

Latent semantic indexing

K
Xi =F[G = 3 FiGy
=

| Between-class scatter:
('"1 - mz)z = (Wrm1 _wrmz)z
=Wr(m1 —mz)(m1 _mz)’w

=w'S,w whereS, =(m, -m, m, -m, )’

1 Within-class scatter:
s=y (wx —m, frt
=>w (¢ —mJx = m, Ywr =wS,w
whereS, =3 (x =m, Yxt =m, ) rt
si+s.=w'S,w whereS,, =S, +S,

PCA vs LDA

o 05 05
2 +
o O+ OF O+O @ o oo Hi
- o
0 * 05| -05
lda +
- - -1
2 o 2 4 4 2 [) 2 4 3 2 -
PCA projection LDA projection

PCA vs FA

o PCA
FA From z to x

From x to z z=W(x—p)

x—M=Vz+Eeg

i 5 % z, z z
variables Jactors
OO O 00 Of
lw l ' )

PCA FA

X,

Multidimensional Scaling
En

o1 Given pairwise distances between N points,
;i ii =1,..,N
place on a low-dim map s.t. distances are preserved
(by feature embedding)

nz=g(x| 68) Find 6 that min Sammon stress
etor)-y =2k T
e X" —x
X"10)-g(x*|0)[—x" —x*
_y lob10)-obe1) e x|]
™ X" —x

Fisher’s Linear Discriminant
1
Find w that max
T 2
w'S,w =|W (ml_mzj
w’S,w w’S,w

J(w)=

LDA soln: W=C-S;,1(m1 _mz)

Parametric soln:

wW=2" (1, —p,)
when p(x|C,)~ N (u,,Z)

Canonical Correlation Analysis

>0 |
o X={x"y"}, ; two sets of variables x and y x
1 We want to find two projections w and v st when x

is projected along w and y is projected along v, the
correlation is maximized:

Coviw'x,vly)
WVar(wTx)yVar(vTy)
wlCov(x,y)v B wiSv
\/wTVar(x)w\/vaar(y)v - \/wTSxxw\/vTSyyv

p = Corr(wlx,vly) =

Factor Analysis

o InFA, factors z; are stretched, rotated and
translated to generate x

=

Map from LA ~ The World Factbookk htp/wvew.cia gov)

K>2 Classes
4 |

Within-class scatter:
LS \"
Sy=>8 S=Xrx-m)x-m]
=}

Between-class scatter:

K K
Sy =D N,(m, —m)m, —m)’ m=%2m,
i=1 i=1
Find W that max JW)= |W’st|
[W’S,, W|

The largest eigenvectors of S,,'S; maximum rank of K-1

CCA

=1 _________________________________________|
o1 x and y may be two different views or modalities;
e.g.,image and word tags, and CCA does a joint
mapping
X X X Y ¥ v,
Y M Y M
/ (NPAND AN

() ( ()
NS N

W v

N YN N Y
( )| ) )
A N 4

Singular Value Decomposition and
Matrix Factorization

o Singularvalue decomposition: X=VAWT
V is NxN and contains the eigenvectors of XX"
W is dxd and contains the eigenvectors of X'X

and A is Nxd and contains singular values on its first
k diagonal

X=v,a,v,"+...+ua,v,” where k is the rank of X

Linear Discriminant Analysis
1 |
1 Find a low-dimensional
space such that when x
is projected, classes are
well-separated.

Find w that maximizes

o

(ml_mz)z g
Jw)="——"4
(W) s2+sk .

wix‘rt
m, = 72'2; " st=Y (Wxt—mJrt

Optdigts after LOA

b
|
b
-
R 05 1 15 ) 25
26
Isomap

I
o1 Geodesic distance is the distance along the
manifold that the data lies in, as opposed to the
Euclidean distance in the input space

. Geodesic
. distance

B
Euclidean ™.
distance ™



Isomap

Instances r and s are connected in the graph if

| | x™-x*| | <g or if x*is one of the k neighbors of x"
The edge length is | | x™x*| |

For two nodes r and s not connected, the distance is
equal to the shortest path between them

Once the NxN distance matrix is thus formed, use
MDS to find a lower-dimensional mapping

LLE on Optdigits

1
35 @3 =25 =2 15 1 05 o0 05 1 15

Matlab source from hitps/ /s oronto.ed/~rovweis/lle/code biml
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Classes vs. Clusters

X = s X={x}
Classes C; i=1,...K Clusters G;i=1,....k

p)-3pICRC) )= 3 plxic P(6)

where p(x| C) ~ N(1;,Y;)

O ={P(C), b, XY= where p(x|G) ~ N ( 4;, %)

5 X' S={P(G)u, L}-
LRI A i ’
N g
s :Z,’yt(xk'm.xxr‘m.)r Labels r; 2
' g

Optdigits after somap (with neighborhood graph).

150

100

50

Matlal source from hip:/ /web.mit.edu/cocosc/isomapsomap himl

Laplacian Eigenmaps

Let r and s be two instances and B, is their similarity, we
want to find z" and z* that

min Y’ |z" - z*||°Bys
rs

B, can be defined in terms of similarity in an original
space: 0 if x" and x* are too far, otherwise
i [x" - x*||?
Brs = exp T o2

Defines a graph Laplacian, and feature embedding
returns z°

CHAPTER 7:

CLUSTERING

k-Means Clustering

Find k (prototypes/codebook
vectors/codewords) which best represent data

Reference vectors, m;, j =1,....k
Use nearest (most similar) reference:
[ —m;|=mirfx‘ —m |
i

Reconstruction error E({m, }f:1|X)= b ||X' —m,"

[t il m |
= J
" |0 otherwise

Locally Linear Embedding

Given x’ find its neighbors x*
Find W, that minimize

2

EW[X)=)

r

X' =3 W, X,
.

Find the new coordinates z" that minimize

2

EzIW)=Y)

r

. s
7 -3 W,z
T

Laplacian Eigenmaps on Iris

Mo Laplacian eigenmap
03 08
02 i o7t
X 06
LX]
5; 05t
0 +A§" 04}
01
R
02 + B
03 -
= Ty 0 o 02 0 005 o1 o015

Spectral clustering (chapter 7)

Semiparametric Density Estimation

Assume a single model for p (x | C)
(Chapters 4 and 5)

p (x| C;) is a mixture of densities
Multiple possible explanations/prototypes:
Different handwriting styles, accents in speech

- No model; data speaks for itself
(Chapter 8)

Encoding/Decoding

@1

Encoder Decoder

=l

X space Z space

Mon Sep 24 12:39:34 2018 b

i2ml3e-chap07.pdf

Mixture Densities

K
p(X)= ZP(X |G, )P(Gf)
where G; the compéﬂents/groups/clusters,
P ( G;) mixture proportions (priors),
p ( x | G;) component densities
Gaussian mixture where p(x|G) ~ N (M, 3)
parameters® ={P (G,), ;, > }i=;

unlabeled sample X={x'}, (unsupervised learning)

k-means Clustering

Initialize m;.i = 1.... .k, for example, to k random
Repeat

For all @' € X
1 if |2t — m;| = min; ||@' — m;||

0 otherwise

mi— o, bt/ b

Until m; converge




k-means: Infial After 1 teration

10 : 10
2 20
TR R TR

EM solution

Mixture of Mixtures
I

In classification, the input comes from a mixture of
classes (supervised).

If each class is also a mixture, e.g., of Gaussians,
(unsupervised), we have a mixture of mixtures:

P(X | C)= 217()( | Gi/)a(Gy,')
)= 3 plxIC ()

Example: Single-Link Clustering

]
A
|
|

Dendrogram

Expectation-Maximization (EM)
I

Log likelihood with a mixture model
E(CIDIX):Iong(x' ICD)
¢

k
=Z{|0gzp()(t IGi)’(Gi)
Assume hidden variablesiz, which when known, make
optimization much simpler
Complete likelihood, L(® |X,Z), in terms of x and z
Incomplete likelihood, L(® |X), in terms of x

Mixtures of Latent Variable Models
et |
Regularize clusters

Assume shared /diagonal covariance matrices

Use PCA/FA to decrease dimensionality: Mixtures
of PCA/FA

p(Xt IGi):N(mi'ViViT +\|’i)

Can use EM to learn V;(Ghahramani and Hinton,
1997; Tipping and Bishop, 1999)

Spectral Clustering

lesd4 |

Cluster using predefined pairwise similarities B,
instead of using Euclidean or Mahalanobis distance
Can be used even if instances not vectorially
represented
Steps:

Use Lapl Eigenmaps (chapter 6) to map to a

new z space USil‘lg Brs

Use k-means in this new z space for clustering

Choosing k
=1 |
1 Defined by the application, e.g., image quantization
Plot data (after PCA) and check for clusters

Incremental (leader-cluster) algorithm: Add one at a
time until “elbow” (reconstruction error/log
likelihood /intergroup distances)

= Manually check for meaning

E- and M-steps
I —

Iterate the two steps
E-step: Estimate z given X and current @
M-step: Find new @’ given z, X, and old ®.

E-step: Q(CIJI'I)'):E[.C,:(@IX,ZNX»@']
M-step: ' =argm:xQ(d)|d>')

Anincrease in Q increases incomplete likelihood

Lo X)z £l x)

After Clustering
N —

1 Dimensionality reduction methods find correlations
between features and group features

Clustering methods find similarities between
instances and group instances

o Allows knowledge extraction through
number of clusters,
prior probabilities,
cluster parameters, i.e., center, range of features.

Example: CRM, customer segmentation

Hierarchical Clustering
4 |
Cluster based on similarities/distances
Distance measure between instances x” and x*
Minkowski (L) (Euclidean for p = 2)

d, 0 x)=[3 b —x: Y]

City-block distance

dg (xr X )= 2,11

r s
X; —X;

L Mon Sep 24 12:39:34 2018 s

i2ml3e-chap08.pdf

EM in Gaussian Mixtures
et |
z',= 1 if x' belongsto G,, 0 otherwise (labelsr ', of
supervised learning); assume p(x | G,)~N(i,> )
E-step: t !
step E[z,f|X,€D/]= p(x |G,, D )D(G,)

Zl_p x1G,,d' HG,-’
=p(G, Ix', @' )=h!
M-step: e hixt
ro)-Z X
(o -

X

Use estimated labels in
place of unknown labels

g

Clustering as Preprocessing

led |

o Estimated group labels h; (soft) or b; (hard) may be
seen as the dimensions of a new k dimensional
space, where we can then learn our discriminant or
regressor.
Local representation (only one b;is 1, all others are
0; only few h; are nonzero) vs
Distributed representation (After PCA; all z; are
nonzero)

Agglomerative Clustering
I —

Start with N groups each with one instance and merge
two closest groups at each iteration
Distance between two groups G; and G
o Single-link: .
d(G;,G,): min d(x',x’)

X' G, X’ <G,

o Complete-link:
@.6)

X'€G X<,

max d(x’,x‘)
J
o Average-link, centroid

d(G,,G, )= x'i;\,lx?eg, d(x’ ,x‘)
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CHAPTER 8:

NONPARAMETRIC
METHODS

Naive estimator: h=2

[P S—

)
A [,

=

T
=

5 B

K-NN estimator k=5

Condensed Nearest Neighbor

Incremental algorithm: Add instance if needed

Z—90
Repeat
For all @ € X' (in random order)
Find @’ € Z sit. |z — /|| = ming; .z |z — /|

[If class(z)#class(z’) add @ to Z |
Until Z does not change

Nonparametric Estimation

Parametric (single global model), semiparametric
(small number of local models)

Nonparametric: Similar inputs have similar outputs

Functions (pdf, discriminant, regression) change
smoothly

Keep the training data;“let the data speak for
itself”

Given x, find a small number of training
instances and = from these

Aka lazy /memory-based /case-based /instance-
based learning

Kernel Estimator

Kernel function, e.g., Gaussian kernel:

1 u?
K(u)=———exp ——
W)= ex }

2

(Parzen windows)

ﬁ(x)ﬁgk(x‘hx'j

Multivariate Data

Kernel density estimator
R 1 & (x—x
X)=—-> K|
A(x) th; [ 5 ]
Multivariate Gaussian kernel
' 2
spheric K(u =( 1 )ex _M
) N2z 2

ellipsoid
1 1 e
= 7(2”)‘“2'5'”2 EXF{— EUTS 1Uj|

Distance-based Classification

Find a distance function D(x",x¢) such that

if x"and x*belong to the same class, distance is small
and if they belong to different classes, distance is
large

Assume a parametricmodel and learn its
parameters using data, e.g.,

D(x, x'IM) = (x — x")M(x - x)

Nonparametric Classification

Learning a Distance Function

Density Estimation o 12
03
I
Given the training set X={x"}, drawn iid from p(x) o1 ‘
Divide data into bins of size h ° ! : R ° ° ! :

i N .\ #lxinthe samebinas x} o2
p(x)= v E— 02

. ﬁ(x)zﬂ{x—h<x'£x+h} o i P E G 7 .
2Nh o8
or oe
N R 1/2 ifly<1 “ H
= =% = oaf
A Nh ,Z:'W[ h ] W) {O otherwise | | | ‘
o i p B i s ¢ 7 .
o reretesimaor =1 k-Nearest Neighbor Estimator
o5
m/\/\
"DS . ) . - . . ) ) Instead of fixing bin width h and counting the
M" ! : R PR ¢ ! ¢ number of instances, fix the instances (neighbors) k
0 and check bin width
“/\— ﬁ(x)_ik
o T 2Nd, (x)
o i p ER— T 0 7 3
08 i d,(x), distance to kth closest instance to x
o,
04
Oz/\/\ /\/\
o i p 3 i : : 7 3

Condensed Nearest Neighbor

Estimate p(x | C;) and use Bayes’ rule Time /space complexity of k-NN is O (N)

Kernel estimator
. 1 & (x=x"), » N,
X|C,)=—=) K|l —— ¥ P(C,)=—
axic) s S} pe)y

¢

6, (K1, A(C )= zK(

Find a subset Z of X that is small and is accurate in
classifying X (Hart, 1968)

E(Z|X)=E(X|Z)+4Z|

Nk’ h
k-NN estimator
K,

AxIC)= iy @)=

BxIC,)P(C) _k,

x|C)P(c)
Bx)

=

~|

The three-way relationship between distances,
dimensionality reduction, and feature extraction. o

M=L'Lis dxd and L is kxd

Dx,x' M) = (x-x)"Mx-x") = (x-x)L'L(x-x") v

= (Lx=x)"(Lx-x") = (Lx - Lx") (Lx - Lx"))

= (z-20"(z-2) = z-2? %
Similarity-based representation using similarity

Euclidean distance (circle) is not suitable,

scores Mahalanobis distance using an M (ellipse) is suitable.

Large-margin nearest neighbor (chapter 13) After the data is projected along L, Euclidean distance can be used.



Outlier Detection

Find outlier /novelty points

Not a two-class problem because outliers are very
few, of many types, and seldom labeled

Instead, one-class classification problem: Find
instances that have low probability

In nonparametric case: Find instances far away from
other instances

Regressogram linear smoother: h=6

() T 2 3 4 5 5 7 B
h=3

o
N —

2k . X—'_L\//

ok *

ok

(] 1 2 3 0 5 5 7 B
h=t

ar

o /L\\[_‘i

/ -

T l

i
o0 1 2 3 T 5 5 7 ]

Kermel smooth: h=1
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Local Outlier Factor

dk(x)

LOF(x) = =X
N S S TN )

(@ (b)

Running Mean/Kernel Smoother

Running mean smoother Kernel smoother

5 W(x—x')ﬁ " §I;K(X;K')w

P il G (x)= —
4(x) x%%ﬂ ! zgpfj

where

w(u):{l iflul<1

where K( ) is Gaussian

Additive models (Hastie

0 otherwise and Tibshirani, 1990)

Running line smoother

How to Choose k or h 2

When k or h is small, single instances matter; bias is
small, variance is large (undersmoothing): High
complexity

As k or h increases, we average over more instances
and variance decreases but bias increases
(oversmoothing): Low complexity

Cross-validationis used to finetune k or h.

CHAPTER 9:

DECISION TREES

Nonparametric Regression

Aka smoothing models

Regressogram

Z:v:lb(x,x' )r’
z:lb(x,x' )

glx)=

where

b(x x')f 1 if x*isinthe samebinwith x
7710 otherwise

Running mean smoother: h=6

h=3
4
> x
0|
:

Kerel estmator fortwo classes:h = 1

o
o
o0sl-
i B g i B G 7
he05
o4
03|
o2},
01
T B g i B G 7
n=02
o8,
06l
04
0 » .
1 \z 3 A‘ 5 6 7

[ ) H B
@ Em
@ u
[ ] L]
W
e ® ®
¢, e | [

Wi x

Regressogram smoother: h=6

2 x *x xx *
0]
o 1 2 3 4 5 6 7 8
n=3
4
x x
o & =
oF
o T 2 3 0 g G 7 s
net
4
2 x J !L‘—’—.—Ll—,ﬁ—
0]
T 2 3 4 5 B 7 8

Running line smooth: h=6.

2 x ™ x* ,_,/”/ﬂ
x - x
. [
| x
o ] 2 3 3 B 3 7 8
h=3
4
2 « *x L. x
< .
0

Mon Sep 24 12:39:54 2018 B
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Divide and Conquer

Internal decision nodes
Univariate: Uses a single attribute, x;
Numeric x; : Binary split: x; > w,,
Discrete x; : n-way split for n possible values
Multivariate: Uses all attributes, x
Leaves
Classification: Class labels, or proportions
Regression: Numeric; r average, or local fit
Learning is ; find the best split recursively
(Breimanet al, 1984; Quinlan, 1986, 1993)



.o . . k;enerateTree(.\') .
Classification Trees (ID3,CART,C4.5) Best Split If NodeEntropy(Y)< fy /* eq. 9.3 Regression Trees
Create leaf labelled by majority class in A
Return
i — SplitAttribute(X)
For node m, N,, instances reach m, N’ belong to C; If node m is pure, generate a leaf and stop, otherwise For each branch of =, Error at node m:
Find ., falling in branch
) N split and continue recursively n"C b (x)={l ifxe X, :xreachemodem
B(c, Ix,m)=p, =N—m Impurity after split: N,,; of N, take branch j. N Smi[,:,t:gﬁtlte(,';lx 0 otherwise
" belong to C; For all attributes i = 1.....d 5 (=g, F5, () g,- Z,bm(X')r’
f YIS § i 2N, ; If @ is discrete with n values t mJ) “m e bm‘X'
Node m s if plyis Oor ” A(c, |><,m,i)EP1n;=M T, ==3 "% pnjogp, Split X into X1,..., Xn by @ >
Measure of u is i N, i N i e — SplitEntropy(Xi, ..., Xu) /* eq. 9.8 */
i If e<MinEnt MinEnt — e; bestf — i After splitting:
1N Find the variable and split that min impurity (among Else /* @; is numeric * 1 ifxeX,,:x reachesnode mandbranch j
K ) iy I variabl d split positions f . b,,(x)= "
I, =_Zp:n|°gzp,'n ] all variables -- and split positions for numeric Split X into X;. x> on @, 0 otherwise
i1 variables) e—SplitEntropy(X;. X2) 1 Z" (x')r'
If e<MinEnt MinEnt — e; bestf — i E=—3% (g, fo,(x) g, ==
; Return bestf N, S v DI (S
Pruning Trees Rule Extraction from Trees Learning Rules

Maodel Selection in Trees

¢ Years in job Rule induction is similar to tree induction but
x, : Gender
x,: Job type

C4.5Rules

Remove subtrees for better generalization 5
(decrease variance) (Quinlan, 1993) tree induction is breadth-first,
rule induction is depth-first; one rule at a time

Prepruning: Early stopping 3 . .
Rule set contains rules; rules are conjunctions of terms

Postpruning: Grow the whole tree then prune subtrees that
overfit on the pruning set

Rule an example if all terms of the rule evaluate
. L to true for the example

Prepruning is faster, postpruning is more accurate
(requires a separate pruning set)

] ring: Generate rules one at a time until
all positive examples are covered

R1: IF (age>38.5) AND (years-in-job>2.5) THEN y =0.8

R2: IF (age>38.5) AND (years-in-job=<2.5) THEN y =0.6 IREP (Firnkrantz and Widmer, 1994), Ripper (Cohen,
R3: IF (age=<38.5) AND (job-type=‘A’) THEN y =0.4 1995)
R4: IF (age=38.5) AND (job-typ ") THEN y =0.3

R5: IF (age<38.5) AND (job-type="C’) THEN y =0.2

L Mon Sep 24 12:39:54 2018 10
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PruneRuleSet(RuleSet,Pos,Neg) ] e
Ripper(Pos,Neg,k) For each Rule & RuleSet in reverse order MU“IVG rlate Trees
RuleSet « LearnRuleSet(Pos,Neg) DL — DesclLen(RuleSet,Pos,Neg)
For k times DL’ — DescLen(RuleSet-Rule,Pos,Neg)
RuleSet — OptimizeRuleSet(RuleSet,Pos,Neg) IF DL'<DL Delete Rule from RuleSet
LearnRuleSet(Pos,Neg) Return RuleSet =

RuleSet — ¢ OptimizeRuleSet(RuleSet,Pos,Neg)

DL — DescLen(RuleSet,Pos,Neg) For each Rule € RuleSet _

Repeat DLO — DescLen(RuleSet,Pos,Neg) //“- X, AW XN =()\»
Rule — [LearnRule(Pos.Nea) ] DL1 « DesclLen(RuleSet-Rule4 ‘\” e
Add Rule to RuleSet [ReplaceRulé|(RuleSet, Pos,Neg),Pos,Neg) "
DL’ — DesclLen(RuleSet,Pos,Neg) DL2 — DescLen(RuleSet-Rule+ . ;

If DL'>DL+64 [ReviseRule[RuleSet, Rule, Pos,Neg),Pos, Nea) Yes No
PruneRuleSet(RuleSet,Pos,Neg) If DL1=min(DL0,DL1,DL2)
Return RuleSet Delete Rule from RuleSet and

If DL'<DL DL — DL’ add ReplaceRule(RuleSet,Pos,Neg)
Delete instances covered from Pos and Neg Else If DL2=min(DL0,DL1,DL2) C, C

Until Pos = ¢ Delete Rule from RuleSet and ? !

Return RuleSet add ReviseRule(RuleSet,Rule,Pos,Neg)

Return RuleSet X

Likelihood- vs. Discriminant-based . .
Linear Discriminant

‘y Lecture Slides for Classification
|

INTROBUCTION Likelihood.-t Assume a model for p(x| C), use Linear discriminant:

TO Bayes’ rule to calculate P(C; | x) (xlw w ):WTX+W :iw Ytw
ro& oy MACHINE gix) = log P(C;| x) G o T2 e

LEARNING L minant-k Assume a model for g;(x | ®)); Advantages:

no density estimation Simple: O(d) space/computation

3RD EDITION
ETHEM ALPAYDIN Estimating the boundaries is enough; no need to

Knowledge extraction: Weighted sum of attributes;
positive /negative weights, magnitudes (credit scoring)

Ol Riess 2004 accurately estimate the densities inside the
CHAPTER 10: Y Optimal when p(x|C)) are Gaussian with shared cov matrix;

alpaydin@boun.edu.tr
bt cpe .l ~sthem2mi3e LINEAR DISCRIMINATION

boundaries useful when classes are (almost) linearly separable




Generalized Linear Model
-4 |
Quadratic discriminant:
9,(XIW,W,,w,,)=X"Wx+W/X+w,
Higher-order (product) terms:
Z=X), 2, =Xy, =X, 2,= X5, 25= X%,

Map from x to z using nonlinear basis functions and use a linear
discriminant in z-space

0,60~ 3w )

Pairwise Separation
-
= g,,(Xqu, ,m)=W:;X+WW

2 >0 ifxec,
g,(x)= <0 ifxeC,
don'tcare otherwise

chooseC; if
vj#i,g,(x)>0

Gradient-Descent
el |

E(w | X) is error with parameters w on sample X
w¥=arg min,, E(w | X)

Gradient T
v,e-|JE O E
ow, ow,  ow,

Gradient-descent:

Starts from random w and updates w iteratively in the
negative direction of gradient

Training: Gradient-Descent
1
E(w,w, | X)=-3 rlogy’ +{-r Jogl-y*)

If y =sigmoida) ﬂ :y(l—)')

OF rt
Aw, =— a—-r]Z[
r

-y

Y1y
ny (e =y )i =Ld

t

AWo=—'767=’72("—V')
o t

Two Classes
I

e . N 1(x)=,(x) - g,(x)
)= wx Fwx,+w,=0 oo _ (W:X 4 Wm)' (W;X 4 Wzn)
x
&0 © o, = (W, =W, ) X+ (g —wy,)
C. ! T
2 =WX+w,
% X °o 5
x X o ¢ ifgx)>0
Img(x)>
. o choose] * "9V
X C, otherwise
X .y

From Discriminants to Posteriors
'

Whenp (x | C) ~N(p;, 3)
9, (XIW,, w0 )= WX+ W
w; :Zilp-i Wio :—%szfllli +I°gp(ci)
VEP(C1|X) and P(CZ|X)=17y
y>05

y/l-y)>1 andc, otherwise
log [y/(l—y)]>0

choosec, if

Gradient-Descent
“q

Aw, =-n— Vi
”6 W,

\ W, =w, +Aw,

E(w)

E(w')

wowt!

wj «—rand(-0.01,0.01)
Repeat

For j=0.....d
Awj —0
For t = v
[fo=0 ]

Forj=0.....d
0 — 0+w]-:r;

y — sigmoid(o)
Aw; — Aw; + (rt — y).1‘3|
Forj—0,....d
w; — w; +nAw;
Until convergence

Geometry
-4 |

*

2x)=0
20)<0 220

IwglAlwll

gl wl|

X,

PCIX) oo PElx)

1-P(C, |x) P(C,|x)

pXIG) 10 PE)

plxic,)” T P(C,)

(22) e erpl- 0/ 2V 2 Hx-w)] | PlC)
@) e e~ @/ 2x -1, = x—w,)] PG
=w'X+w,

logit(P(c, | x))=log

=log——— +log——%

=log-

§ 1 g
wherew =37 (i, —p,) w, =—E(P1+Pz)1): oy —1,)
Theinverseof logit
P(c1x)

g1 P(c,|x)

=w'X+w,

1

P(C, [X)=sigmoidw x+w, )= TosLwxew]]
o

Logistic Discrimination
(st |

Two classes: Assume log likelihood ratio is linear

p(xIC,)
plx|c,)

logit(P(c, | x))=log

T
log———S =w'x+w;

PCIX) _ plxIC) . P(C)
R 10 A1) %(C)

T
=WX+w,

P(C)

wherew, =w; +log

P(C,)
y=hC )=t
T+exp[-(Wx+w,

Multiple Classes

sl |
gi(XIWilwi0)=w;'rx+wi(]

Choosed, if

6,(x)=maxa,(x)

Classes are
linearly separable

Sigmoid (Logistic) Function
I —

Calculateg(x)=w"x+w, andchoosec, if g(x)>0,or
Calculatey = sigmoic(w’x+wo)and choosec, ify>0.5

Training: Two Classes
e 4 |

X={,r'}, r|x ~Bemoullly')

1
y_P(Cllx)_1+exp —(wx+w,)
w1 20)=T 1) oy f!

t
E=-log/
E(w,w, | X)==) r'logy" +(1—
t

rJogli-y')

K>2 Classes

1 |
X:{x',r‘}r r‘|x'~MuItK(1,y')
p(xIc,)
p(xIC,)
exp|W/X+w,,
v A6 10~ Z exp[w x+w,,,]
w ,wiu}iIX)=1T[17[()ffj"

E({wil Wio },l X): _Z'}‘I ogy;

aw, =2 -y K Awo =3l -v;)

=w/X+w),

softmax



Example
Fori=1.....K, For j =0.....d, wi — rand(=0.01.0.01)
Repeat
Fori=1,....K, For j=0,....d, Aw;; — 0
Fort=1,....N
For i
0; —0
Forj=0,....d
0p — 07 + wigat

Fori=1,... K
<p(0i)/ 3, exp(ox)

Forj=0.....d
Awyy — Awy + (1 — i)zl
Fori=1....K

wij — wij +nAwi;
Until convergence

Ranking Error

Learning to Rank

Ranking: A different problem than classification or We prefer u to v implies that g(x¥)>g(x"), so

regression error is g(x*)-g(x"), if g(x¥)<g(x")
Let us say x" and x* are two instances, e.g., two

movies Ewlir',r'y) = 3 [g(x710) - g(x"10)].

ru<rv

We prefer u to v implies that g(x*)>g(x")

where a. is equal to a if a = 0 and 0 otherwise.

where g(x) is a score function, here linear:
g(x)=wx

Find a direction w such that we get the desired

ranks when instances are projected along w

Lecture Slides for
INTRODUCTION
TO

MACHINE

Wi P

ine Learning

LEARNING

3RD EDITION

ETHEM ALPAYDIN

© The MIT Press, 2014
CHAPTER 11:
alpaydin@boun.edu.tr

http:/ /www.cmpe.boun.edu.tr/~ethem /i2mi3e MU LT | |_ AY E R P E R C E PT R O N s

Perceptron What a Perceptron Does

d . _ e
Y= Z‘ijj W, =WX Regression: y=wx+wq Classification:y=1(wx+w>0)

=1

w = [w,,w,, .., w, |

X=[l,x1,...,x,,]T
(Rosenblatt, 1962)

s s
a a

2 2 2 a

o s ° -

Generalizing the Linear Model

Quadratic:
IogM =X"WX+W/X+w,
pxIC,)
Sum of basis functions:
p(X|C) T
log L =w]g(x)+w,
pxIC,) ’

where ¢b(x) are basis functions. Examples:
Hidden units in neural networks (Chapters 11 and 12)
Kernelsin SVM (Chapter 13)

Neural Networks

Networks of processing units (neurons) with
connections (synapses) between them

Large number of neurons: 10'°
Large connectitivity: 103

Parallel processing

Distributed computation/memory

Robust to noise, failures

s

Regression:

K Outputs

d
_ —wT
Y= D WX W = WX
j=1

Classification:
0, =W/Xx

_ expo,
Vi Zkemok
choosec,
if y,=maxy,

Discrimination by Regression

Classes are NOT mutually exclusive and exhaustive
r'=y'+zwhere s~ N(0,6%)
. . 1
* =sigmoidwx" +w, )=
y' =sigmoid wo) 1+exp|- (WX +w,
1 (¢ -y¥
Iw,w, | X)=| | ==exp| -
( ol ) H oo )@[ 207

E(W,WDIX):%Z(H —y’)Z

Aw= vZ(f' -y Y-y K
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Understanding the Brain

Levels of analysis (Marr, 1982)
Computational theory
Representation and algorithm
Hardware implementation
Reverse engineering: From hardware to theory
Parallel processing: SIMD vs MIMD
Neural net: SIMD with modifiable local memory

Learning: Update by training /experience

Training

Online (instances seen one by one) vs batch (whole
sample) learning:

No need to store the whole sample

Problem may change in time

Wear and degradation in system components
Stochastic gradient-descent: Update after a single
pattern
Genericupdate rule (LMS rule):

Aaw =nlr —yi

Update =LeamingFactor-( DesiredOutput-ActualOutput)) Input



Training a Perceptron: Regression
1 |

Regression (Linear output):

ST T )

awj =l -y

Multilayer Perceptrons

"
T
yi=V,z= zvihzh +Vio
(=3

z,= sigmoid(w;x)
1

= 7]
1+expl- WX+ Who

(Rumelhart et al., 1986)

0 J

Regression with Multiple Outputs

l-d4 |
Vi

EW,VIX)=3 X3 v
t o
y: = ivihz; Hio
h=1

N
.
Awh,-=nz[z(r:—y:)v,-h Hi

.

Two-Class Discrimination
1
1 One sigmoid output y' for P(C, | x') and
P(C,Ix) = 1y

H
v :sigmoit{thz; +v°J

h=1
E(W,v|X)==)r'logy +(1—r‘)log(1—y')
t
av, =0 Y -y B
Aw,; :”Z(rr 2 )’hz;(l_z;)x;

Classification
ol |
Single sigmoid output
y* =sigmoid(w’x')
E‘(wl x',r'):—r' logy' —(l—r')log(l—y')
awj =l '
K>2 softmax outputs
. expwXx
y= > ep wix'
awy=nlt -yi

£ ({w} 1x,rt) == 1 logy!

14 x; XOR x, = (x; AND ~x,) OR (~x; AND x,)

Initialize all v, and wj,; to rand(—0.01,0.01)
Repeat
For all (zt,rt) € X’ in random order
Forh=1,.... H
zp — sigmoid(’w;;:ct)
Fori=1,.... K

yi = v?z
Fori=1,....K

Av; = n(rt - ut)z
Forh=1,..., H

Awy, = (), (rt = yhvin)zn (1 — zp )2t
Fori=1,.... K
v; — v; + Av;

wy, — wy, + Awy,
Until convergence

K>2 Classes
1

H t
exp o
t_ t t_
0; = E VaZh tVio Vit T
h1 E EXP 0,

E(W,v|X)==>"> rilogy;
t i

Av, = 772(’;" - y: )Z::
,

w =n ] 3 -1 b il
,

i

Pc,1x)

Learning Boolean AND
I

X

i 1.5
1.5 0,1 1,1
>/ .1 PSER)
x

1
RO 2 0,0) 10 15

>
IS

- O O|lx

-0 O Ofx

—

X,

Backpropagation
[

"
Vi=VIZ=2 Va2, 4,
=

z, :sigmoid(w;x)

1

= d
l+expl- WX+ Who

z=+1 OE _ OE 0y, oz,
aw,, o, oz, 0w,

0 J

Multiple Hidden Layers
-4 ]
1 MLP with one hidden layer is a universal
approximator (Hornik et al., 1989), but using
multiple layers may lead to simpler networks
4
2,, =sigmoid(w],x)= sigmoir{wax, +w,,,n],h =1,..,H,
=

"
2, = sigmoid(sz,): sigmoit(z:wmzln + wzm),l =1,...,H,
=t

Hy
—vi7z =
y=V'Z,=3 vz v,
"

XOR

Xp | X2 | ¥ *
0o oo @
0 |1 1
1 ]0 1
1 |1 0
No wq, wy, w, satisfy: X,
w, <0 .
(Minsky and Papert, 1969)

w,+ w, >0

w; + w, >0

w+ w,+ w, <0

E(W,VIX):%Z(r'—y‘)Z
|

t

| Backward

Regression

H
t t
y = zvhzh +Vo
h=1

OE
awhf
Ly Y o

"y o ow,

=Y -y Wz l-z

t

x ='72("—Y')/nli(1—12)"5
T

Forward

Aw,; =-1p

2, =sigmoid(w]x)

Improving Convergence
N

= Momentum

+a ifEYT<E*
An= .
—bn otherwise



Overfitting/Overtraining

1
Number of weights: H (d+1)+(H+1)K

Moan Squire Eror

B W0 is E]
Number o Hogen Unts

Hints
|

Invariance to translation, rotation, size

AAvA

Virtual examples (Abu-Mostafa, 1995)
Augmented error: E'=E+AE,

If x’ and x are the “same™ E,=[g(x | 6)- g(x’| )]

ifg(x|0)ela,.b,]

E,=1(0(x10)-a,] ifg(x|6)<a,
(a(x10)-b,) ifg(x10)>b,

Approximation hint: 0

Hidden Representation

03] 3 < i
; 5 :

15
P IR SRS i :
Liayiismiz :
01 52 H
01 0z 03 1

Unfolding in Time
Eamm

(b)

e

200 500 600
“Training Epochs

Tuning the Network Size

[T
Destructive Constructive

Weight decay: Growing networks

Aw, =-1 o _ Aw;
w,

Cascade Correlation

(Fahlman and Lebiere, 1989)

Dynamic Node Creation

(Ash, 1989)

Learning Time
(sl |
Applications:
o Sequence recognition: Speech recognition
o Sequence reproduction: Time-series prediction
o Sequence association
Network architectures
o Time-delay networks (Waibel et al., 1989)
o Recurrent networks (Rumelhart et al., 1986)

Deep Networks
led |

= Layers of feature extraction units

= Can have local receptive fields as in convolution
networks, or can be fully connected
Can be trained layer by layer using an autoencoder
in an unsupervised manner

= No need to craft the right features or the right basis
functions or the right dimensionality reduction method;
learns multiple layers of abstraction all by itself given
a lot of data and a lot of computation

= Applications in vision, language processing, ...

Structured MLP

Convolutional networks (Deep learning)

(Le Cun et al, 1989)

Bayesian Learning
s

Consider weights w; as random vars, prior p(w;)

D(WIX):ip(Xlw)p(w) W,,,» =argmaxlog p(w| X)
p(X w

log p(w| X)=log p(X |w)+log p(w)+C

o) Totw) where ol ) <c-ex - 22|

E=E+ 2w

1 Weight decay, ridge regression, regularization
cost=d isfit + A plexity
More about Bayesian methods in chapter 14

Time-Delay Neural Networks

L Mon Sep 24 12:39:34 2018 12
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Weight Sharing

Dimensionality Reduction
==

- Decoder

Encoder

Linear Nonlinear

Autoencoder networks

Recurrent Networks
lsd |
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CHAPTER 12:

LOCAL MODELS

Adaptive Resonance Theory

Incremental; add a new cluster if
not covered; defined by vigilance,

I3 P
N T e I A
o0 L AN
My X ifb,>p - ;gt.ﬂ N

{Am, ='I(X' —m,) otherwise e

ox’
°
(Carpenter and Grossberg, 1988) x,

Training RBF
(ol |
Hybrid learning:
o First layer centers and spreads:
Unsupervised k-means

o Second layer weights:
Supervised gradient-descent

Fully supervised

(Broomhead and Lowe, 1988; Moody and Darken,
1989)

Rule-Based Knowledge

IF ((x, =a) AND (x, b)) OR (x; ~c) THEN y =01

2 \2
p= exp[— %] . exp[— (Xzz%b)} withw, =0.1
1

S2

2
P, :exp{—(xz%c)}with w,=01

S3

o Incorporation of prior knowledge (before training)
Rule extraction (after training) (Tresp et al., 1997)
01 Fuzzy membership functions and fuzzy rules

Introduction

Divide the input space into local regions and learn
simple (constant/linear) models in each patch

Unsupervised: Competitive, online clustering

Supervised: Radial-basis functions, mixture of
experts

Self-Organizing Maps
I

o Units have a neighborhood defined; m; is “between”
m;_; and m;,, and are all updated together

1 One-dim map:

(Kohonen, 1990)

Am, = ne(l,i)(x' - m,)

1 (1-iy
el 5

Regression

E(im, 5,m,},1X)=3 Z30 ! f
t i

H
y: = Zwmp; +Wi

h1

Awih=nz(r?t_y:)p;:
T

Am,, ='7Z:|:Z:(’it 'y: )’V.h:lp:.(x:;—zmm)
Tt L h

e L ml

ASF'IZ Z(’: _yy)”m hs—a

L7 h

Normalized Basis Functions

¢
t__ Py
9 =ci

P

__ewf-m /]
S exel-px—m[ /257
yi=Yw,g,
h=1
Aw, =13 -vi bt
i
Amy =03 S~y Yw,, —vi g, (5 -m)
t i

s

Competitive Learning
1

lfm,}x)= 3, 3 bifx -m)|
s =ft ¢ -ml-miht -]
0 otherwise

Batch k-means:m, =
Online k-means:

OF'
=il -m,)

i

Am,, =-n

Radial-Basis Functions
=

= Locally-tuned units:

£ 2
serd £:21]

"
¢ .
y = zwnph W,
=

Classification
l.Jq |

E({mn:smwin},,h |X)=_zz’,( logy|
T

t
IO +w]
i t
z (EXPL2, WinPh T Wio

Competitive Basis Functions
=

1 Mixture model:

plre 1x )= plb 1 ol 1h,x)

t)_ p(X'lh)p(h)

A5 ot bt
. a,,exp[—'“X‘ —m,,"2 /25;] .
S et fe-m 2]

Initialize m;,i = 1,.
Repeat
For all ' € X" in random order
i — argmin; [|&' —m;||
m; —m; + (' —m;)
Until m; converge

k, for example, to k random =!

Winner-take-all
network

X X,

1
Local representation in the
space of (p,, py, p3)

Distributed representation in the
space of (h,, h,)

x4 (1.0,0.0,0.0) X (1.0, 1.0)
X2 (0.0, 0.0, 1.0) X2 (0.0, 1.0)
X2 (1.0, 1.0, 0.0) x4 (1.0,0.0)

Rules and Exceptions
[ 3|

H
y 5 ZW,,P;,
=

Exceptions

Default
rule

Regression ol 1) [T _(rf‘f{,‘)
=

L({mhlshlwih ih |x): ZIOQZQ;BXP[_%Z(’}' _y:h)2:|
t h i

i, =w,, is the constantfit

t_
Aw, =03 (e =y )i Am, =03 (5 g )7("’ m)
t t

Pe QZexp[— @2y (- y;)z]
" Y gienl /2% - F]
p(h|r,x)= _p(h]x)p(r|h,x)

3 p10p(r11,%)




Classification

L({mh’shfwrh}i,h |X)= Z'OEZGZH(Y,'J"
t h i
=>log) g} exp[er Iogy,‘h}
t h i

Jh = EXPW;y
ih —
ZkeXkan

. gexpr logyfn]
fy = T r t
> giexp]Y " r logy,

MoE as Models Combined

Radial gating:

epolx2 7m,,||2/2$fl .
exel- | -m|'/2st]

Softmax gating:

. exp[m;x’]

9= > expm/x’

Hierarchical Mixture of Experts

Tree of MoE where each MoE is an expertin a
higher-level MoE

Takes a weighted (gating)
average of all leaves (experts), as opposed to
using a single path and a single leaf

Can be trained using EM (Jordan and Jacobs,
1994)

Kernel Machines

Discriminant-based: No need to estimate densities
first

Define the discriminant in terms of

The use of application-specific
measures of similarity

No need to represent instances as vectors

Convex optimization problems with a unique solution

EM for RBF (Supervised EM)

E-step: £ Ep(l’ | h,Xl)

_ er;xr
P4
_ Z,fr:(xr _mhxxl _mn)r
A

M-step: m
h

Sh

Cooperative MoE

Regression

E({mh'sh’wlh}i,h |X):%22(rrt _y’:)z
t i
Av,, =77Z("ir 7)’;‘17}];)(1
t

Amy, =03 (i ~yi, Jwl, — ! i
t
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Optimal Separating Hyperplane

X= {x’,r' }, wherer = {+1 ,If X: <G
-1 ifx" ecC,

findw andw, suchthat

WX +w, > +1for rf =+1

WX +w, <+1forr' =-1

whichcanberewrittenas

WX+ wp )2 +1

(Cortes and Vapnik, 1995; Vapnik, 1995)

Learning Vector Quantization

H units per class prelabeled (Kohonen, 1990)
Given x, m; is the closest:
Am, =n(x'—m,)  if label(x')=labelm,)
Am, :—n(x‘ —m,.) otherwise

Competitive MoE: Regression

1
£(fm, 5, w,.},,1X)= 10> g} exv{*EZ(rf -v5f ]
t h i
Vin =W, = VX'

v, =n 3 -y X

t

am, =p Y (f -gi K
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Margin

Distance from the discriminant to the closest instances
on either side

Distance of x to the hyperplane is |W7X'+WD|

P v
r(w'xt +w,
We require —————2>p,Vt
[w]
For a unique sol'n, fix p| |[w| |=1, and to max margin

min%||w||2 subjectto r' (WX’ +w,)>+1,vt

Mixture of Experts

In RBF, each local fit is a
constant, w;, second
layer weight

In MoE, each local fit is
a linear function of x, a

Iocclﬁxp_evr Xt
ih— Vin

(Jacobs et al., 1991)

Competitive MoE: Classification

L({mh'sh'wih }i,h | X): Z'OEZQZH(VFJ"
T R
= logy g, exp[zr,‘ Iogyfh]
t h i

Joo oW, expv,x
ih— - t
D expw,, . expy,x
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min %||w||Z subjectto r'(W'x’ +w, )= +1,vt
b=l - e, )]
2 =

[ TR ST -
=§||w|| —ga r(wx +wu)+2a

=

aL, N
—”=0:W=Za'r'x’
ow =

aL, "
=0=>a'r' =0
ow, ;
7

Hinge Loss

o ify'r'>1
1-y'r' otherwise

=1

loss for r*
B G S ST S

-2

Vectorial Kernels

* Radial-basis functions:

(b)s?=05
2 .
b of H
K(x',x):ex - 1 RS
2s RoE=Y
i 2 12
, (c)s*=0.25 (d)s?=0.1
. N
o # 2@ /4%
o ey # 1Ol
@ O g
b
1 2 1 2

SVM for Regression
l-Jq1 |
© Use a linear model (possibly kernelized)
f(x)=wx+w,
® Use the €-sensitive error function

el 1) {0 iflr —£(x' | <&

- |r'—f(x'l—£ otherwise

min il + 3 (¢ +£1)
:

F—(Wx+wy )< e+ & 1

(WX +w,)—r <g+&

£,E020 e L

L= %(w’w)— WY a'r'X -w,y a'r + Y a
. : T
=—1(w'w)+ >a'
2 .

=—%22a‘a‘r’r’(x' Jx+Yat
T4 7

subjectto > a'r' =0anda' >0,vt
t

Most 0! are 0 and only a small number have a'>0; they are
the support vectors

v-SVM
n—l -
in T 2 _ s t
min 2||W|| vp+ NZ;’
subjectto
r'(w’x‘ +wﬂ)2p—§‘,§' >0,p>0

N

L :—%ZZa‘a‘r'r‘(x')Tx’
t=1 s

subjectto

Za'r' =0,0<a' Sl,Za' <V
T N'T

v controls the fraction of support vectors

Defining kernels
L4 |
Kernel “engineering”
Defining good measures of similarity
String kernels, graph kernels, image kernels, ...

Empirical kernel map: Define a set of templates m;
and score function s(x,m,)

AX)=[s(x,m,), s(x',my),..., s(x',my)]
and

Kixx')=¢(x)" ¢ (x)

Soft Margin Hyperplane

* Not linearly separable
r( Tt t
riw’x +wo)21—§
© Soft error
¢
t
* New primal is

L, =%||w||2 +CZ§' —Za' [r'(w'x' +wo)-1+§']-2y'§'

Kernel Trick
[ s |

® Preprocess input x by basis functions
z=9(x) glz)=w'z

glx)=w @(x)
* The SVM solution

w=Ya'r'z' =Za'r'q)(x')

G T
g(x)=we(x)=>"a'rle(x’) o(x
we-3

s S ]

Multiple Kernel Learning
| 17|

© Fixed kernel combination K(x,y)

K(x,y)=1K,(x,y)+K;(x,y)
K (xy)K(xy)

* Adaptive kernel combination
k()= S )
L=Ya —%ZZa'a‘r'r‘Zq,K,(x',x‘)
o0 Z':a'r'z:‘,vjk.(x',X)

* Localized kernel combination y(X)=Za'r'zr/,(xlf9)'(.(x':x)

Kernel Regression
T

1 Polynomial kernel o Gaussian kernel

@s=5

(@)

Vectorial Kernels

* Polynomials of degree g: b

K(x’,x): (xTx’ +1)' "

Kly)=by 1]
R e e

=142, + 20y, + 2X0XY1Y, + XY +X3Y5

(0= V2, V2, 20,22 52 ]

Multiclass Kernel Machines
et |
1-vs-all
Pairwise separation
Error-Correcting Output Codes (section 17.5)

Single multiclass optimization
K
min $w ' + T ¥e
i=1 it
subjectto

Tt Tyt t . t t
WX 4w, 2W X W, +2-8, Vi Z, 520

Kernel Machines for Ranking
N —

-1 We require not only that scores be correct order
but at least +1 unit margin.

1 Linear case:

min%||w,.||2 +CY &
T
subjectto
WX 2WIX +1-&, Vet <r¥, & >0



One-Class Kernel Machines

Consider a sphere with center a and radius R

minR® +CY &' ,
T

subjectto 14

[x —a| <r?+&%,¢ >0

L= Za'— iZa'tz’r’r’ (x
t t=l s

subjectto
0<a' SC,Za' =1
t

Kernel Dimensionality Reduction

(a) Quadratic kemel in the x space

does as Q- o
PCA on the o O N THigt .
kernel matrix .o © . '
(equal to o X 0 05

canonical PCA (b) Linear kernel in the z space
with a linear
kernel)

Kernel LDA, CCA

Graphical Models

Aka Bayesian networks, probabilisticnetworks

are hypotheses (random vars) and the
probabilities corresponds to our belief in the truth
of the hypothesis

are direct influences between hypotheses

The is represented as a directed acyclic
graph (DAG)
The are the conditional probabilitiesin

the arcs  (Pearl, 1988, 2000; Jensen, 1996;
Lauritzen, 1996)

Case 2: Tail-to-Tail

P(X,Y,Z)=P(X)P(Y | X)P(Z| X)

PO=05
Cloudy
PR|O)=08
AS|-0)=05 PR|-C)=0.1

0.5
G0 1 2 G0 1 2
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Causes and Bayes’ Rule

Diagnostic inference:
— Knowing that the grass is wet,

( Rain\‘\ PRY=0.4 what is the probability that rain is

the cause?
’ diagnostic
P(WIR)P(R
causal PRIW)= ( pl(W)I;( )
r/;v- N POV RY-09 _ PWIR)P(R)
N “‘5“‘)‘ P(W|~R)=0.2 P(W|R)P(R)+P(W|~R)P(~R)
I _ 0.9x0.4 —075

0.9x0.4+0.2x0.6

Case 3: Head-to-Head

P(X,Y,Z)=P(X)P(Y)P(Z|X,Y)

=02 P(R)=04

POV|R,$)=095

~8) =090

/| -R, $) =090

Wet grass ) POV | -R~8)=0.10

Large Margin Nearest Neighbor

Learns the matrix M of Mahalanobis metric

D(x', xi)=(x'-xi)"M(x'-xi)

For three instances i, j, and |, where i and | are of
the same class and | different, we require

D(x', x') > D(x/, xi)+1

and if this is not satisfied, we have a slack for the
difference and we learn M to minimize the sum of

such slacks over all i,j,l triples (j and | being one of k
neighborsof i, over all i)
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Conditional Independence

X and Y are independent if
P(X,Y)=P(X)P(Y)
X and Y are conditionally independent given Z if
P(X,Y|Z)=P(X|Z)P(Y|Z)
or
P(X|Y,Z)=P(X|Z)
Three canonical cases: Head-to-tail, Tail-to-tail,
head-to-head

Causal vs Diagnostic Inference

P($)=0.2 P(R)=0.4 If the

sprinkler is on, what is the
probability that the grass is wet?

N
P(W| R,5)=0.95
P(W| R~5)=0.90

P(WIS)= P(WIR,S) P(RIS) +
P(W|~R,S)P(~R|S)

= P(WIR,S) P(R) +

| POVIRS)=090 PIWI~RS)P(~R)

((Wetgrass ) P |~R~$)=0.10  =0.950.4+0.90.6=0.92

If the grass is wet, what is the probability

that the sprinkler is on? P(S| W)= 0.35 > 0.2 P(S)

P(SIR,W)=0.2] Knowing that it has rained
decreases the probability that the sprinkler is on.

Learning a Distance Measure

LMNN algorithm (Weinberger and Saul 2009)

(1= YD) +pu Y (1= yn)Ep
i il

subject to
DXLx) = DX x))+ 1€V ifr =l and ¥ £ 0
il = 0
LMCA algorithm (Torresani and Lee 2007) uses a
similar approach where M=L'L and learns L

CHAPTER 16:
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Case 1: Head-to-Head

P(X,Y,Z)=P(X)P(YI X)P(Z]Y)

(a) Model

. PR|C)=08 POV R)=0.9
OO hik|-0y=01 POv|-Ry =02

N

P(WIC)=P(W[R)P(R|C)+P(W|~R)P(~R|C)

Causes

P(O)=05

Causal inference:
P(W|C) = P(WIR,S)P(R,S|C) +
P(R| C)=0.8 P(W|~R,S)P(~R,S|C) +
P(R|~C)=0.1 P(WIR,~S)P(R,~S|C)+
P(W|~R,~S)P(~R,~S|C)

P(S| C)=0.1
P(S|~C)=0.5

and use the fact that
P(R,S|C)=P(R|C) P(S|C)

Diagnostic: P(C| W) =2
POV | R,5)=0.95

P(W| R~5)=0.90

P(W|~R.5)=0.90

P(W | ~R.~8)=0.10



Exploiting the Local Structure

- ~_ P(O)=0.5
N
( Cloudy
PS|O01 7 PRIO-08 P(FIC) =2
PS|~0)-0.5/ SPR[=C01
e N

Ve N
Sprinkler ) Rain
. / \

— S
POV R.S)-0.95\ P(F|R)=0.1
POV R~5)-0. «m\\ / P(F|~R)=0.7
POV ~R5)-0.90 \/

P(W | ~R~Sy (“9' . /,, ,;\
( Wet grass 00F
o) (M)
PIC,S.RW.F)=POPISICPRICPWIS RP(FIR)
P(Xl,N.Xd):Ii[P(X, |parents (X))

d-Separation N
\‘/\‘/‘\f/
A path from node A to node B /B\ Y\
: T ( )
is if U )
The directions of edges on 7
the path meet head-to-tail A |
(case 1) or tail-to-tail (case ( /
2) and the node is in C, or \?/\,1\
The directions of edges meet ‘\F
head-to-head (case 3) and I/
neither that node nor any of A
its descendantsis in C. )
—/

If all paths are blocked, A

and B are d-separated BCDF is blocked given C.

(conditionally independent) BEFG s blocked by F.

given C. BEFDis blocked unless F (or G) is
given.

Junction Trees

If X does not separate E* and E-, we convert it into

a ee and then apply the polytree
algorithm
() ()
AN \I/
< :
(r) (s) (S)  Tree of moralized,
Y NZEE
\1// [ clique nodes
(o) )
®

Influence Diagrams

decision node

chance node utility node

Classification

PO) Bayes’ rule inverts the arc:

diagnostic

P(C|x):p(xIC)P(C)
plx| C) pi)
P(Clx)

Belief Propagation (Pearl, 1988)

Chain:

LSt

P(EIX)P(X) _ PE",E"|X)P(X)
GG

_PETIXIPEIX)P(X) _
= P(E) =an(X)AX)

P(X|E)= 7(X) =3 PX [Up(U)

AX)= 3 P(Y 1 X0A(Y)

Undirected Graphs: Markov Random
Fields

In a Markov random field, dependencies are
symmetric, for example, pixels in an image

In an undirected graph, A and B are independent if
removing C makes them unconnected.

Y (X,) shows how favorable is the
particular configuration X over the C

The joint is defined in terms of the clique potentials

p(X)= %ny/( (x.) where normalizer z=Y"[ [y (X.)
’ e

L Mon Sep 24 12:39:34 2018 15
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Naive Bayes’ Classifier

PO)

P, 1 C) P, ©)

Given C, x; are independent:

p(x|C) = plx, | C) p(x,]C) ... plxy]C)

Trees

AX)=P(E, | X)=2,(X)2,(X)
ZlU) =2 AX)P(X V)

(N
2(X)=P(X|E5)= Y PX Uz, (U)
v N
7,(X)=aZ(X)z(X) 4 b
/7 \
‘ ( E
\’,/ \Z/
Factor Graphs
Define new and write the joint in terms
of them
fu 5
i
) () 1
N N p=S[TA)
(R) (S) Z%
NN/
™
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Linear Regression

POwr)

PIFIX, 1, X)= [ ol X W] X, rip

PIrIX,Whpw)
p(r)

o [t Wi Totr Ix' whp(widw

=[plr1x,w)

Polytrees D (D (D

.
AX)=PX|Ex)= 2> > PXIULUy, -, U] [ 7,(U)

7, (1= T4, (%) /,/\
= Ty W\'} ~
O

N

() (%) ()

N/ N N
2U) = BY AMX) Y PX U, Uy, U ] 70,

A00=T T4 0

How can we model P(X|Uj,Us,....U,) cheaply?

Learning a Graphical Model

Learning the either as
tables (for discrete case with small number of
parents), or as parametric functions

Learning the of the graph: Doing a state-
space search over a that uses both
goodness of fit to data and some measure of
complexity

CHAPTER 15:

HIDDEN MARKOV MODELS




Introduction
-4 |
7 Modeling dependencies in input; no longer iid

Sequences:
o Temporal: In speech; phonemes in a word (dictionary), words
ina (syntax, ics of the | )

In handwriting, pen movements

o Spatial: In a DNA sequence; base pairs

Balls and Urns: Learning
I

o1 Given K example sequences of length T

- _ #isequences starting with 5.} _ S alat=s)
! #{sequences K
L #{transiﬁors froms, to 5,}

>3 =s)

Three Basic Problems of HMMs

ot |
Evaluation: Given A, and O, calculate P (O | A)
2 State sequence: Given A, and O, find Q" such that
P(Q | O,A)=maxgP(Q | O,A)
. Learning: Given X={O},, find A" such that
P(X | A")=max;P (X | A)

(Rabiner, 1989)

Viterbi’s Algorithm

ldq |
8,(i) = MAX 1 g2 g1 P(91927°94.1,9;=5;,0,O; I'A)

o Initialization:
8,(i) = mh(O,), Y,(i) =0
o1 Recursion:
5 Oaf(i) = max; 6f-l(i)aiibi(oi)l W(j) = argmax; ;.
1)
u] Termlinaﬁon:
p' = max; 84, q7'= argmax, 5, (i)
o1 Path backtracking:
G = Wialgw ) 1=T-1,T-2, 0, 1

Discrete Markov Process

I
7 Nstates: Sy, S,, ..., Sy State at “time” t,q, = S;
= First-order Markov
P(6:1=S; | 97Si 911 =Sesw) = Plqps=S; | 9=S)

Transition probabilities
_"]i,' = P(g1=S; | q=S)

o=

@;=0and Z_\N

Initial probabilities

™= P(q,=S) Z,‘:IN =1

Hidden Markov Models

(-1 |
1 States are not observable

o Discrete observations {v,,v,,...,vy} are recorded; a
probabilistic function of the state
= Emission probabilities
b,’(m) = PO, | Qr:s[)
o1 Example: In each urn, there are balls of different
colors, but with different probabilities.

1 For each observation sequence, there are multiple
state sequences

Evaluation
=

Forward variable:

(i)=P(0,:0,,0,=5,12)
Initialization:

a(i)=7b(0,)
Recursion:

. )-{ Eam, 0.
P(ou)=ga,<f)

Learning
I

&(0,)=Pla,=$,9.,=5,10,2)
£0)) < ©0950.08.0)
t’ Zk ZI @, (k )’kl bl (onl )ﬂru (’)

Baum- Welch algorithm(EM) :
. 1 ifg, =S5 e 1 ifg =S andg,., =S,
"7 10 otherwise "7 |0 otherwise

Stochastic Automaton

HMM Unfolded in Time

Backward variable:

A)=P(0.,+-0: 14, =5,2)

Initialization:
£ii)=1

Recursion:

A(i)=z::a.,b,(ok.,)ﬂ,.,(j)

Baum-Welch (EM)
I
e-step el ]=7,() Elz]=50.0)
M-—step:

20 e
0 ="K~ _x,
K Zk:lZl:l 7 (I)
Bi(m): Zk=1z’¢}1 7 ‘15{1)1(,(0‘, = Vm)
Zk:lZl:l Ve (I)

=

Example: Balls and Urns
.4 |

1 Three urns each full of balls of one color
S,:red, Sy: blue, S;: green
04 03 0.3j|

11=[050203] A=[02 06 0.2
01 01 08

0= {51,51,53,53}

POIAT)=P(s,)-P(S,1S,)-P(S;15,)-P(S; 1S5)
=700y Oy3t Oy
=0.5-0.4-0.3-0.8=0.048

Elements of an HMM
Lol |
o1 N: Number of states
o1 M: Number of observation symbols
o A =[o;]: N by N state transition probability matrix
= B =b,(m): N by M observation probability matrix
o M =[m]: N by 1 initial state probability vector

A = (A, B, T), parameter set of HMM

Finding the State Sequence
En

}’:(i)EP(qr =$,.|O,/1)
— at(i) t(i) % A
> ()B0)

Choose the state that has the highest probability,
for each time step:
q,'= arg max; (i)

No!

Continuous Observations
'
o1 Discrete:

M g 1 if 0,=v,
P(0.19,=5,,2)=] ],(m) r;={ ey
t

0 otherwise

= Gaussian mixture (Discretize using k-means):
L
Plo.14,=5,,2)=Y P(G,)p(0. 14, =56, 2)
=1
~ w(/ll’zl)

PO, 1q,=5,,2)~ Ny, 0?) '
Use EM to learn parameters, e.g., Q= Z,7r(l)or
i Z =
72(7)

1 Continuous:



HMM with Input

Input-dependent observations:
PO.1a,=5,x,2)~N(g,(x'1,)o7)

Input-dependent transitions (Meila and Jordan,
1996; Bengio and Frasconi, 1996):

P(qrq:s,' la, =5irxr)

Time-delay input:
TP X <t(0,.,00.4)

L Mon Sep 24 12:39:54 2018 16
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Generative Model

\V'X' 0 p,X,0) = p(O)P(X10)p(x'10)

P, X)  [p(',X,00d0  [p(0)p(X|0)p(x'[0)d0
p(xX) p(X) - p(X)

- J,nx' 0)p(01X)d0

p(X'1X)

Estimating the Parameters of a
Distribution: Continuous case

px)~N(w,c?)
Gaussian prior for 1, p(1)~ N(L, 6¢?)
Posterior is also Gaussian p(p/X)~ N(Ly, on2)
where

2

_ o
= Nograrte

Nan
No,’ +o?

I SR
O’O' g

HMM as a Graphical Model

/ AT P |4 p
=P’y
B=r| )
01 OI—I Vo4
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Bayesian Approach

Prior p(6) allows us to concentrate on region where
Ois likely to lie, ignoring regions where it's unlikely
Instead of a single estimate with a single 0, we
generate several estimates using several & and
average, weighted by how their probabilities

Even if prior p() is uninformative, (2) still helps.
MAP estimator does not make use of (2):

Oyap = argmaxp(01X)
i

Gaussian: Prior on Variance

Let’s define a prior (gamma) on precision A=1/c2

p(A) ~ gamma(ao, bo) = T b“".\"U exp(—bo))

(X1 =[] ol [_ﬁu'- F]
L R 2

= AVZRm)NZexp [722(\* —wl]
St

pPAIX) o« p(XIA)pQd)

vo+N
;g = N/2=—"7"
~ gammalay,by) ay = ap+NJ/2 >

Vo, N

L bo+ Nz Yoz N
N = bo+ 587 = isg+ s

" . '
¥ M) X N "f\ '/ N
\\/ \/ \,<
ARV R '\ R
NN E N AN N RN I
/] \/, N/ \/y T \/:

& oo oo

(@ Input-output MM (b) Factorial HMM
sz of ()) (r e /\ ,,,/ N
ar” /,\ /h -L/\ m/\ a \

o1 T , \

@ /\ k2 SN ¢
BN TN g
NN Y/ E‘Z \///
,);'(5 o\ of ’C) 0,”6 of ’
(©)Coupled HMM (@ Switching HMM

CHAPTER 16:

BAYESIAN ESTIMATION

Bayesian Approach

pX'X) = Jp(,\"\mmﬂ,\‘ldﬂ

In certain cases, it is easy to integrate
Conjugate prior: Posterior has the same density as prior

Sampling (Markov Chain Monte Carlo): Sample from
the posterior and average

Approximation: Approximate the posterior with a
model easier to integrate
Laplace approximation: Use a Gaussian

Variational approximation: Split the multivariate density
into a set of simpler densities using independencies

Joint Prior and Making a Prediction

p(p,A) = p(puld)pd)

p(p,A|X) ~ normal-gamma( iy, Kn, ay, by)

where
Ky = Ko+ N

. KoHo + Nm
Hy e
an ap+N/2

N, 2
by bo + ?s’ + ’:?f (m — po)*°
pIX) = ”p<x AP (A LX) dpdA
bn(ky +1)
~ lay (H.\, ankn )

Model Selection in HMM

Left-to-right HMMs:
a, a, a3 0
Aol 0 92 O 0
0 0 a; a
0 0 O

In classification, for each C, estimate P (O | A) by a
separate HMM and use Bayes’ rule (014)P(%)

Pz 10)= > P14 p(2)

Rationale

Parameters @ not constant, but random variables
with a prior, p(6)

p(O)p(X16)

’ . O0|X)=
Bayes' Rule: p(01X) o)

Estimating the Parameters of a
Distribution: Discrete case

x'=1if ininstance t is in state i, probability of state i is g;

Dirichlet prior, @; are hyperparameters

-1
Sample likelihood Dirichlet(q| ) = 75 u..,»l—lq

p(XIq)=HHq,

t=1 i=1
Posterior g P
P 0) = s ~..l‘[q
=Dirichlet(q|a+n)
Dirichletis a conjugate prior
With K=2, Dirichlet reduced to Beta

Multivariate Gaussian

p(x) ~ Ny(p,A) p(HIA) ~ Ny(po, (1/k9)A)  P(A) ~ Wishart(vo, Vo)
p(,A) = ppIAPpA)

~ normal-Wishart(pyg, Ko, Vo, Vo)
p(p, AIX) ~ normal-Wishart(ux. kn. v, Va)

Ky = Ko+ N
KoHo + Nm
Hy nl»‘o'
KN
w = vo+N
KoN -1
Vy = (V0'+CAK—{m—unNm—ug)‘)
N
px|X) = JJ’p(xy‘Aip(y‘A\XuiudA
Ky +1 I)
< T S—
tyy m(!‘\ KOy —d+1) N)



Estimating the Parameters of a

Function: Regression
1

° r=wix+ g, p(e)~N(0,1/p), and p(r'| x',w, B)~N(w'x', 1/B)
* Log likelihood L(r|X,w,/3)=|og]_[p(r' 1X,w, )

=—NI04\/5)+Nlogﬁ—§Z(r' —w'x')

ML solution  Wae =(XX)*Xr
+ Gaussian conjugate prior: p(w)~N(0,1/ct)
* Posterior: p(w | X)~N(p.Zy) where

=R XTT

L,=(al+pXTX)?  Akaridge regression/parameter shrinkage/

L2 regularization/weight decay

Basis/Kernel Functions
et |
® For new x’, the estimate r’ is calculated as
r'=(x)"
=B(X)E,Xr
=> BX) LT
t

Dual representation

* Linear kernel

© For any other ¢(x), we can write K(x’,x)=¢(x’)Td(x)

r'=Y B ZXr Y AKX )

Mixture Model

G oTEs
OO0

= Dirichlet(rr| ) l_[ normal-Wishart (g, Ko, vo, Vo)
i

k
p(x) = > P(Gp(xIG))
i=1

p@) = pm[]p,A)
i

Q@) = 3 S hilogm + > S hilogpi(x'|®)) + logp(m) +
[ L]

> logp(pi Ai)
g

i Koo + Nim;
. . Ko+ Ni
o JENiZ 1 v o
S+ N-k AR ( o +C:+5r)
vo+Ni+d+2

(a) Linear (= 1B =5)

-1 |

Pp(XIMT)

¥ y
O\ L}
2N
s 0 5 0
Y
N/
g E E
proc postrr
2 2
®
s © s 0
g ] T2
- * *
- y y
2 d I
/ o () > o
L )
7
g o 2 o 2

Kernel Functions

(@) Linear («=1,p=1)

Modelsin increasing complexity.

A complex model can fit more
datasets but is spread thin,

a simple model can fit few datasets

buthas higher marginal
likelihood where it does
(MacKay 2003)
X
ol — _L__1
o
5
€ osf
o
o
G B

Dirichlet Processes

-1 Nonparametric Bayesian approach for clustering
o Chinese restaurant process

1 Customers arrive and either join one of the existing
tables or start a new one, based on the table

occupancies:
Join existing table i with P(z = 1) = — i1,k
x+n-1
. n — - «
Start new table with P(zx.; = 1) pr—

Prior on Noise Variance
leq |

PWIB) ~ N (ug, BZo)
p(w,B) = p(B)p(w|p) ~ normal-gamma(pq, Zo, ao, bo)

p(B) ~ gammal(ao, bo)

p(w, BIX,r) ~ normal-gamma(py, Zy, ay, by)

Iy = (X'X+Z0)!
uy = ENX'r+Zopo)
ay = ap+NJ/2

1 N ;
by = bo+ 5rr+ piZopy — H{Zwky)

Markov Chain Monte Carlo (MCMC) sampling

What's in a Prior?
1

1 Defining a prior is subjective
1 Uninformative prior if no prior preference
©1 How high to go?
Level I: p(x|X) = Ip(xlo)p(O\X)dO
Level It p(x1) = [ p(xIO)p(01X, p(dOdax
1 Empirical Bayes: Use one good o

Level Il ML: p(x|X) = JV(XIU)V{OIX, «*)do

Nonparametric Bayes
-1 |
Model complexity can increase with more data (in
practice up to N, potentially to infinity)

Similar to k-NN and Parzen windows we saw
before where training set is the parameters

Nonparametric Gaussian Mixture
I

1 Tables are Gaussian components and decisions
based both on prior and also on input x:

Join component i with P(z} = 1) « _m p(XX),i=1,...k
a+n-1

- @
Start new component with P(zf oo ———p(x'
P (Z}y) wino1PX)

degree 1 degree 2 degree 3

Bayesian Model Comparison
=n

=1 Marginal likelihood of a model:
XA = [ pOxie, ApeLande

Posterior probability of model given data:

p(X|M)p(M)
M =
pIMIX) x)

P(M|X) _ P(X|My) P(My)
P(Mo|X)  P(X|Mo) P(Mo)

= Bayes’ factor:

=1 Approximations:
BIC: logp(X|M) < BIC = log p(X |0y, M) — @logN

AIC: AIC = log p(X|0yz, M) — |M]

Gaussian Processes

=4 |

* Nonparametric model for supervised learning
© Assume Gaussian prior p(w)~N(0,1/at)

y=Xw, where E[y]=0 and Cov(y)=K with K;= (x)'x’

K is the covariance function, here linear
© With basis function ¢(x), K;= (§(x')"d(x')

r~Ny(0,Cy) where C= (1/B)I+K

* Withnew x’ added as X1, s ~Nys1(0,Cusy)

C, k
oS

where k = [K(x’,x'),]" and ¢=K(x’,x)+1/B.
P 1%, X, ~N(K'Cy r,e-kCy 1 k)

Latent Dirichlet Allocation
Ex

1 Bayesian feature extraction
Wi ~ Dirichlet(8)

ofe+-e<®

/ . T words N|

m ~ Dirichletg (et) I

X~ Mult (w0

28 ~ Multg (%)



Beta Processes

Nonparametric Bayesian approach for feature
extraction
Matrix factorization:

X=7ZA 2= 1 with probability u;
7| 0 with probability 1 -

Hj ~ beta(x, 1)

Nonparametric version: Allow | to increase with more
data probabilistically

Customer can take one of the
existing dishes with prob £ or add a new dish to the
buffet

Rationale

No Free Lunch Theorem: There is no algorithm that is
always the most accurate
Generate a group of base-learners which when
combined has higher accuracy
Different learners use different

Algorithms

Hyperparameters

Representations /Modalities/Views

Training sets

Subproblems
Diversity vs accuracy

Error-Correcting Output Codes

K classes; L problems (Dietterich and Bakiri, 1995)
Code matrix W codes classes in terms of learners

+1 -1 -1 -1
One per class -1 +1 -1 -1
L=K | S R
-1 -1 -1 +1
Pairwise [+1|+1]+1 0 0 0]
L=K(K-1)/2 |-1fofo +1 41 0

w

[Jo[=1[0 1T 0 +1| |
olof-1 0 -1 -1

Mixture of Experts

Voting where weights are input-dependent (gating)

L y
y=3wgd, 4

= 1O
(Jacobset al., 1991) w, ;
Experts or gating . = | gating
can be nonlinear / ! A

i

Mon sep 24 12:39:54 2018 n

Voting

Linear combination

2ml3e-chapl7.pdf

L
y= Zwldl
=

L
w;20and ZW/ =1
=

Classification

L
=2 wd,
=y

Full code L=2(K-1-1

-1 -1 -1 -1 -1 -1 -1
-1 -1 -1 +1

We +1 +1 +1 +1
-1 +1 +1 -1 -1 +1 +1
+1 -1 +1 -1 +1 -1 +1

With reasonable L, find W such that the Hamming
distance btw rows and columns are maximized.

Voting scheme .
Yi= zwjd/':
=

Subproblems may be more difficult than one-per-K

Stacking

Combiner f () is
another learner
(Wolpert, 1992)
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Bayesian perspective:

PCIX)= 3P(C 1x M )P(M,)

allmodelsM,

If d; are iid

Sl
s ol -

Bias does not change, variance decreases by L

If dependent, error increase with positive correlation

Va r(y)=L12Va {Z‘:d,]:%{ZVa )+ zzng(d,,d,)]

Bagging

Use bootstrapping to generate L training sets and
train one base-learner with each (Breiman, 1996)

Use voting (Average or median with regression)

Unstable algorithms profit from bagging

Fine-Tuning an Ensemble

Given an ensemble of dependent classifiers, do not
use it as is, try to get independence
Forward (growing)/Backward
(pruning) approaches to improve
accuracy /diversity /independence

From the output of correlated

classifiers, extract new combinations that are
uncorrelated. Using PCA, we get “eigenlearners.”

Similar to feature selection vs feature extraction

CHAPTER 17:

COMBINING MULTIPLE
LEARNERS

Fixed Combination Rules

Rule Fusion function f(-)

Sum yi= 13t dii

Weighted sum | y; = 3 wjdji,w; = 0,3 w; =1

Median ¥i = median;d;;

Minimum Vi = min;dj;

Maximum yi = max; dji G |G G

Product yi = [ ds d 02]05 |03
dy 00|06 |04
ds 04|04 0.2
Sum 0.2 105 03

Median 02105 |04
Minimum | 0.0 | 0.4 0.2
Maximum | 0.4 | 0.6 | 0.4
Product 0.0 | 0.12 | 0.032

AdaBoost

Generate a Training:
of For all {«*,r'}X | & X, initialize p{ = 1/N
For all base-learners j=1,....L
base-

Randomly draw X; from X' with probabilities p!

learners Train d; using X,
each For cach (z*,rt), calculate y! — d;(z*)
focusing on alculate error rate: ¢; — 3, p - 1(y! # )
focusing Calculaty t AR E
previous If ¢; > 1/2, then L — j — 1; stop
¥ 5 — /(1= ¢5)
oneserrors For each (z*.r*), decrease probabilities if correct:
(Freund and Iy = ' ply, — Gyp) Else ply, — 1
Schapire, Normalize probabilities:
1996) 7= T Bari Phaa = P /%
Testing:
Given x, calculate dj(x).j =1.....L
Calculate class outputs, i =1,....K:

w=xk, (I«-z ‘l‘)d,,{ 2)

Cascading

Use d; only if
preceding on
not confident

Cascade learnersin
order of complexity

es are




Combining Multiple Sources/Views

Concat all features and train a
single learner

With each feature set, train one
learner, then either use a fixed rule or stacking to
combine decisions

With each feature set,
calculate a kernel, then use a single SVM with
multiple kernels

Combining features vs decisions vs kernels

Introduction

Game-playing: Sequence of moves to win a game

Robotin a maze: Sequence of actions to find a goal

has a in an environment, takes an
and sometimes receives and the state
changes
Credit-assignment ENVIRONMENT
Learn a policy
Reward

State @ Action

V'(s,)=maxv~(s,),Vs,

= maxf{i y”‘rm}

i=1

i1
= maaXE{,ul +727’ rumj|
d =

= ma'axE[’,.l + }’V' (Snx )]

Bellman’s equation

Vo) ma el Jer ot 15,0 )

Seat

V'(s,)=maxQ’(s,,a,) Value of q,ins,

Q.(Srra:): E[’m]"’ 7ZP(5:»1 |s.,a, )rrl?XQ' (snlram)

Seat

Temporal Difference Learning

Environment, P (s,.; | s, a;), p (rey | 54, @;), is not
known; model-free learning

There is need for explorationto sample from
P(siy | s, a)and p (ripy | 's;, @)

Use the reward received in the next time step to
update the value of current state (action)

The between the value of the
current action and the value discounted from the
next state

i

Mon sep 24 12:39:54 2018 1
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Single State: K-armed Bandit

Among K levers, choose
the one that pays best Slot @ Loerl
Q(a): value of action o machine Lever 2
Rewardis r, \.
Set Q(a) =r,
Choose o if ‘ @ Lok
Q(a’)=max, Q(a) [
reward

Rewards stochastic (keep an expected reward):

Q:+1(a)(_Qt(a)+77[rz+1(a)_Q¢ (u)]

Model-Based Learning

Environment, P (s, | s, ,), p (r4y | 5, ;) known
There is no need for exploration
Can be solved using dynamic programming

Solve for
Vo) -maf el EPG15,0) )

Optimal policy
7*(s,)= arg‘:'na){k'[r“1 |s,,ak]+}/ZP(s,., Is,a V' (5..1)]

St

Exploration Strategies

£-greedy: With pr €,choose one action at random
uniformly; and choose the best action with pr 1-€
Probabilistic:

Plals)= expQ(s,a)

Zilexpo(s,b)

Move smoothly from exploration/exploitation.
explQ(s,a)/T]

Zilexp[a(s,b)/ 7]

Decrease €

Annealing P(als)=
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Elements of RL (Markov Decision
Processes)

s, : State of agent at time t
ay: Action taken at time t

In's,, action a, is taken, clock ticks and reward r,,, is
received and state changes to s,

Next state prob: P (s, | s, a;)

Reward prob: p (r, | s, a;)

Initial state(s), goal state(s)

Episode (trial) of actions from initial state to goal
(Sutton and Barto, 1998; Kaelbling et al., 1996)

Value lteration

Initialize V(s) to arbitrary values

Repeat
For all se S
Forallae A

Q(s.a) — Elrls,a] +7 3, s P(s/ls. )V (')
V(s) «— max, Q(s,a)
uUntil V(s) converge

Deterministic Rewards and Actions

Q51,0 )=Elral 7 2 Plsca 5,0 )maxa (s..0,0..)
Sea o

Deterministic: single possible reward and next state

Q(St /0, ) =hat 7”:551 XQ(5r+1l az+1)
»

used as an update rule (backup)
Als,8,) 1+ maxls, .

Starting at zero, Q values increase, never decrease

CHAPTER 18:

REINFORCEMENT LEARNING

Policy and Cumulative Reward

Policy, z:S—A a,=x(s,)
Value of a policy, V”(S )
t

Finite-horizon:
T
V(s )=Elra+r., +---+rm]:E[Zf,+,}

Infinite horizon: .
V() =Elr+ i + 7 +~-]:E[Zr"‘rm}

0<y<1 isthe discount rate

Policy Iteration

Initialize a policy = arbitrarily
Repeat

Compute the values using = by
solving the linear equations
V7(s) = Elrls, m()] +7 2o g P& |5, 7(s)V7(s)
Improve the policy at each state
7'(s) — argmaxa(E[r|s.a] + 7Y
until = ==’

7

L P(s/|s,a)V7(s"))

s'eS

Consider the value of action marked by “*':
If path A is seen first, Q(*)=0.9*max(0,81)=73
Then B is seen, Q(*)=0.9*max(100,81)=90

Or,
If path B is seen first, Q(*)=0.9*max(100,0)=90
Then A is seen, Q(*)=0.9*max(100,81)=90

Q values increase but never decrease



Nondeterministic Rewards and
Actions

When next states and rewards are nondeterministic
(there is an opponent or randomness in the environment),
we keep averages (expected values) instead as
assignments

Q-learning (Watkins and Dayan, 1992):
s, 0 Qo0+ rmaxdls, 0,8l )|

Off-policy vs on-policy (Sarsa) backp

Learning V (TD-learning: Sutton, 1988)

V(sr ) <« V(sr )+ U _ V(S! ))

Sarsa (A)

Initialize all Q(s.a) arbitrarily, e(s.a) — 0,¥s.a

For all episodes
Initalize s
Choose a using policy derived from Q, e.g., e-greedy
Repeat

Take action a, observe r and s’

Choose o’ using policy derived from Q. e.g., e-greedy

5 —r+7Q(s'.a") = Q(s.a)

e(s.a) — 1

For all s,a:
Q(s.a) — Q1

e(s.a) — YA

(s.a) + nde(s.a)

—s a—a

Until s is terminal state

If we sense o, our belief in tiger's position changes

P(o, 12,)P(z,) _ 0.7p
P(o,) 0.7p+0.31-p)

R(a,lo,)=r(a,,z,)P(z,|0,)+r(a,,z;)P(z | 0,)
=-100p'+80(1 - p')

0.7p +80 0.3(1-p)

Plo)  Plo)

R(a, 10,)=r(a,,2)P(z, 10,) +r(a,,2,)P(z, |0,)
=90p'-100(1-p')

p'=P(z|0)=

=-100

=902 _109230-P)
Plo,) P(o,)
R(as|o)=-1

When planning for episodes of two, we can take a,,

dpg, or sense and wait:

-100p +80(L-p)
V,=max 90p -100(1-p)
maxV' -1

(6) Value in two steps.

Expected rovard

Q-learning

Initialize all Q(s.a) arbitrarily
For all episodes
Initalize s
Repeat
Choose a using policy derived from @, e.g., e-greedy
Take action a, observe r and s’
Update Q(s.a):
Qs.a) — Q(s.a) +n(r + «,_ Q(s.a))
5 s

until s is terminal state

Generalization

Tabular: Q (s, a) or V (s) stored in a table

Regressor: Use a learner to estimate Q(s,a) or V(s)

E'(0)= [rm +7Q(s,.,1,0,.1)-Qls,.a, )]2

A0 :'7[’:+1 + 7Q(SH1,0,+1)—Q(S,,0, )]Vﬂ,a(sr'at)
Eligibiliy

AB=705.e,

S =ra+ ;O(sm,am)—a(s,,a,)

e, =yle,,+V,Q(s,.a,)with e, allzeros

V':Z[ma)gR(u, |o,)}’(o,)

=maxR(a, |o,),R(a, |0,),Rlas | 0,))Po,) +maxR(a, |o,),R(a, | 0;),Rlas | 0,))Plo)
-100p +80(L-p)
—-43p -46(1-p)
3Bp  +26(L-p)
90p -100(L-p)

L Mon Sep 24 12:39:34 2018 1
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Sarsa

Initialize all Q(s.a) arbitrarily
For all episodes
Initalize s
Choose a using policy derived from @, e.g., e-greedy
Repeat
Take action a, observe r and s’

|Choose a’ using policy derived from @, e.g., e-greedy

Update Q(s,a):
Q(s.a) — Q(s,a) +y(r +1
s—s, a—ad

until s is terminal state

Partially Observable States

The agent does not know its state but receives an
observation p(o,;; |s,a,) which can be used to infer
a belief about states

Partially observable I
MDP

ENVIRONMENT ‘

State

AGENT

(a) Initially
3 100
z \_/
&
3 o
T
4 =100 05 1

(5) After sensing o,

(c) After sensing o

B 100 100,
H \/

% 0 0
£ -

0 05 1 0 05 1

(d) Optimal after sensing

\_/

Expected reward
°

05 1
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Action

Eligibility Traces

Keep a record of previously visited states (actions)

1 ifs=s,and a=a,
e(s,a)= 4
ye,(s,a) otherwise
8, =ry +7Q(5,,1,0.,)-0Qls,.a,)
Qls,.a,)«Qls,.a,)+15,e,(s,a), Vs,

The Tiger Problem

Two doors, behind one of which there is a tiger

p: prob that tiger is behind the left door

[ra 2 [ Tiger left_Tiger right |
| Open left —100 +80
Openright | +90 ~100
R(a,)=-100p+80(1-p), R(ap)=90p-100(1-p)

We can with a reward of R(ag)=-1

We have unreliable sensors
P(orlzr) = 0.7 P(oLlzg) = 0.3
P(oglz) =03  P(oglzr) = 0.7

Let us say the tiger can move from one room to the

other with prob 0.8
p'=0.2p+0.8(1-p)

—100p' +80(1-p')
V'=max 33p +26(L-p")
90p  —-100(1-p')

(@) Tiger can move.

Expected revard
d 48 o828

&

CHAPTER 19:
DESIGN AND ANALYSIS OF
MACHINE LEARNING EXPERIMENTS




Introduction

o Questions:

o Assessment of the expected error of a learning algorithm: Is
the error rate of 1-NN less than 2%2

o Comparing the expected errors of two algorithms: Is k-NN
more accurate than MLP 2

Training/validation/test sets

Resampling methods: K-fold cross-validation

Guidelines for ML experiments

~  Aim of the study

. Selection of the response variable

< Choice of factors and levels

0. Choice of experimental design
Performing the experiment
Statistical Analysis of the Data

<. Conclusions and Recommendations

Performance Measures

Predicted class

True Class Yes No

Yes TP: True Positive | FN: False Negative
No FP: False Positive | TN: True Negative
Error rate = # of errors / # of instances = (FN+FP) / N

Recall = # of found positives / # of positives
=TP / (TP+FN) = sensitivity = hit rate
= # of found positives / # of found

= TP / (TP+FP)

Specificity = TN / (TN+FP)

False alarm rate = FP / (FP+TN) = 1 - Specificity

Precision

Interval Estimation

o X ={x'},where x'~ N (, 0?)

o m~N{(y, 02/N) VAN

) [\
\m('" ”)-'Z
pl_195<ym M=t ”)<196} 095 E / \\

N
o
m-=2z,,—— <,u<m+za,2r} 1-a 100(1- ) percent
confidence interval

P{m 6—<,u<m+1 96—} 0.95

Algorithm Preference
1
1 Criteria (Application-dependent):
o Misclassification error, or risk (loss functions)
o Training time /space complexity
o Testing time /space complexity
o Interpretability
o Easy programmability

Cost-sensitive learning

Resampling and
K-Fold Cross-Validation
|
The need for multiple training/validation sets

{X;,V;};: Training/validation sets of fold i
K-fold cross-validation: Divide X into k, X;i=1,...K

V=X, T,=X,0X,u--UX,
’\/; =X, T;:-Xluxau"'uxx

’vx :Xx T)’( :XIUXZ U"'UXx—l

T, share K-2 parts

ROC Curve

False alarm rate: |FPY(FP1+{TN)) Specificity = I-False alarm rate

100(1- @) percent one-sided
confidence interval

p{m (’"‘”)<1.s4}=o.95

o
P{ ~164-Z < }—095 FA
m-1. N up=0. 2
P{m—zai<,u}=1—a // \\
N k 1N

When 02 is not known:

$2=3(x —mf /(N -1) M”t

N
P{m_taIZ,N—lﬁ <U<m+t,ong ﬁ} =l-a

Factors and Response

Response function based Controllable
on output to be factors

maximized

Depends on controllable l l l

factors

Uncontrollable factors Tnput Output

introduce randomness
Find the configuration of
controllable factors that
maximizes response and
minimally affected by
uncontrollable factors

Uncontrollable
factors

5X%X2 Cross-Validation

1
o 5 times 2 fold cross-validation (Dietterich, 1998)

T=x %=X
ToXO V- xl)
=X V=Xt
T,=XP V=X
=X =

Tw = Xs(z) ’Vio = Xs(l)

//
/
/-
//
S/
s
//
/
/4
fp-rate fprate
(b) Different ROC
(a) Example ROC curve curves for different
classifiers
13
Hypothesis Testing

o1 Reject a null hypothesis if not supported by the sample
with enough confidence

X ={x'}, where x'~ N ( y, 0?)
Ho: U= Ho vs. Hy: U # o
Accept Hy with level of significance a if Uy is in the
100(1- a) confidence interval
IN(m—
(+ME(_ZaIZ,,a/Z)

Two-sided test

Strategies of Experimentation

How to search the factor space?

Factor2

Factor]

(a) Best guess (b) One factor at a time () Factorial design

Response surface design for approximating and maximizing
the response function in terms of the controllable factors

Bootstrapping

o1 Draw instances from a dataset with replacement

1 Prob that we do not pick an instance after N draws
1 N
-

that is, only 36.8% is new!

=0.368

Precision and Recall

retrieved relevant Precision:
records records. atd
R ¢ L
a
Recall:
a+c

(@) Precision and recall

QO ©

(b) Precision = 1 (©)Recall =1
Decision
Truth Accept Reject
True Correct Type I error
False | Type Il error | Correct (Power)

0 One-sidedtest: Hy: U < g vs. Hy: 4 > Uy
Accept if IN(m—115)
[eg

E(*(XJ,ZH)
o Variance unknown: Use t, instead of z
Accept Hy: 4 = Yy if
VN (m ) (g

.z/z N- 1lta/z N—l)



Assessing Error: Hy:p < pg vs. Hy:p > pg
1

Single training /validation set: Binomial Test

If error prob is py, prob that there are e errors or
lessin N validation trials is

vt "piton

Accept if this prob is less than 1- a

N=100, =20
o 1ha

K-Fold CV Paired t Test
I ——
 Use K-fold cv to get K training/validation folds
o p;', p; Errors of classifiers 1 and 2 on fold i
p; = p;' = p;? : Paired difference on fold i
1 The null hypothesis is whether p; has mean 0
Hy: =0 vs. Hy: u#0

m= Z:(:lpi 2= Z:‘:l(pi _m)Z
K

K-1
JKk(m-0) JK-m e
% = ~t,, Acceptifin (_ talZ,K—lltnlz,K—l)
If Hyistrue:

my =320 N ? /K)
i=1
_ Z:»ﬂ’"/ 2,»(’",- _m)z
L L-1
Thus an estimatorof o? is K - S, namely,

_Kz('" '")2

§?=

Z(m -mf ~ X2, SSbEKZ(m,—m)2

o’ /K
SowhenH, is true, we have

SSb
>~ X
o

Multivariate Tests

(-1 |
1 Instead of testing using a single performance
measure, e.g., error, use multiple measures for
better discrimination, e.g., [fp-rate,fn-rate]

= Compare p-dimensional distributions

1 Parametric case: Assume p-variate Gaussians

Ho:py=povs.Hiipy # 1y

Normal Approximation to the Binomial
1

Number of errors X is approx N with mean Np, and

var Npo(1-po)
X—Np,
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Accept if this prob for X = e is
less than z, 4
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5X2 cv Paired t Test
1

© Use 5X2 cv to get 2 folds of 5 tra/val replications
(Dietterich, 1998)

o pli: difference btw errors of 1 and 2 on fold j=1,
2 of replicationi=1,...,5
p=p+p?)2 5= -n) +(?-pf
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Two-sided test: Accept Ho: tp = Uy if in (-tq /5 5/ta/2,5)
One-sided test: Accept Hy: Loy < i, if < tos

Regardlessof H, our secondestimatorto o is the
average of group variances S.2 :
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Multivariate Pairwise Comparison
I

1 Paired differences: di = x1i — x2i
Ho:py=0vs.Hy:puy #0
1 Hotelling’s multivariate T? test

T?=Km'S'm
1 For p=1, reduces to paired t test

Paired t Test
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Multiple training /validation sets
x'; =1 if instance t misclassified on fold i
Error rate of fold i: ZN Xt

i
pi=

N
With m and s? average and var of p; , we accept p, or
less error if

‘/E(m“pu),v
N

is less than f,, |

5X2 cv Paired F Test
1
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Two-sided test: Accept Ho: o = 1y if < Fg 105

ANOVA table

Source of Sum of Degrees of Mean

variation squares freedom square Fo
Between | SSp = - .
groups K (mj—m)? L-1 Msp = 3% | M
Within SSw =

groups. T SiXij-mj)? | LK=1) | MSy = ,—S,(SLU

Total SSr =

SySiXy-m? | L-K-1
If ANOVA rejects, we do pairwise posthoc tests
Hot gty = gy vs e gt # 1
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Multivariate ANOVA
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-1 Comparsion of L>2 algorithms

Ho : My=Hz=--=p.Vs
Hy : p, # p, for at least one pair r, s

H = Kz m)(m;—m)"
L K
E = > Yx;-mx;-m)"
J=li=1
__|El
~ [E+H|

is Wilks’s A distributed with p, L(K—1),L—1 degrees of freedom

Comparing Classifiers: Hy:lo=M; vs.

- Hi’HﬂiHi

Single training /validation set: McNemar’s Test

eoo: Number of examples
misclassified by both misclassified by 1 but not 2
ej0: Number of examples ey1: Number of examples

misclassified by 2 but not 1 | correctly classified by both

eo1: Number of examples

Under H,, we expect ey, = e,,=(eq, + €;0)/2

qem - e10| 1)2 ~X?
€ teyp

Accept if < X2,

Comparing L>2 Algorithms:
- Analzsis of Variance lAnovc‘

Ho:py ===
1 Errors of L algorithms on K folds
X~ N(1,6) =1, i =1, K
1 We construct two estimators to 02 .
One is valid if Hy is true, the other is always valid.

We reject H,, if the two estimators disagree.

Comparison over Multiple Datasets
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Comparing two algorithms:
Sign test: Count how many times A beats B over N
datasets, and check if this could have been by chance if
A and B did have the same error rate
Comparing multiple algorithms
Kruskal-Wallis test: Caleulate the average rank of all
algorithms on N datasets, and check if these could have
been by chance if they all had equal error
If KW rejects, we do pairwise posthoc tests to find
which ones have significant rank difference



