i2ml3e-chap01.pdf

Why "Learn" ?

Machine learning is programming computers to optimize
a performance criterion using example data or past experience.
There is no need to "learn" to calculate payroll
Learning is used when:

- Human expertise does not exist (navigating on Mars), - Humans are unable to explain their expertise (speech recognition
Solution changes in time (routing on a computer network)
Solution needs to be adapted to particular cases (user biometrics)

What We Talk About When We Talk About "Learning"

Learning general models from a data of particular examples
Data is cheap and abundant (data warehouses, data marts); knowledge is expensive and scarce.
Example in retail: Customer transactions to consumer behavior:
People who bought "Blink" also bought "Outliers"
(www.amazon.com)
Build a model that is a good and usefu
approximation to the data.

Learning Associations

Basket analysis:
$P(Y \mid X)$ probability that somebody who buys X also buys Y where X and Y are products/services.

Example: $P($ chips \mid beer $)=0.7$

Data Mining

\qquad
Retail: Market basket analysis, Customer
relationship management (CRM)
\square Finance: Credit scoring, fraud detection

- Manufacturing: Control, robotics, troubleshooting
\square Medicine: Medical diagnosis
Telecommunications: Spam filters, intrusion detection
Bioinformatics: Motifs, alignment
\square Web mining: Search engines
$\square .$.

Big Data

43-Wide mead

Widespread use of personal computers and wireless communication leads to "big data"
We are both producers and consumers of data
Data is not random, it has structure, e.g., customer behavior
We need "big theory" to extract that structure from data for
(a) Understanding the process
(b) Making predictions for the future

What is Machine Learning?
Optimize a performance criterion using example Optimize a performance

Role of Statistics: Inference from a sample
Role of Computer science: Efficient algorithms to

- Solve the optimization problem

Representing and evaluating the model for inference

Face Recognition
B

Test images
답ํํ

Regression

Regression Applications 픔

Navigating a car: Angle of the steering
Kinematics of a robot arm

Supervised Learning: Uses
\square Prediction of future cases: Use the rule to predict
the output for future inputs
Knowledge extraction: The rule is easy to understand
Compression: The rule is simpler than the data it explains
Outlier detection: Exceptions that are not covered by the rule, e.g., fraud

Unsupervised Learning
Learning "what normally happens"
Learning "
No output
Clustering: Grouping similar instances
Example applications
Customer segmentation in CRM

- Image compression: Color quantization

Bioinformatics: Learning motifs

Resources: Conferences
니․ International Conference on Machine Learning (ICML)
European Conference on Machine Learning (ECML)
Neural Information Processing Systems (NIPS)
Uncertainty in Artificial Intelligence (UAI)
Computational Learning Theory (COLT)
International Conference on Artificial Neural Networks
(ICANN)
(ICANN)
ernational Conference on AI \& Statistics (AISTATS)
International Conference on Pattern Recognition (ICPR)

Learning a Class from Examples
Class C of a "family car"

- Prediction: Is car x a family car?
\square Knowledge extraction: What do people expect from a
family car
- Output:

Positive (+) and negative (-) examples
Input representation:
x_{1} : price, x_{2} : engine power

S, G, and the Version Space

Reinforcement Learning
\qquad
\square Learning a policy: A sequence of outputs
No supervised output but delayed reward
Credit assignment problem
Game playing
Robot in a maze
Multiple agents, partial observability, ...

UCI Repository: $\frac{\text { htrp://wwwics, uci.edu/ ~mlearn/MLRepository.htm }}{}$
Statlib: http://lib.stat.cmuedu/
\qquad
Journal of Machine Learning Research www.imlr.org
Machine Learning
Neural Computation
Neural Networks
IEEE Trans on Neural Networks and Learning Systems
IEEE Trans on Pattern Analysis and Machine Intelligence
Journals on Statistics/Data Mining/Signal
Processing/Natural Language
Processing/Bioinformatics/...

Class C

VC Dimension

\qquad
N points can be labeled in 2^{N} ways as $+/-$
\mathcal{H} shatters N if there
exists $h \in \mathcal{H}$ consistent
for any of these:
$\mathrm{VC}(\mathcal{H})=\mathrm{N}$

CHAPTER 2:
SUPERVISED LEARNING

Hypothesis class \mathcal{H}

Probably Approximately Correct (PAC) Learning

How many training examples N should we have, such the wit $1-0, h$ has erro
$1-1$
(Blumeret al., 1989
Each strip is at most $\varepsilon / 4$
that we miss a strip $1-\varepsilon / 4$
R har N instances miss a strip $(1-\varepsilon / 4)^{N}$
$4(1-\varepsilon / 4)^{N} \leq \delta$ ond $(1-x) \leq \operatorname{sexp}(-x)$
$4 \exp (-\varepsilon N / 4) \leq \delta \operatorname{and} N \geq(4 / \varepsilon) \log (4 / \delta)$
Use the simpler one because
Simpler to use
(lower computational
complexity)
$\left.\begin{array}{l}\text { Easier to train (lower } \\ \text { space complexity) } \\ \text { Easier to explain } \\ \text { (more interpretable) } \\ \text { Generalizes better (lower } \\ \text { variance - Occam's razor) }\end{array}\right)$

Triple Trade-Off
\qquad
There is a trade-off between three factors
(Dietterich, 2003):
Complexity of $\mathcal{H}, \mathrm{c}(\mathcal{H})$,
Training set size, N ,
Generalization error, E, on new data

As $N \uparrow, E \downarrow$

As c $(\mathcal{H}) \uparrow$, first $E \downarrow$ and then $E \uparrow$

Bayes' Rule
$\underbrace{\text { prior }}_{\text {posterior }}$
$P(C=0)+P(C=1)=1$
$p(\mathbf{x})=p(\mathbf{x} \mid C=1) P(C=1)+p(\mathbf{x} \mid C=0) P(C=0)$ $p(C=0 \mid \mathbf{x})+P(C=1 \mid \mathbf{x})=1$

Multiple Classes, $C_{\mathrm{i}} \mathrm{i}=1, \ldots, \mathrm{~K}$

Cross-Validation

\qquad
To estimate generalization error, we need data unseen during training. We split the data as

- Training set (50\%)
- Validation set (25%)
- Test (publication) set (25%

Resampling when there is few data

Bayes' Rule: K>2 Classes
■■

$$
\begin{aligned}
P\left(C_{i} \mid \mathbf{x}\right) & =\frac{p\left(\mathbf{x} \mid C_{i}\right) P\left(C_{i}\right)}{p(\mathbf{x})} \\
& =\frac{p\left(\mathbf{x} \mid C_{i}\right) P\left(C_{i}\right)}{\sum_{k=1}^{K} p\left(\mathbf{x} \mid C_{k}\right) P\left(C_{k}\right)}
\end{aligned}
$$

$P\left(c_{i}\right) \geq 0$ and $\sum_{i=1}^{K} P\left(c_{i}\right)=1$
choose C_{i} if $P\left(C_{i} \mid \mathbf{x}\right)=$ max $_{k} P\left(c_{k} \mid \mathbf{x}\right)$

Regression

Dimensions of a Supervised Learner

Model: $\quad g(\mathbf{x} \mid \theta)$
Loss function: $\quad E(\theta \mid X)=\sum L\left(r^{t}, g\left(\mathbf{x}^{t} \mid \theta\right)\right)$
Optimization procedure:
$\theta^{*}=\underset{\theta}{\operatorname{argmin}}(\theta \mid X)$

Probability and Inference
\square Result of tossing a coin is $\in\{$ Heads,Tails $\}$
\square Random var $X \in\{1,0\}$
Bernoulli: $P\{X=1\}=p_{0}{ }^{x}\left(1-p_{0}\right)^{(1-x)}$
Sample: $\boldsymbol{X}=\left\{x^{+}\right\}^{N}{ }_{t=1}$
Estimation: $p_{o}=\#\{$ Heads $\} / \#\{$ Tosses $\}=\sum_{t} x^{t} / N$
\square Prediction of next toss:
Heads if $p_{0}>1 / 2$, Tails otherwise

Losses and Risks
\qquad
\square Actions: α_{i}
\square Loss of α_{i} when the state is $C_{k}: \lambda_{i k}$
\square Expected risk (Duda and Hart, 1973)
$R\left(\alpha_{i} \mid \mathbf{x}\right)=\sum_{k=1}^{K} \lambda_{k k} P\left(C_{k} \mid \mathbf{x}\right)$
choose α_{i} if $R\left(\alpha_{i} \mid \mathbf{x}\right)=\min _{k} R\left(\alpha_{k} \mid \mathbf{x}\right)$

Overfitting: \mathcal{H} more complex than C or f

Classification

Credit scoring: Inputs are income and savings. Output is low-risk vs high-risk

- Input: $x=\left[x_{1}, x_{2}\right]^{\top}$,Output: C 1 í $\{0,1\}$
\square Prediction:
choose $\left\{\begin{array}{l}C=1 \text { if } P\left(C=1 \mid x_{1}, x_{2}\right)>0.5 \\ C=0 \text { otherwise }\end{array}\right.$
or
choose $\left\{\begin{array}{l}C=1 \text { if } P\left(C=1 \mid x_{1}, x_{2}\right)>P\left(C=0 \mid x_{1}, x_{2}\right) \\ C=0\end{array}\right.$
\{ $C=0$ otherwise

Losses and Risks: 0/1 Loss

$$
\begin{aligned}
& \lambda_{i k}=\left\{\begin{array}{l}
0 \text { if } i=k \\
1 \text { if } i \neq k
\end{array}\right. \\
& \begin{aligned}
R\left(\alpha_{i} \mid \mathbf{x}\right) & =\sum_{k=1}^{K} \lambda_{i k} P\left(C_{k} \mid \mathbf{x}\right) \\
& =\sum_{k \neq i} P\left(C_{k} \mid \mathbf{x}\right) \\
& =1-P\left(C_{i} \mid \mathbf{x}\right)
\end{aligned}
\end{aligned}
$$

For minimum risk, choose the most probable class

Losses and Risks: Reject
$\lambda_{i k}= \begin{cases}0 & \text { if } i=k \\ \lambda & \text { if } i=K+1,0<\lambda<1 \\ 1 & \text { otherwise }\end{cases}$
$R\left(\alpha_{K+1} \mid \mathbf{x}\right)=\sum_{k=1}^{K} \lambda P\left(C_{k} \mid \mathbf{x}\right)=\lambda$
$R\left(\alpha_{i} \mid \mathbf{x}\right)=\sum_{k \neq i} P\left(C_{k} \mid \mathbf{x}\right)=1-P\left(C_{i} \mid \mathbf{x}\right)$
choose C_{i} if $P\left(c_{i} \mid \mathbf{x}\right)>P\left(c_{k} \mid \mathbf{x}\right) \quad \forall k \neq i \operatorname{and} P\left(c_{i} \mid \mathbf{x}\right)>1-\lambda$ reject otherwise

Utility Theory
\square Prob of state k given exidence $x: P\left(S_{k} \mid x\right)$
\square Utility of α_{i} when state is k : $U_{i k}$
\square Expected utility:
$E U\left(\alpha_{i} \mid \mathbf{x}\right)=\sum U_{i k} P\left(S_{k} \mid \mathbf{x}\right)$
Choose α_{i} if $E U\left(\alpha_{i} \mid \mathbf{x}\right)=\operatorname{maxE} E\left(\alpha_{j} \mid \mathbf{x}\right)$

Apriori algorithm (Agrawal et al., 1996)
$\square \operatorname{For}(X, Y, Z)$, a 3-item set, to be frequent (have enough support), $(X, Y),(X, Z)$, and (Y, Z) should be frequent.

If (X, Y) is not frequent, none of its supersets can be frequent.
Once we find the frequent k-item sets, we convert them to rules: $X, Y \rightarrow Z$, ...
and $X \rightarrow Y, Z, \ldots$

Different Losses and Reject

Unequal losses

With reject

Association Rules

\square -
\square Association rule: $X \rightarrow Y$

- People who buy/click/visit/enjoy X are also likely to buy/click/visit/enjoy Y.
A rule implies association, not necessarily causation.

Association measures
\square Support $(X \rightarrow Y)$:

$$
P(X, Y)=\frac{\#\{\text { customerswho bought } X \text { and } Y\}}{\#\{\text { customers }\}}
$$

\square Confidence $(X \rightarrow Y)$:

$$
P(Y \mid X)=\frac{P(X, Y)}{P(X)}
$$

$$
\underset{P(X, Y)}{\operatorname{Lift}(X \rightarrow Y):} \quad=\frac{\#\{\text { customerswho bought } X \text { and } Y\}}{\#\{\text { customerswho bought } X\}}
$$

$$
=\frac{P(X, Y)}{P(X) P(Y)}=\frac{P(Y \mid X)}{P(Y)}
$$

i2ml3e-chap04.pdf

Examples: Bernoulli/Multinomial
\square Bernoulli: Two states, failure/success, x in $\{0,1\}$
$P(x)=p_{0} \times\left(1-p_{0}\right)^{(1-x}$
$\mathcal{L}\left(p_{0} \mid X\right)=\log \prod_{t} p_{0}^{x^{*}}\left(1-p_{o}\right)^{\left(1-x^{t}\right)}$
MLE: $p_{o}=\sum_{t} x^{t} / N$

- Multinomial: $K>2$ states, x_{i} in $\{0,1\}$
$P\left(x_{1}, x_{2}, \ldots, x_{k}\right)=\Pi_{i} p_{i}^{x_{i}}$
$\mathcal{L}\left(p_{1}, p_{2}, \ldots, p_{k} \mid X\right)=\log \Pi_{t} \Pi_{i} p_{i}^{x_{i}}$
MLE: $p_{i}=\sum_{t} x_{i}^{+} / N$

$$
K=2 \text { Classes }
$$

Dichotomizer $(K=2)$ vs Polychotomizer $(K>2)$ $g(x)=g_{1}(x)-g_{2}(x)$

$$
\text { choose }\left\{\begin{array}{l}
c_{1} \text { if } g(\mathbf{x})>0 \\
c_{2} \text { otherwise }
\end{array}\right.
$$

$$
\text { Log odds: } \log \frac{P\left(C_{1} \mid \mathbf{x}\right)}{P\left(C_{2} \mid \mathbf{x}\right)}
$$

Example

!erer

Solution:
milk port $=2 / 6$, Confidence $=2 / 4$ bananas - milk : Support $=2 / 6$, Confidence $=2 / 2$ milk - chocolate : \quad Support $=3 / 6$, Confidence $=3 / 4$ Chocolate - milk : Support $=3 / 6$, Confidence $=3 / 5$

PARAMETRIC METHODS

Gaussian (Normal) Distribution

- \quad (Normai) Distribution

Bias and Variance

Given the sample $X=\left\{x^{t}, r^{t}\right\}_{t=1}^{N}$

$$
x \in \mathfrak{R} \quad r_{i}^{t}=\left\{\begin{array}{l}
1 \text { if } x^{t} \in C_{i} \\
0 \text { if } x^{t} \in C_{j}, j \neq i
\end{array}\right.
$$

- ML estimates are

$$
\hat{P}\left(c_{i}\right)=\frac{\sum_{t} r_{i}^{t}}{N} m_{i}=\frac{\sum_{t} x^{t} r_{i}^{t}}{\sum_{t} r_{i}^{t}} s_{i}^{2}=\frac{\sum_{t}\left(x^{t}-m_{i}\right)^{2} r_{i}^{t}}{\sum_{t} r_{i}^{t}}
$$

\square Discriminant $g_{i}(x)=-\frac{1}{2} \log 2 \pi-\log s_{i}-\frac{\left(x-m_{i}\right)^{2}}{2 s_{i}^{2}}+\log \hat{\rho}\left(c_{i}\right)$

Regression

$$
\begin{aligned}
\mathcal{L}(\theta \mid X) & =\log \prod_{t=1}^{N} p\left(x^{t}, r^{t}\right) \\
& =\log \prod_{t=1}^{N} p\left(r^{t} \mid x^{t}\right)+\log \prod_{t=1}^{N} p\left(x^{t}\right)
\end{aligned}
$$

Other Error Measures

\square Square Error: $E(\theta \mid X)=\frac{1}{2} \sum_{t=1}^{N}\left[r^{t}-g\left(x^{t} \mid \theta\right)\right]^{2}$
\square Relative Square Error: $\quad E(\theta \mid X)=\frac{\sum_{t=1}^{N}\left[r^{t}-g\left(x^{t} \mid \theta\right)\right]^{2}}{\sum_{t=1}^{N}\left[r^{t}-\bar{r}\right]^{2}}$
\square Absolute Error: $E(\theta \mid X)=\sum_{t}\left|r^{t}-g\left(x^{t} \mid \theta\right)\right|$ - ε-sensitive Error:
$E(\theta \mid X)=\sum_{,} 1\left(\left|r^{t}-g\left(x^{*} \mid \theta\right)\right|>\varepsilon\right)\left(\left|r^{t}-g\left(x^{t} \mid \theta\right)\right|-\varepsilon\right)$
\qquad

- Treat θ as a random var with prior $p(\theta)$
\square Bayes' rule: $p(\theta \mid X)=p(X \mid \theta) p(\theta) / p(X)$
- Full: $p(x \mid X)=\int p(x \mid \theta) p(\theta \mid X) d \theta$
\square Maximum a Posteriori (MAP):

$$
\theta_{\text {MAP }}=\operatorname{argmax}_{\theta} \mathrm{P}(\theta \mid X)
$$

\square Maximum Likelihood (ML): $\theta_{\text {ML }}=\operatorname{argmax}_{\theta} \mathrm{p}(X \mid \theta)$
\square Bayes': $\theta_{\text {Bayes' }}=\mathrm{E}[\theta \mid \mathcal{X}]=\int \theta p(\theta \mid \mathcal{X}) d \theta$

Bayes' Estimator: Example

$\square x^{+} \sim \mathcal{N}\left(\theta, \sigma_{0}{ }^{2}\right)$ and $\theta \sim \mathcal{N}\left(\mu, \sigma^{2}\right)$
$\square \theta_{\text {ML }}=m$
$\square \theta_{\text {MAP }}=\theta_{\text {Bayes' }}=$

$$
\begin{aligned}
& =\theta_{\text {Bayes }}= \\
& E[\theta \mid X]=\frac{N / \sigma_{0}^{2}}{N / \sigma_{0}^{2}+1 / \sigma^{2}} m+\frac{1 / \sigma^{2}}{N / \sigma_{0}^{2}+1 / \sigma^{2}} \mu
\end{aligned}
$$

Posteriors withe equal prioss

Regression: From LogL to Error
$\mathcal{L}(\theta \mid X)=\log \prod_{t=1}^{N} \frac{1}{\sqrt{2 \pi} \sigma} \exp \left[-\frac{\left[r^{t}-g\left(x^{t} \mid \theta\right)\right]^{2}}{2 \sigma^{2}}\right]$

$$
=-N \log \sqrt{2 \pi} \sigma-\frac{1}{2 \sigma^{2}} \sum_{t=1}^{N}\left[r^{t}-g\left(x^{t} \mid \theta\right)\right]^{2}
$$

$$
E(\theta \mid X)=\frac{1}{2} \sum_{t=1}^{N}\left[r^{t}-g\left(x^{t} \mid \theta\right)\right]^{2}
$$

Bias and Variance
20
$\left.E\left((r-g(x))^{2} \mid x\right]=E(r-E[r \mid x])^{2} \mid x\right]+(E[r \mid x]-g(x))^{2}$
noise
$\left.E_{x}\left(E[(r \mid x]-g(x))^{2} \mid x\right]=\left(E[r \mid x]-E_{x}[g(x)]\right)^{2}+E_{x} \mid\left(g(x)-E_{x}[g(x)]\right)^{2}\right]$

Linear Regression
$g\left(x^{t} \mid w_{1}, w_{0}\right)=w_{1} x^{t}+w_{0}$

$$
\sum_{t} r^{t}=N w_{0}+w_{1} \sum_{t} x^{t}
$$

$$
\sum_{t}^{r} r^{\prime} x^{\prime}=w_{0} \sum_{t} x^{t}+w_{i} \sum_{t}\left(x^{\prime}\right)^{\prime}
$$

$$
\mathbf{A}=\left[\begin{array}{cc}
N & \sum_{t} x^{t} \\
\sum_{t} x^{t} & \sum_{t}\left(x^{t}\right)^{2}
\end{array}\right] \mathbf{w}=\left[\begin{array}{l}
w_{0} \\
w_{1}
\end{array}\right] \mathbf{y}=\left[\begin{array}{c}
\sum_{t}^{t} r^{t} \\
\sum_{t} r^{t} x^{t}
\end{array}\right]
$$

$\mathbf{w}=\mathrm{A}^{-1} \mathbf{y}$

Estimating Bias and Variance
M samples $X_{i}=\left\{x^{t}, r^{t}\right\}, i=1, \ldots, M$
are used to fit $g_{i}(x), i=1, \ldots, M$

$$
\begin{aligned}
& \operatorname{Bias}^{2}(g)=\frac{1}{N} \sum_{t}\left[\bar{g}\left(x^{t}\right)-f\left(x^{t}\right)\right]^{2} \\
& \text { Varianc\&g})=\frac{1}{N M} \sum_{t} \sum_{i}\left[g_{i}\left(x^{t}\right)-\bar{g}\left(x^{t}\right)\right]^{2} \\
& \bar{g}(x)=\frac{1}{M} \sum_{t} g_{i}(x)
\end{aligned}
$$

$g_{i}(x)=p\left(x \mid C_{i}\right) p\left(C_{i}\right)$

or
$g_{i}(x)=\log p\left(x \mid C_{i}\right)+\log p\left(C_{i}\right)$

$$
\begin{aligned}
& p\left(x \mid C_{i}\right)=\frac{1}{\sqrt{2 \pi} \sigma_{i}} \exp \left[-\frac{\left(x-\mu_{i}\right)^{2}}{2 \sigma_{i}^{2}}\right] \\
& g_{i}(x)=-\frac{1}{2} \log 2 \pi-\log \sigma_{i}-\frac{\left(x-\mu_{i}\right)^{2}}{2 \sigma_{i}^{2}}+\log P\left(C_{i}\right)
\end{aligned}
$$

Polynomial Regression
$g\left(x^{t} \mid w_{k}, \ldots, w_{2}, w_{1}, w_{0}\right)=w_{k}\left(x^{t}\right)^{k}+\cdots+w_{2}\left(x^{t}\right)^{2}+w_{1} x^{t}+w_{0}$

$$
\begin{gathered}
\mathbf{D}=\left[\begin{array}{ccccc}
1 & x^{1} & \left(x^{1}\right)^{2} & \ldots & \left(x^{1}\right)^{k} \\
1 & x^{2} & \left(x^{2}\right)^{2} & \ldots & \left(x^{2}\right)^{k} \\
\vdots & & & & \\
1 & x^{N} & \left(x^{N}\right)^{2} & \cdots & \left(x^{N}\right)^{2}
\end{array}\right] \mathbf{r}=\left[\begin{array}{c}
r^{1} \\
r^{2} \\
\vdots \\
r^{N}
\end{array}\right] \\
\mathbf{w}=\left(\mathbf{D}^{\top} \mathbf{D}\right)^{-1} \mathbf{D}^{T} \mathbf{r}
\end{gathered}
$$

Bias/Variance Dilemma
\qquad
Example: $g_{i}(x)=2$ has no variance and high bias $g_{i}(x)=\sum_{t} r_{i}^{t} / N$ has lower bias with variance
\square As we increase complexity,
bias decreases (a better fit to data) and
variance increases (fit varies more with data)
Bias/Variance dilemma: (Geman et al., 1992)

Bayesian Model Selection

\square Prior on models, p(model)
$p($ model $\|$ data $)=\frac{p(\text { datalmode }) p(\text { mode })}{p(\text { data })}$
\square Regularization, when prior favors simpler models
Bayes, MAP of the posterior, p(model | data)
Average over a number of models with high posterior (voting, ensembles: Chapter 17)

Estimation of Missing Values

\qquad
What to do if certain instances have missing attributes?
\square Ignore those instances: not a good idea if the sample is small
Use 'missing' as an attribute: may give information
Imputation: Fill in the missing value

- Mean imputation: Use the most likely value (e.g., mean) - Imputation by regression: Predict based on other attributes

i2ml3e-chap05.pdf

Regularization (L2): $E(\mathbf{w} \mid X)=\frac{1}{2} \sum_{t=1}^{N}\left[r^{t}-g\left(x^{t} \mid \mathbf{w}\right)\right]^{2}+\lambda \sum_{i} w_{i}^{2}$

Multivariate Data

\square Multiple measurements (sensors)
$\square d$ inputs/features/attributes: d-variate
\square N instances/observations/examples

$$
\mathbf{X}=\left[\begin{array}{cccc}
X_{1}^{1} & X_{2}^{1} & \cdots & X_{d}^{1} \\
X_{1}^{2} & X_{2}^{2} & \cdots & X_{d}^{2} \\
\vdots & & & \\
X_{1}^{N} & X_{2}^{N} & \cdots & X_{d}^{N}
\end{array}\right]
$$

Multivariate Normal Distribution

Multivariate Parameters

Mean: $E[\mathbf{x}]=\boldsymbol{\mu}=\left[\mu_{1}, \ldots, \mu_{d}\right]^{\top}$
Covariance: $\sigma_{i j} \equiv \operatorname{Cov}\left(x_{i}, x_{j}\right)$
Correlation: $\operatorname{Corr}\left(X_{i}, X_{j}\right) \equiv \rho_{i j}=\frac{\sigma_{i j}}{\sigma_{i} \sigma_{j}}$
$\Sigma \equiv \operatorname{Cov}(\mathbf{X})=E\left[(\mathbf{X}-\mu)(\mathbf{X}-\mu)^{\tau}\right]=\left[\begin{array}{cccc}\sigma_{1}^{2} & \sigma_{12} & \cdots & \sigma_{1 d} \\ \sigma_{21} & \sigma_{2}^{2} & \cdots & \sigma_{2 d} \\ \vdots & & & \\ \sigma_{d 1} & \sigma_{d 2} & \cdots & \sigma_{d}^{2}\end{array}\right]$

Multivariate Normal Distribution
\square Mahalanobis distance: $(x-\mu)^{\top} \sum^{-1}(x-\mu)$
measures the distance from x to μ in terms of \sum (normalizes for difference in variances and correlations)
Bivariate: $\mathrm{d}=2$

$$
\Sigma=\left[\begin{array}{cc}
\sigma_{1}^{2} & \rho \sigma_{1} \sigma_{2} \\
\rho \sigma_{1} \sigma_{2} & \sigma_{2}^{2}
\end{array}\right]
$$

$p\left(x_{1}, x_{2}\right)=\frac{1}{2 \pi \sigma_{1} \sigma_{2} \sqrt{1-\rho^{2}}} \exp \left[-\frac{1}{2\left(1-\rho^{2}\right)}\left(z_{1}^{2}-2 \rho z_{1} z_{2}+z_{2}^{2}\right)\right]$
$z_{i}=\left(x_{i}-\mu_{i}\right) / \sigma_{i}$

Cross-validation: Measure generalization accuracy by testing on data unused during training
Regularization: Penalize complex models
$\mathrm{E}^{\prime}=$ error on data $+\lambda$ model complexity Akaike's information criterion (AIC), Bayesian information criterion (BIC)
Minimum description length (MDL): Kolmogorov complexity, shortest description of data
Structural risk minimization (SRM)

Parameter Estimation

Samplemeanm: $m_{i}=\frac{\sum_{t=1}^{N} x_{i}^{t}}{N}, i=1, \ldots, d$
Covariance matrix S: $s_{i j}=\frac{\sum_{t=1}^{N}\left(x_{i}^{t}-m_{i}\right)\left(x_{j}^{t}-m_{j}\right)}{N}$
Correlation matrix $\mathbf{R}: r_{i j}=\frac{s_{i j}}{s_{i} s_{j}}$

Bivariate Normal

$\operatorname{cosex}_{1} x_{x_{2}} \sum_{0}$
$\operatorname{cosex}, x_{2} \times 0$

\square If x_{i} are independent, offdiagonals of \sum are 0 ,
Mahalanobis distance reduces to weighted (by $1 / \sigma_{i}$) Euclidean distance:

$$
p(\mathbf{x})=\prod_{i=1}^{d} p_{i}\left(x_{i}\right)=\frac{1}{(2 \pi)^{d / 2} \coprod_{i=1}^{d} \sigma_{i}} \exp \left[-\frac{1}{2} \sum_{i=1}^{d}\left(\frac{x_{i}-\mu_{i}}{\sigma_{i}}\right)^{2}\right]
$$

If variances are also equal, reduces to Euclidean distance

Diagonal S
\square When $x_{i} i=1, . . d$, are independent, \sum is diagonal $p\left(x \mid C_{i}\right)=\prod_{i} p\left(x_{i} \mid C_{i}\right)($ Naive Bayes' assumption)

$$
g_{i}(\mathbf{x})=-\frac{1}{2} \sum_{j=1}^{d}\left(\frac{x_{j}^{t}-m_{i j}}{s_{j}}\right)^{2}+\log \hat{P}\left(c_{i}\right)
$$

Classify based on weighted Euclidean distance (in s_{i} units) to the nearest mean

Diagonal S

$\hat{P}\left(c_{i}\right)=\frac{\sum_{t} r_{i}^{t}}{N}$
$\mathbf{m}_{i}=\frac{\sum_{t} r_{i}^{t} \mathbf{x}^{t}}{\sum_{\mathrm{t}} r_{i}^{t}}$
$\mathbf{S}_{i}=\frac{\sum_{t} r_{i}^{t}\left(\mathbf{x}^{t}-\mathbf{m}_{i}\right)\left(\mathbf{x}^{t}-\mathbf{m}_{i}\right)^{T}}{\sum_{t} r_{i}^{t}}$
$g_{i}(\mathbf{x})=-\frac{1}{2} \log \left|\mathbf{S}_{i}\right|-\frac{1}{2}\left(\mathbf{x}-\mathbf{m}_{i}\right)^{\top} \mathbf{S}_{i}^{-1}\left(\mathbf{x}-\mathbf{m}_{i}\right)+\log \hat{P}\left(c_{i}\right)$

Common Covariance Matrix S
\square Shared common sample covariance S $\mathbf{S}=\sum_{i} \hat{P}\left(C_{i}\right) \mathbf{S}_{i}$

- Discriminant reduces to

$$
g_{i}(\boldsymbol{x})=-\frac{1}{2}\left(\boldsymbol{x}-\boldsymbol{m}_{i}\right)^{T} \mathbf{S}^{-1}\left(\boldsymbol{x}-\boldsymbol{m}_{i}\right)+\log \hat{P}\left(C_{i}\right)
$$

which is a linear discriminant

$$
g_{i}(\mathbf{x})=\mathbf{w}_{i}^{\top} \mathbf{x}+w_{i 0}
$$

where
$\mathbf{w}_{i}=\mathbf{S}^{-1} \mathbf{m}_{i} \quad w_{i 0}=-\frac{1}{2} \mathbf{m}_{i}^{\top} \mathbf{S}^{-1} \mathbf{m}_{i}+\log \hat{\rho}\left(c_{i}\right)$

Diagonal S, equal variances
※ー
Nearest mean classifier: Classify based on Euclidean distance to the nearest mean

$$
\begin{aligned}
& \qquad g_{i}(\mathbf{x})=-\frac{\left\|\mathbf{x}-\mathbf{m}_{i}\right\|^{2}}{2 s^{2}}+\log \hat{P}\left(c_{i}\right) \\
& =-\frac{1}{2 s^{2}} \sum_{j=1}^{d}\left(x_{j}^{t}-m_{i j}\right)^{2}+\log \hat{P}\left(c_{i}\right) \\
& \text { Each mean can be considered a prototype or template } \\
& \text { and this is template matching }
\end{aligned}
$$

Discrete Features

\square Binary features: $p_{i j} \equiv p\left(x_{j}=1 \mid C_{i}\right)$

$$
\text { if } x_{i} \text { are independent (Naive Bayes') }
$$

$$
p\left(x \mid C_{i}\right)=\prod_{j=1}^{d} p_{i j}^{x_{j}}\left(1-p_{i j}\right)^{\left(1-x_{j}\right)}
$$

the discriminant is linear
$g_{i}(\mathbf{x})=\log p\left(\mathbf{x} \mid C_{i}\right)+\log p\left(C_{i}\right)$
$=\sum\left[x_{j} \log p_{i j}+\left(1-x_{j}\right) \log \left(1-p_{i j}\right)\right]+\log P\left(c_{i}\right)$
Estimated parameters $\quad \hat{p}_{i j}=\frac{\sum_{t} t_{j}^{t} r_{i}^{t}}{\sum_{t} r_{i}^{t}}$

Diagonal S, equal variances

Discrete Features
$33 \square\left(1-\right.$ f-n) features: $x_{i} \hat{i}\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$

$$
p_{i j k} \equiv p\left(z_{j k}=1 \mid C_{i}\right)=p\left(x_{j}=v_{k} \mid C_{i}\right)
$$

if x_{i} are independent
$p\left(\mathbf{x} \mid C_{i}\right)=\prod_{i=1}^{d} \prod_{k=1}^{n_{i}} p_{i j k}^{z_{i k}}$
$g_{i}(\mathbf{x})=\sum_{j} \sum_{k} z_{j k} \log p_{i j k}+\log P\left(C_{i}\right)$
$\hat{p}_{j i k}=\frac{\sum_{t} z_{i j}^{t} r_{i}^{t}}{\sum_{t} r_{i}^{t}}$

Multivariate Regression

$$
r^{t}=g\left(x^{t} \mid w_{0}, w_{1}, \ldots, w_{d}\right)+\varepsilon
$$

Multivariate linear model

$$
w_{0}+w_{1} x_{1}^{t}+w_{2} x_{2}^{t}+\cdots+w_{d} x_{d}^{t}
$$

$E\left(w_{0}, w_{1}, \ldots, w_{d} \mid X\right)=\frac{1}{2} \sum_{t}\left[r^{t}-w_{0}-w_{1} x_{1}^{t}-\cdots-w_{d} x_{d}^{t}\right]^{2}$
Multivariate polynomial model:
Define new higher-order variables
$z_{1}=x_{1}, z_{2}=x_{2}, z_{3}=x_{1}{ }^{2}, z_{4}=x_{2}{ }^{2}, z_{5}=x_{1} x_{2}$
and use the linear model in this new \mathbf{z} spa
(basis functions, kernel trick: Chapter 13)

Why Reduce Dimensionality?

Reduces time complexity: Less computation
Reduces space complexity: Fewer parameters
Saves the cost of observing the feature
Simpler models are more robust on small datasets
More interpretable; simpler explanation
Data visualization (structure, groups, outliers, etc) if plotted in 2 or 3 dimensions

Iris data: Add one more feature to F4

Feature Selection vs Extraction

- Feature selection: Choosing $k<d$ important features,

ignoring the remaining $d-k$ Subset selection algorithms
\square Feature extraction: Project the original $x_{i}, i=1, \ldots, d$ dimensions to new $k<d$ dimensions, $z_{i}, i=1, \ldots, k$

Subset Selection

 -
There are 2^{d} subsets of d features

Forward search: Add the best feature at each step
\square Set of features F initially \varnothing.
\square At each iteration, find the best new feature
$i=\operatorname{argmin}, E\left(F \cup x_{i}\right)$
\square Add x_{i} to F if $E(F)$
Add x_{i} to F if $E\left(F \cup x_{i}\right)<E(F)$
Hill-climbing $O\left(d^{2}\right)$ algorithm
Backward search: Start with all features and remove sible.
Floating search (Add k, remove l)
\square Maximize $\operatorname{Var}(z)$ subject to $||w||=1$

$$
\max _{\mathbf{w}_{1}} \mathbf{w}_{1}^{\top} \Sigma \mathbf{w}_{1}-\alpha\left(\mathbf{w}_{1}^{\top} \mathbf{w}_{1}-1\right)
$$

$\sum w_{1}=\alpha w_{1}$ that is, w_{1} is an eigenvector of Σ Choose the one with the largest eigenvalue for $\operatorname{Var}(z)$ to be max
Second principal component: $\operatorname{Max} \operatorname{Var}\left(z_{2}\right)$, s.t., $\left|\left|w_{2}\right|\right|=1$ and orthogonal to w_{1}

$$
\max _{\mathbf{w}_{2}} \mathbf{w}_{2}^{\top} \Sigma \mathbf{w}_{2}-\alpha\left(\mathbf{w}_{2}^{\top} \mathbf{w}_{2}-1\right)-\beta\left(\mathbf{w}_{2}^{\top} \mathbf{w}_{1}-0\right)
$$

$\sum w_{2}=\alpha w_{2}$ that is, w_{2} is another eigenvector of Σ and so on.

Iris data: Single feature

What PCA does

$$
z=\mathbf{W}^{\top}(x-m)
$$

where the columns of \mathbf{W} are the eigenvectors of \sum and m is sample mean
Centers the data at the origin and rotates the axes

Feature Embedding
When \boldsymbol{X} is the $N \times d$ data matrix,
$X^{\top} X$ is the dxd matrix (covariance of features, if mean-
centered)
$\boldsymbol{X X}^{\top}$ is the $N \times N$ matrix (pairwise similarities of instances) PCA uses the eigenvectors of $\boldsymbol{X}^{\top} \boldsymbol{X}$ which are d-dim and can be used for projection
Feature embedding uses the eigenvectors of $\boldsymbol{X}{ }^{\top}$ which are N-dim and which give directly the coordinates after projection
Sometimes, we can define pairwise similarities (or distances) between instances, then we can use feature embedding
between instances, then we can use feature embed
without needing to represent instances as vectors.
[b]

Find a small number of factors \mathbf{z}, which when
combined generate x :
$x_{i}-\mu_{i}=v_{i 1} z_{1}+v_{i 2} z_{2}+\ldots+v_{i k} z_{k}+\varepsilon_{i}$
where $z_{i} i=1, \ldots, k$ are the latent factors with
$\mathrm{E}\left[z_{i}\right]=0, \operatorname{Var}\left(z_{i}\right)=1, \operatorname{Cov}\left(z_{i}, z_{i}\right)=0, i \neq i$,
ε_{i} are the noise sources
$E\left[\varepsilon_{i}\right]=\psi_{i}, \operatorname{Cov}\left(\varepsilon_{i}, \varepsilon_{i}\right)=0, i \neq i, \operatorname{Cov}\left(\varepsilon_{i}, z_{i}\right)=0$, and $v_{i j}$ are the factor loadings

Matrix Factorization

Matrix factorization: $\mathbf{X = F G}$
\boldsymbol{F} is $N \times k$ and \mathbf{G} is kxd

$\mathbf{X}_{t i}=\mathbf{F}_{t}^{T} \mathbf{G}_{i}=\sum_{j=1}^{k} \mathbf{F}_{t j} \mathbf{G}_{j i}$
Latent semantic indexing

Between-class scatter:

$$
\begin{aligned}
\left(m_{1}-m_{2}\right)^{2} & =\left(\mathbf{w}^{\top} \mathbf{m}_{1}-\mathbf{w}^{\top} \mathbf{m}_{2}\right)^{2} \\
& =\mathbf{w}^{\top}\left(\mathbf{m}_{1}-\mathbf{m}_{2}\right)\left(\mathbf{m}_{1}-\mathbf{m}_{2}\right)^{\top} \mathbf{w} \\
& =\mathbf{w}^{\top} \mathbf{S}_{8} \mathbf{w} \text { where } \mathbf{S}_{8}=\left(\mathbf{m}_{1}-\mathbf{m}_{2}\right)\left(\mathbf{m}_{1}-\mathbf{m}_{2}\right)^{\top}
\end{aligned}
$$

$$
\begin{aligned}
\text { Within-class scatter: } \\
\qquad \begin{aligned}
s_{1}^{2} & =\sum_{t}\left(\mathbf{w}^{\top} \mathbf{x}^{t}-m_{1}\right)^{2} r^{t} \\
& =\sum_{t} \mathbf{w}^{T}\left(\mathbf{x}^{t}-\mathbf{m}_{1}\right)\left(\mathbf{x}^{t}-\mathbf{m}_{1}\right)^{T} \mathbf{w} r^{t}=\mathbf{w}^{\top} \mathbf{S}_{\mathbf{1}} \mathbf{w} \\
\text { where } \mathbf{S}_{1} & =\sum_{t}\left(\mathbf{x}^{t}-\mathbf{m}_{1}\right)\left(\mathbf{x}^{t}-\mathbf{m}_{1}\right)^{T} r^{t}
\end{aligned}
\end{aligned}
$$

$$
s_{1}^{2}+s_{1}^{2}=\mathbf{w}^{\top} \mathbf{S}_{w} \mathbf{w} \text { where } \mathbf{S}_{w}=\mathbf{S}_{1}+\mathbf{S}_{2}
$$

PCA vs FA
$\square \mathrm{PCA}$

$\square \mathrm{FA}$ | From \mathbf{x} to \mathbf{z} |
| :--- |
| From \mathbf{z} to \mathbf{x} |\quad| $\mathbf{z}=\mathbf{W}^{\top}(\mathbf{x}-\boldsymbol{\mu})$ |
| :--- |
| $\mathbf{x}-\boldsymbol{\mu}=\mathbf{V} \mathbf{z}+\boldsymbol{\varepsilon}$ |

Multidimensional Scaling

\square Given pairwise distances between N points,

$$
d_{i j}, i, i=1, \ldots, N
$$

place on a low-dim map s.t. distances are preserved (by feature embedding)
$\mathbf{z}=\mathbf{g}(\mathbf{x} \mid \theta) \quad$ Find θ that min Sammon stress

$$
E(\theta \mid X)=\sum_{r, s} \frac{\left(\left\|\mathbf{z}^{r}-\mathbf{z}^{s}\right\|-\left\|\mathbf{x}^{r}-\mathbf{x}^{s}\right\|\right)^{2}}{\left\|\mathbf{x}^{r}-\mathbf{x}^{s}\right\|^{2}}
$$

$$
=\sum_{r, s} \frac{\left(\left\|g\left(\mathbf{x}^{r} \mid \theta\right)-\mathbf{g}\left(\mathbf{x}^{s} \mid \theta\right)\right\|-\left\|\mathbf{x}^{r}-\mathbf{x}^{s}\right\|\right)^{2}}{\left\|\mathbf{x}^{r}-\mathbf{x}^{s}\right\|^{2}}
$$

Fisher's Linear Discriminant

$$
\square \text { Find } w \text { that max }
$$

$$
J(\mathbf{w})=\frac{\mathbf{w}^{\top} \mathbf{S}_{8} \mathbf{w}}{\mathbf{w}^{\top} \mathbf{S}_{w} \mathbf{w}}=\frac{\left|\mathbf{w}^{\top}\left(\mathbf{m}_{1}-\mathbf{m}_{2}\right)\right|^{2}}{\mathbf{w}^{\top} \mathbf{S}_{w} \mathbf{w}}
$$

$$
\text { LDA soln: } \quad \mathbf{w}=c \cdot \mathbf{S}_{w}^{-1}\left(\mathbf{m}_{1}-\mathbf{m}_{2}\right)
$$

\square Parametric soln:
$\mathbf{w}=\Sigma^{-1}\left(\mu_{1}-\mu_{2}\right)$ when $p\left(\mathbf{x} \mid C_{i}\right) \sim \mathcal{N}\left(\mu_{i}, \Sigma\right)$

Canonical Correlation Analysis

$\boldsymbol{X}=\left\{\mathbf{x}^{t}, \boldsymbol{y}^{\prime}\right\}$; two sets of variables \boldsymbol{x} and $\boldsymbol{y} \boldsymbol{x}$
We want to find two projections w and v st when x is projected along w and y is projected along v, the correlation is maximized:

$$
\begin{aligned}
\rho & =\operatorname{Corr}\left(\boldsymbol{w}^{T} \boldsymbol{x}, \boldsymbol{v}^{T} \boldsymbol{y}\right)=\frac{\operatorname{Cov}\left(\boldsymbol{w}^{T} \boldsymbol{x}, \boldsymbol{v}^{T} \boldsymbol{y}\right)}{\sqrt{\operatorname{Var}\left(\boldsymbol{w}^{T} \boldsymbol{x}\right)} \sqrt{\operatorname{Var}\left(\boldsymbol{v}^{T} \boldsymbol{y}\right)}} \\
& =\frac{\boldsymbol{w}^{T} \operatorname{Cov}(\boldsymbol{x}, \boldsymbol{y}) \boldsymbol{v}}{\sqrt{\boldsymbol{w}^{T} \operatorname{Var}(\boldsymbol{x}) \boldsymbol{w}} \sqrt{\boldsymbol{v}^{T} \operatorname{Var}(\boldsymbol{y}) \boldsymbol{v}}}=\frac{\boldsymbol{w}^{T} \mathbf{S}_{X y} \boldsymbol{v}}{\sqrt{\boldsymbol{w}^{T} \mathbf{S}_{x} \boldsymbol{w}} \sqrt{\boldsymbol{v}^{T} \mathbf{S}_{y y} \boldsymbol{v}}}
\end{aligned}
$$

\qquad
$\ln \mathrm{FA}$, factors z_{i} are stretched, rotated and translated to generate x

Map of Europe by MDS

K >2 Classes

Within-class scatter

$$
\mathbf{S}_{w}=\sum_{i=1}^{\kappa} \mathbf{S}_{i} \quad \mathbf{S}_{i}=\sum_{t} t_{i}^{t}\left(\mathbf{x}^{t}-\mathbf{m}_{i}\right)\left(\mathbf{x}^{t}-\mathbf{m}_{i}\right)^{T}
$$

\square Between-class scatter:

$$
\mathbf{S}_{B}=\sum_{i=1}^{K} N_{i}\left(\mathbf{m}_{i}-\mathbf{m}\right)\left(\mathbf{m}_{i}-\mathbf{m}\right)^{\top} \quad \mathbf{m}=\frac{1}{K} \sum_{i=1}^{K} \mathbf{m}_{i}
$$

\square Find \mathbf{W} that max $J(\mathbf{W})=\frac{\left|\mathbf{W}^{\top} \mathbf{S}_{B} \mathbf{W}\right|}{\left|\mathbf{W}^{\top} \mathbf{S}_{W} \mathbf{W}\right|}$
The largest eigenvectors of $\mathbf{S}_{W^{-1}}{ }^{-1} \mathbf{S}_{\delta_{i}}$ maximum rank of K -

CCA

x and y may be two different views or modalities; e.g., image and word tags, and CCA does a joint mapping

Singular Value Decomposition and Matrix Factorization

- Singular value decomposition: $\boldsymbol{X}=\boldsymbol{V A W}^{\boldsymbol{\top}}$
\boldsymbol{V} is $N \times N$ and contains the eigenvectors of $\boldsymbol{X} \boldsymbol{X}^{\top}$
\boldsymbol{W} is $d \times d$ and contains the eigenvectors of $\boldsymbol{X}^{\top} \boldsymbol{X}$
and \mathbf{A} is $N \times d$ and contains singular values on its first k diagonal
$\boldsymbol{X}=\mathbf{u}_{1} \boldsymbol{a}_{1} \boldsymbol{v}_{1}{ }^{\top}+\ldots+\mathbf{u}_{k} \boldsymbol{a}_{k} \boldsymbol{v}_{k}{ }^{\top}$ where k is the rank of \boldsymbol{X}

Linear Discriminant Analysis
Find a low-dimensiona Find a low-dimensiona
space such that when x is projected, classes are well-separated.
Find w that maximizes
$J(\mathbf{w})=\frac{\left(m_{1}-m_{2}\right)^{2}}{s_{1}^{2}+s_{2}^{2}}$

$m_{1}=\frac{\sum_{t} \mathbf{w}^{T} \mathbf{x}^{t} r^{t}}{\sum_{t} r^{t}} s_{1}^{2}=\sum_{t}\left(\mathbf{w}^{T} \mathbf{x}^{t}-m_{1}\right)^{2} r^{t}$

Isomap
Geodesic distance is the distance along the manifold that the data lies in, as opposed to the Euclidean distance in the input space

\qquad
Instances r and s are connected in the graph if
$\left|\left|\boldsymbol{x}^{r}-\boldsymbol{x}^{s}\right|\right|<\varepsilon$ or if \boldsymbol{x}^{s} is one of the k neighbors of \boldsymbol{x}^{r} The edge length is $\left|\left|x^{r}-x^{s}\right|\right|$
For two nodes r and s not connected, the distance is
equal to the shortest path between them
Once the $N \times N$ distance matrix is thus formed, use MDS to find a lower-dimensional mapping

${ }_{32}$

Laplacian Eigenmaps
-xor r and se we instances and B is their similarity we want to find \mathbf{z}^{\prime} and \mathbf{z}^{s} that

$$
\min \sum_{r, s}\left\|z^{r}-Z^{s}\right\|^{2} B_{r s}
$$

$B_{r s}$ can be defined in terms of similarity in an origina space: 0 if \boldsymbol{x}^{r} and \boldsymbol{x}^{s} are too far, otherwise

$$
B_{r s}=\exp \left[-\frac{\left\|\boldsymbol{x}^{r}-\boldsymbol{x}^{s}\right\|^{2}}{2 \sigma^{2}}\right]
$$

Defines a graph Laplacian, and feature embedding returns $\mathbf{z}^{\mathbf{7}}$

k-Means Clustering

6-
Find k reference vectors (prototypes/codebook vectors/codewords) which best represent data
Reference vectors, $m_{j}, i=1, \ldots, k$
\square Use nearest (most similar) reference:

$$
\left\|\mathbf{x}^{t}-\mathbf{m}_{i}\right\|=\min _{j}\left\|\mathbf{x}^{t}-\mathbf{m}_{j}\right\|
$$

Reconstruction error $E\left(\left\{\mathbf{m}_{i}\right\}_{\}_{i=1}^{k}} \mid X\right)=\sum_{t} \sum_{i} b_{i}^{t} \mid \mathbf{x}^{t}-\mathbf{m}_{i} \|$

$$
b_{i}^{t}= \begin{cases}1 & \text { if }\left\|\mathbf{x}^{t}-\mathbf{m}_{i}\right\|=\min _{j}\left\|\mathbf{x}^{t}-\mathbf{m}_{j}\right\| \\ 0 & \text { otherwise }\end{cases}
$$

Given \boldsymbol{x}^{r} find its neighbors \boldsymbol{x}^{s},
Find $W_{r s}$ that minimize

$$
E(\mathbf{W} \mid X)=\sum_{r}\left\|\mathbf{x}^{r}-\sum_{s} \mathbf{W}_{r s} \mathbf{x}_{(r)}\right\|^{2}
$$

Find the new coordinates z^{r} that minimize

$$
E(\mathbf{z} \mid \mathbf{W})=\sum_{r}\left\|z^{r}-\sum_{s} \mathbf{W}_{r s^{\prime}} z_{(r)}^{s}\right\|^{2}
$$

z space

Classes vs. Clusters

\square Supervised: $X=\left\{x^{\prime}, r^{\prime}\right\}_{t}$	\square Unsupervised: $\mathrm{X}=\left\{\mathrm{x}^{+}\right\}_{\text {t }}$
- Classes $\mathrm{C}_{i} i=1, \ldots, \mathrm{~K}$	- Clusters $\mathrm{G}_{i} i=1, \ldots, \mathrm{k}$
$p(\mathbf{x})=\sum_{i=1}^{K} p\left(\mathbf{x} \mid C_{i}\right) p\left(C_{i}\right)$	$p(\mathbf{x})=\sum_{i=1}^{k} p\left(\mathbf{x} \mid G_{i}\right) P\left(G_{i}\right)$
where $\mathrm{p}\left(\mathrm{x} \mid \mathrm{C}_{\mathrm{i}}\right) \sim \mathrm{N}\left(\mu_{i}, \Sigma_{i}\right)$	
$\square \Phi=\left\{P\left(C_{i}\right), \mu_{i}, \sum_{i}\right\}^{K_{i=1}}$	where $p\left(x \mid G_{i}\right) \sim N\left(\mu_{i}, \Sigma_{i}\right)$
$\hat{P}\left(C_{i}\right)=\frac{\sum_{i} r_{i}^{t}}{N} \mathbf{m}_{i}=\frac{\sum_{1} r_{1}^{\prime} \mathbf{x}^{t}}{\sum_{r_{i}^{\prime}} r_{i}^{t}}$	$\square \Phi=\left\{P\left(G_{i}\right), \boldsymbol{\mu}_{i}, \Sigma_{i}\right\}_{i=1}^{k}$
$\sum_{r} r^{t}\left(\mathbf{x}^{t}-\mathbf{m}_{2}\right)\left(\mathbf{x}^{t}-\mathbf{m}_{3}\right)^{\prime}$	Labels r_{1}^{\prime} ?
$\sum_{r} r_{i}^{\text {e }}$	

Laplacian Eigenmaps on Iris

Spectral clustering (chapter 7)

Semiparametric Density Estimation

- Parametric: Assume a single model for $p\left(x \mid C_{i}\right)$
(Chapters 4 and 5)
Semiparametric: $p\left(x \mid C_{i}\right)$ is a mixture of densities Multiple possible explanations/prototypes: Different handwriting styles, accents in speech
Nonparametric: No model; data speaks for itself (Chapter 8)

Mixture Densities

$p(\mathbf{x})=\sum^{k} p\left(\mathbf{x} \mid G_{i}\right) P\left(G_{i}\right)$

where G_{i} the components/groups/clusters, $P\left(G_{i}\right)$ mixture proportions (priors), $p\left(x \mid G_{i}\right)$ component densities
Gaussian mixture where $p\left(x \mid G_{i}\right) \sim N\left(\mu_{i}, \sum_{i}\right)$
parameters $\Phi=\left\{P\left(G_{i}\right), \boldsymbol{\mu}_{i}, \sum_{i}\right\}_{i=1}^{k}$
unlabeled sample $X=\left\{x^{\prime}\right\}_{+}$(unsupervised learning)

k-means Clustering
\qquad

For all $\boldsymbol{x}^{t} \in \mathcal{X}$
$\boldsymbol{m}_{i} \leftarrow \sum h^{t} \boldsymbol{x}^{t} / \sum$
$\boldsymbol{m}_{i} \leftarrow \sum h^{t} \boldsymbol{x}^{t} / \sum$
Until \boldsymbol{m}_{i} converge
Until \boldsymbol{m}_{i} converge

Expectation-Maximization (EM)
Log likelihood with a mixture model
Log likelihood with a mixture mod
$\mathcal{L}(\Phi \mid X)=\log \prod_{t} p\left(\mathbf{x}^{t} \mid \Phi\right)$

$=\sum_{t} \log \sum^{k} p\left(\mathbf{x}^{t} \mid G_{i}\right) P\left(G_{i}\right)$

Assume hidden variable \sum^{\prime} ' z, which when known, mak optimization much simpler
Complete likelihood, $L_{c}(\Phi \mid X, Z)$, in terms of x and z
Incomplete likelihood, $L(\Phi \mid X)$, in terms of x

Mixtures of Latent Variable Models
\qquad
Regularize cluster
Assume shared/diagonal covariance matrices
2. Use PCA/FA to decrease dimensionality: Mixtures of PCA/FA

$$
p\left(\mathbf{x}_{t} \mid G_{i}\right)=\mathcal{N}\left(\mathbf{m}_{i}, \mathbf{V}_{i} \mathbf{V}_{i}^{\top}+\boldsymbol{\psi}_{i}\right)
$$

Can use EM to learn \mathbf{V}_{i} (Ghahramani and Hinton, 1997; Tipping and Bishop, 1999)

Spectral Clustering

\qquad
Cluster using predefined pairwise similarities $B_{r s}$ instead of using Euclidean or Mahalanobis distance
Can be used even if instances not vectorially represented
Steps:
Use Laplacian Eigenmaps (chapter 6) to map to a new \mathbf{z} space using $B_{r s}$
Use k-means in this new \mathbf{z} space for clustering

Choosing k

(12) Dined by the aptication .

Plot data (after PCA) and check for clusters
Incremental (leader-cluster) algorithm: Add one at a time until "elbow" (reconstruction error/log
likelihood/intergroup distances)
Manually check for meaning

E- and M-steps

Iterate the two steps
E-step: Estimate z given X and current Φ
M-step: Find new Φ^{\prime} given z, X, and old Φ
E-step: $\mathcal{Q}\left(\Phi \mid \Phi^{\prime}\right)=E\left[\mathcal{L}_{\mathcal{C}}(\Phi \mid X, Z) \mid X, \Phi^{\prime}\right]$
M-step: $\Phi^{t+1}=\underset{\Phi}{\operatorname{argmax}} \mathcal{Q}\left(\Phi \mid \Phi^{\prime}\right)$
An increase in Q increases incomplete likelihood $\mathcal{L}\left(\Phi^{\prime+1} \mid X\right) \geq \mathcal{L}\left(\Phi^{\prime} \mid X\right)$

After Clustering

\qquad
Dimensionality reduction methods find correlations
between features and group features
Clustering methods find similarities between instances and group instances
Allows knowledge extraction through number of clusters,
prior probabilities
cluster parameters, i.e., center, range of features.
Example: CRM, customer segmentation

Hierarchical Clustering

\square Cluster based on similarities/distances
Distance measure between instances \boldsymbol{x}^{r} and \boldsymbol{x} Minkowski $\left(L_{\rho}\right)$ (Euclidean for $p=2$)

$$
d_{m}\left(\mathbf{x}^{r}, \mathbf{x}^{s}\right)=\left[\sum_{j=1}^{d}\left(x_{j}^{r}-x_{j}^{s}\right)^{p}\right]^{1 / p}
$$

City-block distance
$d_{c b}\left(\mathbf{x}^{r}, \mathbf{x}^{s}\right)=\sum_{j=1}^{d}\left|x_{j}^{r}-x_{j}^{s}\right|$

i2ml3e-chap08.pdf

EM in Gaussian Mixtures

\qquad

- $z_{i}^{t}=1$ if \boldsymbol{x}^{t} belongs to $G_{i}, 0$ otherwise (labels \boldsymbol{r}_{i}^{t} of supervised learning); assume $p\left(x \mid G_{i}\right) \sim N\left(\boldsymbol{\mu}_{i}, \Sigma_{i}\right)$
E-step:
$E\left[z_{i}^{t} \mid X, \Phi^{\prime}\right]=\frac{p\left(\mathbf{x}^{t} \mid G_{i}, \Phi^{\prime}\right) p\left(G_{i}\right)}{\sum_{j} p\left(\mathbf{x}^{t^{t}} \mid G_{j}, \Phi^{\prime}\right) p\left(G_{j}\right)}$
$=P\left(G_{i} \mid \mathbf{x}^{t}, \Phi^{\prime}\right) \equiv h_{i}^{t}$
- M-step:

$$
\begin{aligned}
& P\left(G_{i}\right)=\frac{\sum_{h} h_{i}^{t}}{N} \quad \mathbf{m}_{i}^{\prime+1}=\frac{\sum_{t} h_{i}^{t} \mathbf{x}^{t}}{\sum_{t} h_{i}^{t}} \quad \begin{array}{l}
\text { Use estimated label in } \\
\text { ploce of unkrown labels }
\end{array} \\
& \mathbf{S}_{i}^{(t+1}=\frac{\sum_{t} h_{i}^{t}\left(\mathbf{x}^{t}-\mathbf{m}_{i}^{t+1}\right)\left(\mathbf{x}^{t}-\mathbf{m}_{i}^{(t+1}\right)^{T}}{\sum_{t} h_{i}^{t}}
\end{aligned}
$$

Clustering as Preprocessing

\qquad
Estimated group labels h_{i} (soft) or b_{i} (hard) may be seen as the dimensions of a new k dimensional space, where we can then learn our discriminant or regressor.
Local representation (only one b_{i} is 1 , all others are
0 ; only few h_{i} are nonzero) vs
Distributed representation (After PCA; all z_{i} are nonzero)

Agglomerative Clustering
\qquad
Start with N groups each with one instance and merge two closest groups at each iteration
Distance between two groups G_{i} and G_{i}
\square Single-link: $\quad d\left(G_{i}, G_{j}\right)=\min _{\mathbf{x}^{x} \in G_{i}, x^{\prime} \in G_{j}} d\left(\mathbf{x}^{r}, \mathbf{x}^{s}\right)$

- Complete-link: $d\left(G_{i}, G_{j}\right)=\max _{\mathbf{x}^{\prime} \in G_{,}, x^{x} \in G_{j}} d\left(\mathbf{x}^{r}, \mathbf{x}^{s}\right)$
- Average-link, centroid $d\left(G_{i}, G_{j}\right)=\underset{\mathbf{x}^{\prime} \in G_{G}, x^{x} \in G_{j}}{\operatorname{ave}} d\left(\mathbf{x}^{r}, \mathbf{x}^{s}\right)$

Example: Single-Link Clustering

Nonparametric Estimation
\qquad
Parametric (single global model), semiparametric (small number of local models)

- Nonparametric: Similar inputs have similar outputs
\square Functions (pdf, discriminant, regression) change
smoothly
- Keep the training data;"let the data speak for
itself"
Given x , find a small number of closest training instances and interpolate from these
Aka lazy/memory-based/case-based/instancebased learning

Kernel Estimator

Condensed Nearest Neighbor
Incremental algorithm: Add instance if needed

```
Z-0
    Repeat
        For all }\boldsymbol{x}\in\mathcal{X}\mathrm{ (in random order)
        Find \mp@subsup{\boldsymbol{x}}{}{\prime}\in\mathcal{Z}\mathrm{ s.t. |x-x|}|=\mp@subsup{\operatorname{min}}{\mp@subsup{\boldsymbol{x}}{}{j}\in\mathcal{Z}}{|}|\boldsymbol{x}-\mp@subsup{\boldsymbol{x}}{}{j}
        If class(x)\not=class(\mp@subsup{\boldsymbol{x}}{}{\prime})\mathrm{ add }\boldsymbol{x}\mathrm{ to }z=\mp@code{})=
    Until z does not change
```

Density Estimation
\qquad
\square Given the training set $\boldsymbol{X}=\left\{x^{\dagger}\right\}_{t}$ drawn iid from $p(x)$
\square Divide data into bins of size h

- Histogram:
$\hat{p}(x)=\frac{\#\left\{x^{t} \text { in the samebinas } x\right.}{}$
- Naive estimator: $\hat{p}(x)=\frac{\#\left\{x-h<x^{t} \leq x+h\right\}}{2 N h}$
or

$$
\hat{p}(x)=\frac{1}{N h} \sum_{t=1}^{N} w\left(\frac{x-x^{t}}{h}\right) w(u)= \begin{cases}1 / 2 & \text { if }|u|<1 \\ 0 & \text { otherwise }\end{cases}
$$

k-Nearest Neighbor Estimator
\square Instead of fixing bin width h and counting the number of instances, fix the instances (neighbors) and check bin width

$$
\hat{p}(x)=\frac{k}{2 N d_{k}(x)}
$$

$\mathrm{d}_{k}(x)$, distance to k th closest instance to x

Condensed Nearest Neighbor

Time/space complexity of $k-N N$ is $O(N)$
\square Find a subset Z of X that is small and is accurate in classifying X (Hart, 1968)

$E^{\prime}(Z \mid X)=E(X \mid Z)+\lambda|Z|$
$\hat{\rho}\left(\mathbf{x} \mid C_{i}\right)=\frac{1}{N_{i} h^{\delta}} \sum_{t=1}^{N} K\left(\frac{\mathbf{x}-\mathbf{x}^{t}}{h}\right) r_{i}^{t} \hat{\rho}\left(C_{i}\right)=\frac{N_{i}}{N}$
$g_{i}(\mathbf{x})=\hat{p}\left(\mathbf{x} \mid C_{i}\right) \hat{P}\left(C_{i}\right)=\frac{1}{N h^{d}} \sum_{t=1}^{N} K\left(\frac{\mathbf{x}-\mathbf{x}^{t}}{h}\right) r_{i}^{t}$
k -NN estimator

$$
\hat{p}\left(\mathbf{x} \mid C_{i}\right)=\frac{k_{i}}{N_{i} V^{k}(\mathbf{x})} \hat{P}\left(C_{i} \mid \mathbf{x}\right)=\frac{\hat{p}\left(\mathbf{x} \mid C_{i} i \hat{\rho}\left(C_{i}\right)\right.}{\hat{p}(\mathbf{x})}=\frac{k_{i}}{k}
$$

Learning a Distance Function
The three-way relationship between distance dimensionality reduction, and feature extraction $\mathbf{M}=\mathbf{L}^{\top} \mathbf{L}$ is $d x d$ and \mathbf{L} is $k x d$
$\mathcal{D}\left(\mathbf{x}, \boldsymbol{x}^{t} \mid \mathbf{M}\right)=\left(x-x^{t}\right)^{T} \mathbf{M}\left(x-x^{t}\right)=\left(x-x^{t}\right)^{T} \mathbf{L}^{T} \mathbf{L}\left(x-x^{t}\right)$ $=\left(\mathbf{L}\left(x-x^{\prime}\right)\right)^{T}\left(\mathbf{L}\left(x-x^{\prime}\right)\right)=\left(\mathbf{L} x-\mathbf{L} x^{\prime}\right)^{T}\left(\mathbf{L} x-\mathbf{L} x^{\prime}\right)$ $=\left(z-z^{t}\right)^{T}\left(z-z^{t}\right)=\left\|z-z^{t}\right\|^{2}$
Similarity-based representation using similarity scores
Large-margin nearest neighbor (chapter 13)

Euclidean distance (circle) is not suitable Mahalanobis distance using an \mathbf{M} (ellipse) is suitable.
After the data is proiected along \mathbf{L}, Euclidean distance can be used.

Outlier Detection

Find outlier/novelty points
Not a two-class problem because outliers are very few, of many types, and seldom labeled Instead, one-class classification problem: Find instances that have low probability
In nonparametric case: Find instances far away from other instances

Local Outlier Factor

$\operatorname{LOF}(x)=\frac{d_{k}(x)}{\sum s \in \mathcal{N}(x) d_{k}(s)|/ \mathcal{N}(x)|}$

Running Mean/Kernel Smoother

$$
\begin{aligned}
& \square \text { Running mean smoother Kernel smoother } \\
& \hat{g}(x)=\frac{\sum_{t=1}^{N} w\left(\frac{x-x^{t}}{h}\right) r^{t}}{\sum_{t=1}^{N} w\left(\frac{x-x^{t}}{h}\right)} \\
& \hat{g}(x)=\frac{\sum_{t=1}^{N} K\left(\frac{x-x^{t}}{h}\right) r^{t}}{\sum_{t=1}^{N} K\left(\frac{x-x^{t}}{h}\right)} \\
& \text { where } \\
& w(u)= \begin{cases}1 & \text { if }|u|<1 \\
0 & \text { otherwise }\end{cases} \\
& \text { where } K() \text { is Gaussian } \\
& \begin{array}{l}
\square \text { Additive models (Hastie } \\
\text { and Tibshirani, 1990) }
\end{array} \\
& \text { Running line smoother }
\end{aligned}
$$

How to Choose k or h ?

When k or h is small, single instances matter; bias is small, variance is large (undersmoothing): High complexity
As k or h increases, we average over more instances and variance decreases but bias increases
(oversmoothing): Low complexity
Cross-validation is used to finetune k or h

Nonparametric Regression
\qquad
Aka smoothing models
Regressogram
$\hat{g}(x)=\frac{\sum_{t=1}^{N} b\left(x, x^{t}\right) r^{t}}{\sum_{t=1}^{N} b\left(x, x^{t}\right)}$
where
$b\left(x, x^{t}\right)= \begin{cases}1 & \text { if } x^{t} \text { is in the samebin with } x \\ 0 & 0\end{cases}$ otherwise

${ }_{25}$

Divide and Conquer

- Internal decision nodes
- Univariate: Uses a single attribute, x_{i}
- Numeric x_{i} : Binary split: $x_{i}>w_{w}$ Numeric $x_{i}:$: Binary split : $x_{i}>w_{m}$
$=$ Discrete $x_{i}: n$-way split for n possible values
- Multivariate: Uses all attributes, x

Leaves

- Classification: Class labels, or proportions
- Classification: Class labels, or proportions

Learning is greedy; find the best split recursive
Breim
i2ml3e-chap09.pdf

${ }_{2} 8$

Tree Uses Nodes and Leaves

Regression Trees
\square Error at node m :

$$
\begin{aligned}
& b_{m}(\mathbf{x})= \begin{cases}1 & \text { if } \mathbf{x} \in X_{m}: \mathbf{x r e a c h e g o d e m ~} \\
0 & \text { otherwise }\end{cases} \\
& E_{m}=\frac{1}{N_{m}} \sum_{t}\left(r^{t}-g_{m}\right)^{2} b_{m}\left(\mathbf{x}^{t}\right) \quad g_{m}=\frac{\sum_{t} b_{m}\left(\mathbf{x}^{t}\right) r^{t}}{\sum_{t} b_{m}\left(\mathbf{x}^{t}\right)}
\end{aligned}
$$

\square After splitting:

$$
E_{m}^{\prime}=\frac{1}{N_{m}} \sum_{i} \sum_{t}\left(r^{t}-g_{m j}\right)^{2} b_{m j}\left(\mathbf{x}^{t}\right) \quad g_{m j}=\frac{\sum_{i} b_{m j}\left(\mathbf{x}^{t}\right) r^{t}}{\sum_{i}\left(x_{m i} \mathbf{x}^{t}\right)}
$$

Learning Rules
\square Rule induction is similar to tree induction but

- tree induction is breadth-first,
rule induction is depth-first; one rule at a time
Rule set contains rules; rules are conjunctions of terms
Rule covers an example if all terms of the rule evaluate to true for the example
Sequential covering: Generate rules one at a time until all positive examples are covered
IREP (Fürnkrantz and Widmer, 1994), Ripper (Cohen, 1995)

i2ml3e-chap10.pdf

Linear Discriminant

+ 4

$$
g_{i}\left(\mathbf{x} \mid \mathbf{w}_{i}, w_{i 0}\right)=\mathbf{w}_{i}^{T} \mathbf{x}+w_{i 0}=\sum_{j=1}^{d} w_{i j} x_{j}+w_{i 0}
$$

Advantages:
a Simple: O(d) space/computation
Knowledge extraction: Weighted sum of attributes;
cosive/negarive weights, magnitudes (credit scoring)
Oprimal when $p\left(x \mid C_{i}\right)$ are Gaussian with shared cov matrix; useful when classes are (almost) linearly separable

Generalized Linear Mode

\qquad

- Quadratic discriminant:
$g_{i}\left(\mathbf{x} \mid \mathbf{W}_{i}, \mathbf{w}_{i}, w_{i 0}\right)=\mathbf{x}^{\top} \mathbf{W}_{i} \mathbf{x}+\mathbf{w}_{i}^{\top} \mathbf{x}+w_{i}$
Higher-order (product) terms:

$$
z_{1}=x_{1}, z_{2}=x_{2}, z_{3}=x_{1}^{2}, z_{4}=x_{2}^{2}, z_{5}=x_{1} x_{2}
$$

Map from x to z using nonlinear basis functions and use a linear discriminant in z-space

$$
g_{i}(\mathbf{x})=\sum_{j=1}^{K} w_{i j} \phi_{j}(\mathbf{x})
$$

Pairwise Separation

Gradient-Descent
\qquad
$\square(w \mid X)$ is error with parameters w on sample X $w^{*}=\arg \min _{w} E(w \mid X)$
\square Gradient $\quad \nabla_{w} E=\left[\frac{\partial E}{\partial w_{1}}, \frac{\partial E}{\partial w_{2}}, \ldots, \frac{\partial E}{\partial w_{d}}\right]$
\square Gradient-descent:
Starts from random w and updates w iteratively in the negative direction of gradient

Training: Gradient-Descent

$$
\begin{aligned}
E\left(\mathbf{w}, w_{0} \mid X\right) & =-\sum_{t} r^{t} \log y^{t}+\left(1-r^{t}\right) \log \left(1-y^{t}\right) \\
\text { If } y & =\operatorname{sigmoida}) \frac{d y}{d a}=y(1-y) \\
\Delta w_{j} & =-\eta \frac{\partial E}{\partial w_{j}}=\eta \sum_{t}\left(\frac{r^{t}}{y^{t}}-\frac{1-r^{t}}{1-y^{t}}\right) y^{t}\left(1-y^{t}\right) x_{j}^{t} \\
& =\eta \sum_{t}\left(r^{t}-y^{t}\right) x_{j}^{t}, j=1, \ldots, d \\
\Delta w_{0} & =-\eta \frac{\partial E}{\partial w_{0}}=\eta \sum_{t}\left(r^{t}-y^{t}\right)
\end{aligned}
$$

Two Classes

From Discriminants to Posteriors
\qquad
When $p\left(\boldsymbol{x} \mid C_{i}\right) \sim N\left(\boldsymbol{\mu}_{i}, \Sigma\right)$
$g_{i}\left(\mathbf{x} \mid \mathbf{w}_{i}, w_{i 0}\right)=\mathbf{w}_{i}^{\top} \mathbf{x}+w_{i 0}$
$\mathbf{w}_{i}=\Sigma^{-1} \mu_{i} \quad w_{i 0}=-\frac{1}{2} \mu_{i}^{\top} \Sigma^{-1} \mu_{i}+\log P\left(c_{i}\right)$
$y \equiv P\left(C_{1} \mid \mathbf{x}\right)$ and $P\left(C_{2} \mid \mathbf{x}\right)=1-y$
choose C_{1} if $\left\{\begin{array}{c}y>0.5 \\ y /(1-y)>1\end{array}\right.$ and C_{2} otherwise
$\log [y /(1-y)]>0$

Gradient-Descent

For $j=0, \ldots, d$
$w_{j} \leftarrow$ rand $(-0.01,0.01)$
Repeat
For $j=0, \ldots, d$
$\Delta w_{j} \leftarrow 0$
For $t=1, \ldots, N$
$\circ \leftarrow 0$ For $j=0, \ldots, d$ $o \leftarrow o+w_{j} x_{j}^{t}$ $y \leftarrow \operatorname{sigmoid}(o)$ $\Delta w_{j} \leftarrow \Delta w_{j}+\left(r^{t}-y\right) x_{j}^{t}$ For $j=0, \ldots, d$ $w_{j}-w_{j}+\eta \Delta w_{j}$ Until convergence

Geometry

$\left.\operatorname{logitp(}\left(C_{1} \mid \mathbf{x}\right)\right)=\log \frac{P\left(c_{1} \mid \mathbf{x}\right)}{1-P\left(C_{1} \mid \mathbf{x}\right)}=\log \frac{P\left(c_{1} \mid \mathbf{x}\right)}{P\left(C_{2} \mid \mathbf{x}\right)}$
$=\log \frac{p\left(\mathbf{x} \mid c_{1}\right)}{p\left(\mathbf{x} \mid c_{2}\right)}+\log \frac{p\left(c_{1}\right)}{p\left(c_{2}\right)}$

$=\mathbf{w}^{\top} \mathbf{x}+\mathbf{w}_{0}$
where $w=\Sigma^{-1}\left(\mu_{1}-\mu_{2}\right) \quad w_{0}=-\frac{1}{2}\left(\mu_{1}+\mu_{2}\right)^{\gamma} \Sigma^{-1}\left(\mu_{1}-\mu_{2}\right)$
The inverse of logit

$P\left(c_{1} \mid \mathbf{x}\right)=$ sigmoid $\left.\mathbf{w}^{\top} \mathbf{x}+\mathbf{w}_{0}\right)=\frac{1}{1+\exp \left[-\left(\mathbf{w}^{\top} \mathbf{x}+w_{0}\right)\right]}$

Logistic Discrimination

Two classes: Assume log likelihood ratio is linear $\log \frac{p\left(\mathbf{x} \mid C_{1}\right)}{p\left(\mathbf{x} \mid C_{2}\right)}=\mathbf{w}^{\top} \mathbf{x}+w_{0}^{0}$

$$
=\mathbf{w}^{\top} \mathbf{x}+w_{0}
$$

where $w_{0}=w_{0}^{\circ}+\log \frac{P\left(c_{1}\right)}{P\left(C_{2}\right)}$

$$
y=\hat{P}\left(c_{1} \mid \mathbf{x}\right)=\frac{1}{1+\exp \left[-\left(\mathbf{w}^{T} \mathbf{x}+w_{0}\right)\right]}
$$

Classes are
linearly separable

Sigmoid (Logistic) Function
\qquad

Calculate $g(\mathbf{x})=\mathbf{w}^{\top} \mathbf{x}+w_{0}$ and choose C_{1} if $g(\mathbf{x})>0$, or Calculate $y=\operatorname{sigmoid}^{\top} \mathbf{x}+w_{0}$) andchoose C_{1} if $y>0.5$

Training: Two Classes

$$
\begin{aligned}
& X=\left\{\mathbf{x}^{t}, r^{t}\right\}_{t} \quad r^{t} \mid \mathbf{x}^{t} \sim \text { Bernoulll }\left(y^{t}\right) \\
& y=P\left(C_{1} \mid \mathbf{x}\right)=\frac{1}{1+\exp \left[-\left(\mathbf{w}^{T} \mathbf{x}+w_{0}\right)\right]} \\
& I\left(\mathbf{w}, w_{0} \mid X\right)=\prod_{t}\left(y^{t}\right)^{\left(r^{\prime}\right)}\left(1-y^{t}\right)^{\left(1-r^{t}\right)} \\
& E=-\log I \\
& E\left(\mathbf{w}, w_{0} \mid X\right)=-\sum_{t} r^{t} \log y^{t}+\left(1-r^{t} \log \left(1-y^{t}\right)\right.
\end{aligned}
$$

$K>2$ Classes

$X=\left\{\mathbf{x}^{t}, \mathbf{r}^{t}\right\}_{t} r^{t} \mid \mathbf{x}^{t} \sim \operatorname{Mult}_{k}\left(1, \mathbf{y}^{t}\right)$
$\log \frac{p\left(\mathbf{x} \mid C_{i}\right)}{p\left(\mathbf{x} \mid C_{k}\right)}=\mathbf{w}_{i}^{\top} \mathbf{x}+w_{i 0}^{o}$
$y=\hat{P}\left(C_{i} \mid \mathbf{x}\right)=\frac{\exp \left[\mathbf{w}_{\mathbf{w}}^{T} \mathbf{x}+w_{i 0}\right]}{\sum_{j=1}^{K} \exp \left[\mathbf{w}_{j}^{\top} \mathbf{x}+w_{j 0}\right.}, i=1, \ldots, K \quad$ softmax
$\prime\left(\left\{\mathbf{w}_{i}, w_{i 0}\right\}_{i} \mid X\right)=\prod \Pi\left(x_{i}^{t}\right)^{r}$
$E\left(\left\{\mathbf{w}_{i}, w_{i 0}\right\}_{i} \mid X\right)=-\sum r_{i}^{t} \log y_{i}^{t}$
$\Delta \mathbf{w}_{j}=\eta \sum_{\left(r_{j}^{t}-y_{j}^{t}\right) \mathbf{x}^{t} \quad \Delta w_{j 0}=\eta \sum\left(r_{j}^{t}-y_{j}^{t}\right), ~(t)}$

Learning to Rank

Ranking: A different problem than classification or regression

Let us say \boldsymbol{x}^{u} and \boldsymbol{x}^{v} are two instances, e.g., two movies
We prefer u to v implies that $g\left(x^{v}\right)>g\left(x^{v}\right)$
where $g(x)$ is a score function, here linear: $g(x)=\boldsymbol{w}^{\top} \boldsymbol{x}$
Find a direction w such that we get the desired ranks when instances are projected along w

Ranking Error
We prefer u to v implies that $g\left(x^{v}\right)>g\left(x^{v}\right)$, so error is $g\left(x^{v}\right)$-g(x^{v}), if $g\left(x^{v}\right)<g\left(x^{v}\right)$
$E\left(\boldsymbol{w} \mid\left\{r^{u}, r^{v}\right\}\right)=\sum_{r^{u}<r^{v}}\left[g\left(\boldsymbol{x}^{v} \mid \theta\right)-g\left(\boldsymbol{x}^{u} \mid \theta\right)\right]_{+}$
where a_{+}is equal to a if $a \geq 0$ and 0 otherwise.

Quadratic

$$
\log \frac{p\left(\mathbf{x} \mid C_{i}\right)}{p\left(\mathbf{x} \mid C_{K}\right)}=\mathbf{x}^{\top} \mathbf{W}_{i} \mathbf{x}+\mathbf{w}_{i}^{\top} \mathbf{x}+w_{i}
$$

Sum of basis functions:

$$
\log \frac{p\left(\mathbf{x} \mid C_{i}\right)}{p\left(\mathbf{x} \mid C_{k}\right)}=\mathbf{w}_{i}^{\top} \phi(\mathbf{x})+w_{i 0}
$$

where $\phi(x)$ are basis functions. Examples

- Hidden units in neural networks (Chapters 11 and 12)
\square Kernels in SVM (Chapter 13)
i2ml3e-chap11.pdf

${ }_{27}$

Neural Networks

Networks of processing units (neurons) with connections (synapses) between them
Large number of neurons: 10^{10}
Large connectitivity: 10^{5}
Parallel processing
Distributed computation/memory
Robust to noise, failures
Understanding the Brain
Levels of analysis (Marr, 1982)
Computational theory
2. Representation and algorithm
3. Hardware implementation

Reverse engineering: From hardware to theory
Parallel processing: SIMD vs MIMD
Neural net: SIMD with modifiable local memory
Learning: Update by training/experience

Training
Online (instances seen one by one) vs batch (whole sample) learning:

- No need to store the whole sample
\square Problem may change in time
- Wear and degradation in system components Stochastic gradient-descent: Update after a single pattern
Generic update rule (LMS rule):

$$
\Delta w_{i j}^{t}=\eta\left(r_{i}^{t}-y_{i}^{t}\right) x_{j}^{t}
$$

Classification
[10
\square Single sigmoid output
$y^{t}=\operatorname{sigmoid}\left(\mathbf{w}^{T} \mathbf{x}^{t}\right)$$E^{t}\left(\mathbf{w} \mid \mathbf{x}^{t}, \mathbf{r}^{t}\right)=-r^{t} \log y^{t}-\left(1-r^{t}\right) \log \left(1-y^{t}\right)$
$\square \mathrm{K}>2$ softmax outputs
$y^{t}=\frac{\exp \mathbf{w}_{\mathbf{X}}^{T} \mathbf{x}^{t}}{\sum_{k} \exp ^{\mathbf{w}} \mathbf{x}^{t} \mathbf{x}^{t}} \quad E^{t}\left(\left\{\mathbf{w}_{i}\right\}_{i} \mid \mathbf{x}^{t}, \mathbf{r}^{t}\right)=-\sum_{i} r_{i}^{t} \log y_{i}^{t}$
$\Delta w_{i j}^{t}=\eta\left(r_{i}^{t}-y_{i}^{t}\right)_{j}^{t}$

Learning Boolean AND

K>2 Classes

른
 $E(\mathbf{W}, \mathbf{v} \mid X)=-\sum \sum r_{i}^{t} \log y_{i}^{t}$

$$
\begin{aligned}
& \Delta v_{i h}=\eta \sum_{t}^{t}\left(r_{i}^{t}-y_{i}^{t}\right)_{h}^{t} \\
& \Delta w_{h j}=\eta \sum_{t}\left[\sum_{i}\left(r_{i}^{t}-y_{i}^{t}\right)_{i h}\right] z_{h}^{t}\left(1-z_{h}^{t}\right) x_{j}^{t}
\end{aligned}
$$

Multiple Hidden Layers

MLP with one hidden layer is a universal
MLP with one hidden layer is a universal
approximator (Hornik et al., 1989), but using multiple layers may lead to simpler networks
$z_{1 h}=\operatorname{sigmoid}\left(w_{1 h}^{\top} \mathbf{x}\right)=\operatorname{sigmoid}\left(\sum_{j=1}^{d} w_{1 n} x_{j}+w_{1 h 0}\right), h=1, \ldots, H_{1}$
$z_{21}=\operatorname{sigmoio}\left(w_{21}^{T} \boldsymbol{z}_{1}\right)=\operatorname{sigmoid}\left(\sum_{k=1}^{H} w_{2 k h} z_{10}+w_{210}\right), l=1, \ldots, H_{2}$
$y=\mathbf{v}^{\top} \boldsymbol{Z}_{2}=\sum_{v=1}^{\mu v_{1}} v_{2} z_{2 l}+v_{0}$

Improving Convergence

- Momentum

$$
\Delta w_{i}^{t}=-\eta \frac{\partial E^{t}}{\partial w_{i}}+\alpha \Delta w_{i}^{t-1}
$$

\square Adaptive learning rate

$$
\Delta \eta=\left\{\begin{array}{cc}
+a & \text { if } E^{t+\tau}<E^{t} \\
-b \eta & \text { otherwise }
\end{array}\right.
$$

Overfitting/Overtraining

${ }_{3}$
Unfolding in Time Deep Networks

Dimensionality Reduction

Autoencoder networks

Recurrent Networks

i2ml3e-chap12.pdf

Adaptive Resonance Theory

Training RBF

\square Hybrid learning:
\square First layer centers and spreads:
Unsupervised k-means
\square Second layer weights
Supervised gradient-descent
\square Fully supervised
(Broomhead and Lowe, 1988; Moody and Darken, 1989)

Rule-Based Knowledge

IF $\left(\left(x_{1} \approx a\right) \operatorname{AND}\left(x_{2} \approx b\right)\right)$ OR $\left(x_{3} \approx c\right)$ THEN $y=0.1$
$p_{1}=\exp \left[-\frac{\left(x_{1}-a\right)^{2}}{2 s_{1}^{2}}\right] \cdot \exp \left[-\frac{\left(x_{2}-b\right)^{2}}{2 s_{2}^{2}}\right]$ with $w_{1}=0.1$
$p_{2}=\exp \left[-\frac{\left(x_{3}-c\right)^{2}}{2 s_{3}^{2}}\right]$ with $w_{2}=0.1$
\square Incorporation of prior knowledge (before training)
Rule extraction (after training) (Tresp et al., 1997)

- Fuzzy membership functions and fuzzy rules

Introduction
3 Divide the input space into local regions and learn simple (constant/linear) models in each patch

- Unsupervised: Competitive, online clustering

Supervised: Radial-basis functions, mixture of
experts

Self-Organizing Maps
\qquad
Units have a neighborhood defined; $\boldsymbol{m}_{\text {}}$ is "between" \boldsymbol{m}_{i-1} and \boldsymbol{m}_{i+1}, and are all updated together

Regression

$E\left(\left\{\mathbf{m}_{h}, s_{h}, w_{i h}\right\}_{i, h} \mid X\right)=\frac{1}{2} \sum_{t} \sum_{i}\left(r_{i}^{t}-y_{i}^{t}\right)^{2}$
$y_{i}^{t}=\sum_{h=1}^{H} w_{i h} p_{h}^{t}+w_{i 0}$
$\Delta w_{i h}=\eta \sum_{i}^{\left(r_{i}^{t}-y_{i}^{t}\right) p_{h}^{t}}$
$\Delta m_{h j}=\eta \sum_{t}\left[\sum_{i}\left(r_{i}^{t}-y_{i}^{t}\right) \omega_{i h}\right] p_{h}^{t} \frac{\left(x_{j}^{t}-m_{b j}\right)}{s_{h}^{2}}$
$\Delta s_{h}=\eta \sum_{t}\left[\sum_{i}\left(r_{i}^{t}-y_{i}^{t}\right) \omega_{i h}\right] p_{h}^{t} \frac{\left\|\mathbf{x}^{t}-\mathbf{m}_{h}\right\|^{2}}{s_{h}^{3}}$

Normalized Basis Functions
$\begin{aligned} g_{h}^{t} & =\frac{p_{n}^{t}}{\sum_{l=1}^{h} p_{l}^{t}} \\ & =\frac{\exp \left[-\left\|\mathbf{x}^{t}-\mathbf{m}_{h}\right\|^{2} / 2 s_{n}^{2}\right]}{\sum_{l} \exp \left[-\left\|\mathbf{x}^{t}-\mathbf{m}_{l}\right\|^{2} / 2 s_{l}^{2}\right]} \\ y_{i}^{t} & =\sum_{n}^{H} w_{i} g_{n}^{t}\end{aligned}$

$$
y_{i}^{t}=\sum_{h=1}^{H} w_{i} g_{n}^{t}
$$

$$
\Delta w_{i h}=\eta \sum_{t}\left(r_{i}^{t}-y_{i}^{t}\right) y_{n}^{t}
$$

$\Delta m_{h j}=\eta \sum_{t} \sum_{i}\left(r_{i}^{t}-y_{i}^{t}\right)\left(w_{i h}-y_{i}^{t}\right) g_{h}^{t} \frac{\left(x_{j}^{t}-m_{b^{\prime}}\right)}{s_{h}^{t}}$
Competitive Learning
$E\left(\left\{\mathbf{m}_{i}\right\}_{j=1}^{k} \mid X\right)=\sum_{i} \sum_{i} b_{i}^{t} \mid \mathbf{x}^{t}-\mathbf{m}_{i} \|$
$b_{i}^{t}= \begin{cases}1 & \text { if }\left\|\mathbf{x}^{t}-\mathbf{m}_{i}\right\|=m_{i n}\left\|\mathbf{x}^{i}-\mathbf{m}_{i}\right\| \\ 0 & \text { otherwise }\end{cases}$
Batch k-means: $\mathbf{m}_{i}=\frac{\sum_{t} b_{i}^{t} \mathbf{x}^{t}}{\sum_{t} b_{i}^{t}}$
Online k-means:
$\Delta m_{i j}=-\eta \frac{\partial E^{t}}{\partial m_{i j}}=\eta b_{i}^{t_{i}\left(x_{j}^{t}-m_{i j}\right)}$

```
Initialize m}\mp@subsup{\boldsymbol{m}}{i,i}{\prime}=1,\ldots,k,\mathrm{ for example, to }k\mathrm{ random }\boldsymbol{x
Repeat
        X in random orde
        i\leftarrowarg minj||\mp@subsup{\boldsymbol{x}}{}{t}-\mp@subsup{\boldsymbol{m}}{j}{\prime}|
UU\mp@code{Mil m}\mp@subsup{\boldsymbol{m}}{i}{}-\mp@subsup{\boldsymbol{m}}{i}{\prime}+\eta
```

Winner-take-all
network

Local vs Distributed Representation

Local representation in the space of $\left(p_{1}, p_{2}, p_{3}\right)$	Distributed representation in the space of $\left(h_{1}, h_{2}\right)$
$x^{*}:(1.0,0.0,0.0)$	$x^{4}:(1.0,1.0)$
$x^{6}:(0.0,0.0,1.0)$ $x:(1.0,0.0,0.0)$	$\boldsymbol{x}^{\boldsymbol{x}^{6}:(0.0, ~ 1.0)}$ $\boldsymbol{x}^{c}:(1.0,0.0)$

Rules and Exceptions

Regression $\quad \rho\left(r^{\prime} \mathbf{x}^{\prime}\right)=\Pi \frac{1}{\sqrt{2 \pi \tau}} \operatorname{ex} \times\left[-\frac{\left(r^{2}-y_{i}^{\prime}\right)}{2 \sigma^{2}}\right)$

$y_{m}^{\prime}=w_{m}$ is the constantitit
$\Delta w_{m}=\eta \sum_{1}\left(r_{i}^{t}-y_{m}^{\prime}\right) f_{n}^{t} \Delta m_{w}=\eta \sum\left(f_{n}^{\prime}-g_{n}^{2} \frac{\left(x_{j}^{x}-m_{n}\right)}{s_{n}^{2}}\right.$

$p(h \mid \mathbf{r}, \mathbf{x})=\frac{p(h \mid \mathbf{x}) p(\mathbf{r} \mid h, \mathbf{x})}{\sum_{\mid} p(| | \mathbf{x}) p(\mathbf{r} \mid l, \mathbf{x})}$

$$
\begin{aligned}
& \text { Classification } \\
& \mathcal{L}\left(\left\{\mathbf{m}_{h}, s_{n}, w_{b}\right\}_{i, h} \mid X\right)=\sum_{t} \log \sum_{h} g_{n}^{t} \prod_{i}\left(y_{y i h}^{t}\right)^{r^{\prime}} \\
& =\sum_{t} \log \sum_{h} g_{n}^{t} \exp \left[\sum_{i}^{i} r_{i}^{t} \log y_{i n}^{t}\right] \\
& y_{t h}^{t}=\frac{\operatorname{expw}_{i h}}{\sum_{k} \operatorname{expo}_{k h}} \\
& f_{h}^{t}=\frac{g_{h}^{t} \exp ^{[}\left[\sum_{i} r_{i}^{t} \log y_{y_{h}^{t}}^{t}\right]}{\sum_{j} g_{i}^{t} \exp \left[\sum_{i} r_{i}^{t} \log y_{i l}^{t}\right]}
\end{aligned}
$$

EM for RBF (Supervised EM)

E-step: $\quad f_{h}^{t} \equiv p\left(\mathbf{r} \mid h, \mathbf{x}^{t}\right)$
\square M-step: $\quad \mathbf{m}_{h}=\frac{\sum_{\lambda_{n}} f_{h}^{t} \mathbf{x}^{t}}{\sum_{t} f_{h}^{t}}$
$s_{h}=\frac{\sum_{t} f_{h}^{t}\left(\mathbf{x}^{t}-\mathbf{m}_{h}\right)\left(\mathbf{x}^{t}-\mathbf{m}_{h}\right)^{T}}{\sum f_{h}^{t}}$
$w_{i h}=\frac{\sum_{t} f_{h}^{t} r_{i}^{t}}{\sum_{t} f_{h}^{t}}$

MoE as Models Combined
\qquad

\square Radial gating:
$g_{h}^{t}=\frac{\exp \left[-\left\|\mathbf{x}^{t}-\mathbf{m}_{h}\right\|^{2} / 2 s_{h}^{2}\right]}{\sum_{i} \exp \left[-\left\|\mathbf{x}^{t}-\mathbf{m}_{l}\right\|^{2} / 2 s_{l}^{2}\right]}$
Softmax gating:
$g_{h}^{t}=\frac{\exp \left[\mathbf{m}_{h}^{T} \mathbf{x}^{t}\right]}{\sum_{l} \exp \left[\mathbf{m}_{l}^{T} \mathbf{x}^{t}\right]}$

Hierarchical Mixture of Experts
\qquad
Tree of $M \circ E$ where each $M O E$ is an expert in a higher-level MoE
\square Soft decision tree: Takes a weighted (gating) average of all leaves (experts), as opposed to using a single path and a single leaf
Can be trained using EM (Jordan and Jacobs, 1994)

Kernel Machines

$3 \square$.
Discriminant-based: No need to estimate densities
first

Define the discriminant in terms of support vectors
The use of kernel functions, application-specific
measures of similarity
No need to represent instances as vectors
Convex optimization problems with a unique solution

Cooperative MoE
\square Regression

$$
\begin{aligned}
& E\left(\left\{\mathbf{m}_{h}, s_{h}, w_{i h}\right\}_{i, h} \mid X\right)=\frac{1}{2} \sum_{t} \sum_{i}\left(r_{i}^{t}-y_{i}^{t}\right)^{2} \\
& \Delta \mathbf{v}_{i h}=\eta \sum_{t}\left(r_{i}^{t}-y_{i h}^{t}\right) g_{h}^{t} \mathbf{x}^{t} \\
& \Delta m_{h j}=\eta \sum_{t}\left(r_{i}^{t}-y_{i h}^{t}\right)\left(w_{i h}^{t}-y_{i}^{t}\right) g_{h}^{t} x_{j}^{t}
\end{aligned}
$$

i2ml3e-chap13.pdf

Optimal Separating Hyperplane
$\chi=\left\{\mathbf{x}^{t}, r^{t}\right\}_{t}$ where $r^{t}=\left\{\begin{aligned}+1 & \text { if } \mathbf{x}^{t} \in C_{1} \\ -1 & \text { if } \mathbf{x}^{t} \in C^{2}\end{aligned}\right.$
find \mathbf{w} and w_{0} such that
$\mathbf{w}^{\top} \mathbf{x}^{t}+w_{0} \geq+1$ for $r^{t}=+1$
$\mathbf{w}^{\top} \mathbf{x}^{t}+w_{0} \leq+1$ for $r^{t}=-1$ which can be rewritten as $r^{t}\left(\mathbf{w}^{\top} \mathbf{x}^{t}+w_{0}\right) \geq+1$

Competitive MoE: Regression
표
$\mathcal{L}\left(\left\{\mathbf{m}_{h}, s_{h}, w_{i h}\right\}_{i, h} \mid X\right)=\sum_{t} \log \sum_{h} g_{h}^{t} \exp \left[-\frac{1}{2} \sum_{i}\left(r_{i}^{t}-y_{i h}^{t}\right)^{2}\right]$

$$
y_{i h}^{t}=w_{i h}=\mathbf{v}_{i h} \mathrm{t}^{t}
$$

$\Delta \mathbf{v}_{i h}=\eta \sum_{\left(r_{i}^{t}-y_{i h}^{t}\right) f_{h}^{t} \mathbf{x}^{t}, ~}^{y_{n}^{h}}$
$\Delta \mathbf{m}_{h}=\eta \sum_{t}\left(f_{h}^{t}-g_{h}^{t}\right) x^{t}$

Margin

Learning Vector Quantization
$\square H$ units per class prelabeled (Kohonen, 1990)
\square Given $\mathbf{x}, \boldsymbol{m}_{\boldsymbol{i}}$ is the closest:
$\int \Delta \mathbf{m}_{i}=\eta\left(\mathbf{x}^{t}-\mathbf{m}_{i}\right) \quad$ if label $\left(\mathbf{x}^{t}\right)=$ label $\left(\mathbf{m}_{i}\right)$
$\left\{\Delta \mathbf{m}_{i}=-\eta\left(\mathbf{x}^{t}-\mathbf{m}_{i}\right)\right.$ otherwise

Competitive MoE: Classification
$\mathcal{L}\left(\left\{\mathbf{m}_{h}, s_{h}, w_{i h}\right\}_{i, h} \mid X\right)=\sum_{t} \log \sum_{h} g_{h}^{t} \prod_{i}\left(y_{i h}^{t}\right)^{i^{t}}$
$=\sum_{t} \log \sum_{h} g_{h}^{t} \exp \left[\sum_{i} r_{i}^{t} \log y_{i h}^{t}\right]$
$y_{i h}^{t}=\frac{\operatorname{expw}_{i h}}{\sum_{k} \exp _{k h}}=\frac{\operatorname{expv}_{i n} \mathbf{x}^{t}}{\sum_{k} \exp _{k h} \mathbf{x}^{t}}$
In RBF, each local fit is a constant, $w_{i b}$, second layer weight
In MoE, each local fit is
a linear function of x, a ${ }^{\text {local }}$ W. $_{\text {Kpen }}^{\text {pen }} \mathbf{V}_{i h} \mathbf{x}^{t}$
(Jacobs et al., 1991)

\square

KERNEL MACHINES

Margin

Soft Margin Hyperplane

$$
\begin{aligned}
& \min \frac{1}{2}\|\boldsymbol{w}\|^{2} \text { subjectto } r^{t}\left(\mathbf{w}^{\top} \mathbf{x}^{t}+w_{0}\right) \geq+1, \forall t \\
& L_{p}=\frac{1}{2}\|\boldsymbol{w}\|^{2}-\sum_{t=1}^{N} \alpha^{t}\left[r^{t}\left(\mathbf{w}^{\top} \mathbf{x}^{t}+w_{0}\right)-1\right] \\
& \quad=\frac{1}{2}\|\boldsymbol{w}\|^{2}-\sum_{t=1}^{N} \alpha^{t} r^{t}\left(\mathbf{w}^{\top} \mathbf{x}^{t}+w_{0}\right)+\sum_{t=1}^{N} \alpha^{t} \\
& \frac{\partial L_{p}}{\partial \mathbf{w}}=0 \Rightarrow \mathbf{w}=\sum_{t=1}^{N} \alpha^{t} r^{t} \mathbf{x}^{t} \\
& \frac{\partial L_{p}}{\partial w_{0}}=0 \Rightarrow \sum_{t=1}^{N} \alpha^{t} r^{t}=0
\end{aligned}
$$

$$
\begin{aligned}
L_{d} & =\frac{1}{2}\left(\mathbf{w}^{\top} \mathbf{w}\right)-\mathbf{w}^{T} \sum_{t} \alpha^{t} r^{t} \mathbf{x}^{t}-w_{0} \sum_{t} \alpha^{t} r^{t}+\sum_{t} \alpha^{t} \\
& =-\frac{1}{2}\left(\mathbf{w}^{\top} \mathbf{w}\right)+\sum_{t} \alpha^{t} \\
& \left.=-\frac{1}{2} \sum_{t} \sum_{s} \alpha^{t} \alpha^{s} r^{t} r^{s} \mathbf{x}^{t}\right)^{T} \mathbf{x}^{s}+\sum_{t} \alpha^{t}
\end{aligned}
$$

Most α^{t} are 0 and only a small number have $\alpha^{\prime}>0$; they are the support vectors

- Not linearly separable

$$
r^{t}\left(\mathbf{w}^{\top} x^{t}+w_{0}\right) \geq 1-\xi^{t}
$$

- Soft error

$$
\text { subjectto } \sum_{t}^{s} \alpha^{t} r^{t}=0 \text { and } \alpha^{t} \geq 0, \forall t
$$

$$
\sum_{t} \xi^{t}
$$

- New primal is
$L_{\rho}=\frac{1}{2}\|\mathbf{w}\|^{2}+C \sum_{t} \xi^{t}-\sum_{t} \alpha^{t}\left[r^{t}\left(\mathbf{w}^{T} x^{t}+\mathbf{w}_{0}\right)-1+\xi^{t}\right]-\sum_{t} \mu^{t} \xi^{t}$

v-SVM

(13) $\min ^{1}|w|^{2}-v \rho+\frac{1}{N} \sum^{\xi^{t}}$
$\min \frac{1}{2}\|\mathbf{w}\|^{2}-v \rho+\frac{1}{N} \sum_{t} \xi^{t}$
subjecto

$$
r^{t}\left(\mathbf{w}^{\top} \mathbf{x}^{t}+w_{0}\right) \geq \rho-\xi^{t}, \xi^{t} \geq 0, \rho \geq 0
$$

$$
L_{d}=-\frac{1}{2} \sum_{t=1}^{N} \sum_{s} \alpha^{t} \alpha^{s} r^{t} r^{s}\left(x^{t}\right)^{T} x^{s}
$$

subjecto

$$
\sum_{t} \alpha^{t} r^{t}=0,0 \leq \alpha^{t} \leq \frac{1}{N}, \sum_{t} \alpha^{t} \leq v
$$

controls the fraction of support vectors

Defining kernels

Kernel "engineering"
Defining good measures of similarity
\square String kernels, graph kernels, image kernels, ...
\square Empirical kernel map: Define a set of templates \boldsymbol{m} and score function $s\left(x, m_{i}\right)$
$\phi\left(x^{\dagger}\right)=\left[s\left(x^{\dagger}, m_{1}\right), s\left(x^{\dagger}, m_{2}\right), \ldots, s\left(x^{t}, m_{M}\right)\right]$
and
$K\left(x, x^{\dagger}\right)=\phi(x)^{\top} \phi\left(x^{\dagger}\right)$

Kernel Trick

- Preprocess input x by basis functions

$$
z=\varphi(x) \quad g(z)=w^{\top} \mathbf{z}
$$

$g(x)=w^{\top} \boldsymbol{\varphi}(x)$

- The SVM solution

$$
\mathbf{w}=\sum_{t} \alpha^{t} r^{t} \mathbf{z}^{t}=\sum_{t} \alpha^{t} r^{t} \boldsymbol{\varphi}\left(\mathbf{x}^{t}\right)
$$

$g(\mathbf{x})=\mathbf{w}^{\top} \boldsymbol{\varphi}(\mathbf{x})=\sum \alpha^{t} r^{t} \boldsymbol{\varphi}\left(\mathbf{x}^{t}\right)^{\top} \boldsymbol{\varphi}(\mathbf{x})$
$g(\mathbf{x})=\sum_{t} \alpha^{t} r^{t} K\left(\mathbf{x}^{t}, \mathbf{x}\right)$

Multiple Kernel Learning

- Fixed kernel combination	$K(x, y)=\left\{\begin{array}{c} c k(x, y) \\ K_{1}(\mathbf{x}, \mathbf{x})+K_{2}(\mathbf{x}, \mathbf{y}) \\ k_{1}(\mathbf{x}, \mathbf{y}) k_{2}(\mathbf{x}, \mathbf{y}) \end{array}\right.$
- Adaptive kernel combination	
$K(x, y)=\sum_{i=1}^{m} \eta K_{1}(\mathbf{x}, \mathbf{y})$	
$\begin{aligned} & \left.L_{d}=\sum_{i}^{\alpha^{2}}-\frac{1}{2}\right)^{2} \\ & \left.g(x)=\sum_{i} \alpha^{2} r^{\prime}\right\rangle \end{aligned}$	$\begin{aligned} & \alpha^{\prime} \alpha^{\prime} \alpha^{\prime} r^{\prime} \sum \sum_{n, k}\left(\mathbf{x}^{\prime} \mathbf{x}^{s}\right) \\ & k_{1}\left(\mathbf{x}^{\prime}, \mathbf{x}\right) \end{aligned}$

- Localized kernel combination $\quad g(\mathbf{x})=\sum \alpha^{\alpha^{\prime} r^{\prime}} \sum_{l}(\mathbf{x} \mid \theta) K\left(\mathbf{x}^{\prime}, \mathbf{x}\right)$

Kernel Regression

Vectorial Kernels

- Polynomials of degree q
$K\left(\mathbf{x}^{t}, \mathbf{x}\right)=\left(\mathbf{x}^{T} \mathbf{x}^{t}+1\right)^{q}$
$K(\mathbf{x}, \mathbf{y})=\left(\mathbf{x}^{\top} \mathbf{y}+1\right)^{2}$
$=\left(x_{1} y_{1}+x_{2} y_{2}+1\right)^{2}$
$=1+2 x_{1} y_{1}+2 x_{2} y_{2}+2 x_{1} x_{2} y_{1} y_{2}+x_{1}^{2} y_{1}^{2}+x_{2}^{2} y_{2}^{2}$
$\phi(\mathbf{x})=\left[1, \sqrt{2} x_{1}, \sqrt{2} x_{2}, \sqrt{2} x_{1} x_{2}, x_{1}^{2}, x_{2}^{2}\right]^{T}$

Multiclass Kernel Machines
13 - -ys-all

- Pairwise separation
\square Error-Correcting Output Codes (section 17.5
\square Single multiclass optimization

$$
\min \frac{1}{2} \sum_{i=1}^{\kappa}\left\|\mathbf{w}_{\|}\right\|^{2}+c \sum_{i} \sum_{t} \xi_{i}^{t}
$$

subjectto
$\mathbf{w}_{2^{\prime}}{ }^{\top} \mathbf{x}^{t}+w_{z^{\prime} 0} \geq \mathbf{w}_{i}^{\top} \mathbf{x}^{t}+w_{i 0}+2-\xi_{i}^{t}, \forall i \neq z^{t}, \xi_{i}^{t} \geq 0$

Kernel Machines for Ranking
\qquad
We require not only that scores be correct order but at least +1 unit margin.
Linear case:
$\min \frac{1}{2}\left\|\mathbf{w}_{i}\right\|^{2}+c \sum_{t} \xi_{i}^{t}$
subjecto
$\mathbf{w}^{\top} \mathbf{x}^{u} \geq \mathbf{w}^{\top} \mathbf{x}^{v}+1-\xi^{t}, \forall t: r^{u} \prec r^{v}, \xi_{i}^{t} \geq 0$

One-Class Kernel Machines

Graphical Models

\square Aka Bayesian networks, probabilistic network
Nodes are hypotheses (random vars) and the probabilities corresponds to our belief in the truth of the hypothesis
Arcs are direct influences between hypotheses The structure is represented as a directed acyclic graph (DAG)
The parameters are the conditional probabilities in the arcs (Pearl, 1988, 2000; Jensen, 1996; Lauritzen, 1996)

${ }^{24}$
i2ml3e-chap14.pdf

Causes and Bayes' Rule

Case 3: Head-to-Head
\qquad

Large Margin Nearest Neighbor
Learns the matrix M of Mahalanobis metric $D\left(x^{i}, x^{i}\right)=\left(x^{i}-x^{i}\right)^{\top} M\left(x^{i}-x^{i}\right)$
For three instances i, j, and l, where i and i are of the same class and I different, we require
$D\left(x^{i}, x^{\prime}\right)>D\left(x^{i}, x^{i}\right)+1$
and if this is not satisfied, we have a slack for the difference and we learn M to minimize the sum of such slacks over all i, j, I triples (j and $/$ being one of k neighbors of i, over all i)

Conditional Independence
\square and Y are independent if
$P(X, Y)=P(X) P(Y)$
X and Y are conditionally independent given Z if $P(X, Y \mid Z)=P(X \mid Z) P(Y \mid Z)$
or
$P(X \mid Y, Z)=P(X \mid Z)$
Three canonical cases: Head-to-tail, Tail-to-tail,
head-to-head

Causal vs Diagnostic Inference

subject to
$D\left(\boldsymbol{x}^{i}, \boldsymbol{x}^{i}\right) \geq \mathcal{D}\left(\boldsymbol{x}^{i}, \boldsymbol{x}^{j}\right)+1-\xi^{i j}$, if $r^{i}=r^{j}$ and $r^{i} \neq r$ $\xi^{\prime \prime l} \geq 0$
LMCA algorithm (Torresani and Lee 2007) uses a similar approach where $\mathbf{M}=\mathbf{L}^{\top} \mathbf{L}$ and learns \mathbf{L}

Case 2: Tail-to-Tail
$P(X, Y, Z)=P(X) P(Y \mid X) P(Z \mid X)$

Exploiting the Local Structure

$P(C, S, R, W, F)=P(C) P(S \mid C) P(R \mid C) P(W \mid S, R) P(F \mid R)$ $P\left(X_{1}, \ldots X_{d}\right)=\prod_{t=1}^{d} P\left(X_{l} \mid\right.$ parents $\left.\left(x_{i}\right)\right)$

Junction Trees

If X does not separate E^{+}and E,', we convert it into a junction tree and then apply the polytree algorithm

Influence Diagrams

Classification

\qquad

Belief Propagation (Pearl, 1988)
Chain:

$P(X \mid E)=\frac{P(E \mid X) P(X)}{P(X)}=\frac{P\left(E^{+}, E^{-} \mid X\right) P(X)}{P(E)}$	$\pi(X)=\sum_{U} P(X \mid U) \pi(U)$
	$=\frac{P\left(E^{+} \mid X\right) P\left(E^{-} \mid X\right) P(X)}{P(E)}=\alpha \pi(X) \lambda(X)$

$\lambda(X)=\sum_{r} P(Y \mid X) \lambda(Y)$

Undirected Graphs: Markov Random

 Fields\square In a Markov random field, dependencies are symmetric, for example, pixels in an image
\square In an undirected graph, A and B are independent if removing C makes them unconnected.
Potential function $\Psi_{c}\left(X_{c}\right)$ shows how favorable is the particular configuration X over the clique C
The joint is defined in terms of the clique potentials $p(X)=\frac{1}{z} \prod_{c} \psi_{c}\left(X_{c}\right)$ where normalizer $z=\sum_{x} \prod_{c} \psi_{c}\left(X_{c}\right)$

Factor Graphs

Define new factor nodes and write the joint in terms of them

Learning a Graphical Model
Learning the conditional probabilities, either as tables (for discrete case with small number of tables (for discrete case with smalin
Learning the structure of the graph: Doing a statespace search over a score function that uses both goodness of fit to data and some measure of complexity
Naive Bayes' Classifier

$p(x \mid C)=p\left(x_{1} \mid C\right) p\left(x_{2} \mid C\right) \ldots p\left(x_{d} \mid C\right)$

Polytrees

$\pi(X)=P\left(X \mid E_{x}^{+}\right)=\sum_{u_{1}} \sum_{U_{2}} \cdots \sum_{U_{u}} P\left(X \mid U_{1}, U_{2}, \cdots, U_{k} \prod_{i=1}^{k} \pi_{x}\left(U_{U}\right)\right.$ $\pi_{y_{i}}(X)=\alpha \prod_{s=1} \lambda_{v_{s}}(X) \pi(X)$

$\lambda_{x}\left(U_{i}\right)=\beta \sum_{x} \lambda(X) \sum_{U} P\left(X \mid U_{1}, U_{2}, \cdots, U_{k}\right) \prod_{r=1} \pi_{x}\left(U_{r}\right)$
$\lambda(x)=\prod_{i=1}^{m} \lambda_{r}(x)$
How can we model $P\left(X \mid U_{1}, U_{2}, \ldots, U_{k}\right)$ cheaply?

i2ml3e-chap15.pdf
Modeling dependencies in input; no longer iid
\square Modeling dependencies in input; no longer iid
\square Sequences:

- Temporal: In speech; phonemes in a word (dictionary), words in a sentence (syntax, semantics of the language).
In handwriting, pen movements
\square Spatial: In a DNA sequence; base pairs

Discrete Markov Process

$\square N$ states: $S_{1}, S_{2}, \ldots, S_{N}$ State at "time" $t, q_{t}=S$
First-order Marko

$$
\begin{aligned}
& P\left(q_{t+1}=S_{i} \mid q_{t}=S_{i}, q_{t-1}=S_{k}, \ldots\right)=P\left(q_{t+1}=s_{i} \mid q_{t}=S_{i}\right)
\end{aligned}
$$

- Transition probabilities

\square Initial probabilities

$$
\pi_{i} \equiv P\left(q_{1}=S_{i}\right) \quad \sum_{i=1}^{N} \pi_{i}=1
$$

Hidden Markov Models

\qquad
\square States are not observable
Discrete observations $\left\{v_{1}, v_{2}, \ldots, v_{M}\right\}$ are recorded; a Discrete observations $\left\{v_{1}, v_{2}, \ldots, v_{M}\right\}$
probabilistic function of the state
probabilistic function o
Emission probabilities

$$
b_{i}(m) \equiv P\left(O_{t}=v_{m} \mid q_{t}=S_{i}\right)
$$

Example: In each urn, there are balls of different colors, but with different probabilities.
For each observation sequence, there are multiple state sequences

Evaluation

BI

Forward variable:
$\alpha_{t}(i) \equiv P\left(O_{1} \cdots O_{t}, q_{t}=S_{i} \mid \lambda\right)$
Initialization:
$\alpha_{1}(i)=\pi_{i}, b_{i}\left(O_{1}\right)$
Recursion:
Recursion:
$\alpha_{t+1}(j)=\left[\sum_{i=1}^{N} \alpha_{t}(i) a_{i j}\right] b_{j}\left(O_{t+1}\right)$

$$
P(0 \mid \lambda)=\sum_{i=1}^{N} \alpha_{T}(i)
$$

Learning

$$
\begin{aligned}
& \xi_{t}(i, j) \equiv P\left(a_{t}=s_{i}, q_{t+1}=s_{j} \mid 0, \lambda\right) \\
& \xi_{t}(i, j)=\frac{\alpha_{t}(i) a_{i j} b_{j}\left(o_{t+1}\right) \beta_{t+1}(j)}{\sum_{k} \sum_{i} \alpha_{t}(k) a_{k j} b_{i}\left(o_{t+1}\right) \beta_{t+1}(l)}
\end{aligned}
$$

Baum-Welch algorithm(EM) :
$z_{i}^{t}=\left\{\begin{array}{ll}1 & \text { if } q_{t}=s_{i} \\ 0 & \text { otherwise }\end{array} z_{i j}^{t}= \begin{cases}1 & \text { if } q_{t}=S_{i} \text { and } q_{t+1}=S_{j} \\ 0 & \text { otherwise }\end{cases}\right.$

Stochastic Automaton

HMM Unfolded in Time

Backward variable:
$\beta_{t}(i) \equiv P\left(O_{t+1} \cdots O_{T} \mid q_{t}=S_{i}, \lambda\right)$

Initialization:

$\beta_{T}(i)=1$
$\beta_{T}(i)=1$
Recursion:
$\beta_{t}(i)=\sum_{j=1}^{N} a_{j} b_{j}\left(O_{t+1}\right) \beta_{t+1}(j)$

$t+1$

Baum-Welch (EM)
E-step: $E\left[z_{i}^{t}\right]=\gamma_{t}(i) \quad E\left[z_{i j}^{t}\right]=\xi_{t}(i, j)$
M-step:

$$
\begin{aligned}
& \hat{b}_{j}(m)=\frac{\sum_{k=1}^{k} \sum_{k=1}^{k-1} \nu_{t}^{k}(j)\left(\sum_{k=1}^{k}=v_{m}\right)}{\sum_{k=1}^{k} \sum_{l=1}^{\hbar k-1} \gamma_{t}^{\kappa}(i)}
\end{aligned}
$$

-

Three urns each full of balls of one color
S_{1} : red, S_{2} : blue, S_{3} : green

$$
\begin{aligned}
& \Pi=[0.5,0.2,0.3]^{\top} \quad \mathbf{A}=\left[\begin{array}{lll}
0.4 & 0.3 & 0.3 \\
0.2 & 0.6 & 0.2 \\
0.1 & 0.1 & 0.8
\end{array}\right] \\
& O=\left\{S_{1}, S_{1}, S_{3}, S_{3}\right\} \\
& P(O \mid \mathbf{A}, \Pi)=P\left(S_{1}\right) \cdot P\left(S_{1} \mid S_{1}\right) \cdot P\left(S_{3} \mid S_{1}\right) \cdot P\left(S_{3} \mid S_{3}\right) \\
& =\pi_{1} \cdot a_{11} \cdot a_{13} \cdot a_{33} \\
& =0.5 \cdot 0.4 \cdot 0.3 \cdot 0.8=0.048
\end{aligned}
$$

Elements of an HMM

- N : Number of states

M: Number of observation symbols

- $\mathbf{A}=\left[a_{i j}\right]: N$ by N state transition probability matrix

B = $b_{i}(m): N$ by M observation probability matrix
$\Pi=\left[\pi_{i}\right]: N$ by 1 initial state probability vector
$\lambda=(\mathbf{A}, \mathbf{B}, \mathbf{\Pi})$, parameter set of HMM

Finding the State Sequence

$\gamma_{t}(i)$	$\equiv P\left(q_{t}=S_{i} \mid O, \lambda\right)$
	$=\frac{\alpha_{t}(i) \beta_{t}(i)}{\sum_{j=1}^{N} \alpha_{t}(j) \beta_{t}(j)}$

Choose the state that has the highest probability,
for each time step:
$\mathrm{q}_{\mathrm{t}}^{*}=\arg \max _{i} \gamma_{\mathrm{t}}(\mathrm{i})$
No!

Continuous Observations
\square Discrete:

$$
P\left(o_{t} \mid q_{t}=s_{j}, \lambda\right)=\prod_{m=1}^{M} b_{j}(m)^{t_{m}^{\prime}} \quad r_{m}^{t}= \begin{cases}1 & \text { if } o_{t}=v_{m} \\ 0 & \text { otherwise }\end{cases}
$$

\square Gaussian mixture (Discretize using k-means):

$$
P\left(o_{t} \mid q_{t}=s_{j}, \lambda\right)=\sum_{t=1}^{L} P\left(G_{j}\right) p\left(o_{t} \mid q_{t}=s_{j}, G_{l}, \lambda\right)
$$

\square Continuous: ${ }_{P}\left(O_{t} \mid q_{t}=s_{j}, \lambda\right) \sim \mathcal{N}\left(\mu_{j}, \sigma_{j}^{2}\right)$
$\begin{aligned} & P\left(O_{t} \mid q_{t}=S_{j}, \lambda\right) \sim \mathcal{N}\left(\mu_{j}, \sigma_{j}^{2}\right) \\ & \text { Use EM to learn parameters, e.g., } \hat{\mu}_{j}=\frac{\sum_{t} \gamma_{t}(j) o_{t}}{\sum_{t} \gamma_{t}(j)}\end{aligned}$

\square Input-dependent transitions (Meila and Jordan 1996; Bengio and Frasconi, 1996):

$$
P\left(a_{t+1}=s_{j} \mid q_{t}=s_{i}, x^{t}\right)
$$

Time-delay input: $\quad \mathbf{x}^{t}=\mathbf{f}\left(O_{t-\tau}, \ldots, O_{t-1}\right)$

i2ml3e-chap16.pdf

Generative Model

$\begin{aligned} p\left(x^{\prime} \mid X\right) & =\frac{p\left(x^{\prime}, X\right)}{p(X)}=\frac{\int p\left(x^{\prime}, x, \theta\right) d \theta}{p(X)}=\frac{\int p(\theta) p(x \mid \theta) p\left(x^{\prime} \mid \theta\right) d \theta}{p(X)} \\ & =\int p\left(x^{\prime} \mid \theta\right) p(\theta \mid X) d \theta\end{aligned}$

Estimating the Parameters of a
Distribution: Continuous case

Bayesian Approach
Prior $p(\theta)$ allows us to concentrate on region where θ is likely to lie, ignoring regions where it's unlikely Instead of a single estimate with a single θ, we generate several estimates using several θ and average, weighted by how their probabilities Even if prior $p(\theta)$ is uninformative, (2) still helps. MAP estimator does not make use of (2):

$$
\theta_{M A P}=\operatorname{argmax} \max _{\theta}(\theta \mid X)
$$

Gaussian: Prior on Variance
\qquad
Let's define a prior (gamma) on precision $\lambda=1 / \sigma^{2}$
$p(\lambda) \sim \operatorname{gamma}\left(a_{0}, b_{0}\right)=\frac{1}{\Gamma\left(a_{0}\right)} b_{0}^{a_{0}} \lambda_{a_{0}-1} \exp \left(-b_{0} \lambda\right)$
$p(x \mid \lambda)=\prod_{t} \frac{\lambda^{1 / 2}}{\sqrt{2 \pi}} \exp \left[-\frac{\lambda}{2}\left(x^{t}-\mu\right)^{2}\right]$
$=\lambda^{N / 2}(2 \pi)^{-N / 2} \exp \left[-\frac{\lambda}{2} \sum_{t}\left(x^{t}-\mu\right)^{2}\right]$
$p(\lambda \mid X) \propto p(X \mid \lambda) p(\lambda)$
$\operatorname{gamma}\left(a_{N}, b_{N}\right) \quad a_{N}=a_{0}+N / 2=\frac{v_{0}+N}{2}$
$b_{N}=b_{0}+\frac{N}{2} s^{2}=\frac{v_{0}}{2} s_{0}^{2}+\frac{N}{2} s^{2}$

\square Left-to-right HMMs:

In classification, for each C_{i}, estimate $P\left(O \mid \lambda_{i}\right)$ by a separate HMM and use Bayes' rule \qquad

Rationale
3 ?
Parameters θ not constant, but random variables with a prior, $p(\theta)$

Bayes' Rule: $p(\theta \mid \mathrm{X})=\frac{p(\theta) p(\mathrm{X} \mid \theta)}{p(\mathrm{X})}$

Bayesian Approach
$p\left(x^{\prime} \mid X\right)=\int p\left(x^{\prime} \mid \theta\right) p(\theta \mid x) d \theta$
In certain cases, it is easy to integrate
Conjugate prior: Posterior has the same density as prio Sampling (Markov Chain Monte Carlo): Sample from the posterior and average
Approximation: Approximate the posterior with a model easier to integrate
Laplace approximation: Use a Gaussion
Variational approximation: Split the multivariate density into a set of simpler densities using independencies

Joint Prior and Making a Prediction
10 $p(\mu, \lambda)=p(\mu \mid \lambda) p(\lambda)$
$p(\mu, \lambda \mid X) \sim \operatorname{normal}-g a m m a\left(\mu_{N}, \kappa_{N}, a_{N}, b_{N}\right)$
$p(\mu, \lambda \mid x)$
where
$\kappa_{N}=\kappa_{0}+N$
$K_{N}=K_{0}+N$
$\mu_{N}=K_{0} \mu_{0}+N m$
$a_{N}=a_{0}+N / 2$
$a_{N}=a_{0}+N / 2$
$b_{N}=b_{0}+\frac{N}{2} s^{2}+\frac{\kappa_{0} N}{2 K_{N}}\left(m-\mu_{0}\right)^{2}$
$p(x \mid X)=\iint p(x \mid \mu, \lambda) p(\mu, \lambda \mid X) d \mu d \lambda$
$t_{2 a N}\left(\mu_{N}, \frac{b_{N}\left(k_{N}+1\right)}{a_{N} K_{N}}\right)$

Estimating the Parameters of a Distribution: Discrete case
$x_{i}^{t}=1$ if in instance t is in state i, probability of state i is q_{i}
Dirichlet prior, α_{i} are hyperparameters
Sample likelihood $\quad \operatorname{Dirichlet}(\mathbf{q} \mid \boldsymbol{\alpha})=\frac{\Gamma\left(a_{i}\right)}{\Gamma\left(a_{)}\right) \cdot\left[\left(a_{k}\right)\right.} \prod_{i=1}^{K} a_{i}^{\alpha_{i}-1}$

$$
p(X \mid \mathbf{q})=\prod_{t=1}^{N} \prod_{i=1}^{K} q_{i}^{x_{i}}
$$

Posterior $\quad p(\mathbf{q} \mid \boldsymbol{\alpha})=\frac{\Gamma \mid\left(\alpha_{\alpha}+N\right)}{\Gamma\left(\alpha_{i}+N_{i}\right)+\Gamma\left(\alpha_{\alpha}+N_{x}\right)} \prod_{i=1}^{k} q_{i}^{\alpha_{i}+N_{-1}-1}$ $=$ Dirichlet $(\mathbf{q} \mid \boldsymbol{\alpha}+\mathbf{n})$
With $K=2$, cinniugare prior
With $\mathrm{K}=2$, Dirichlet reduced to Beta

Multivariate Gaussian
$p(\boldsymbol{x}) \sim \mathcal{N}_{d}\left(\mu_{, ~ \Lambda} \quad p(\boldsymbol{\mu} \mid \Lambda) \sim \mathcal{N}_{d}\left(\boldsymbol{\mu}_{0},\left(1 / \kappa_{0}\right) \Lambda\right) \quad p(\Lambda) \sim \operatorname{Wishart}\left(v_{0}, \mathbf{V}_{0}\right)\right.$ $p(\mu, \boldsymbol{\Lambda})=p(\boldsymbol{\mu} \mid \Lambda) p(\boldsymbol{\Lambda})$
\sim_{\sim} normal-Wishart $\left(\mu_{0}, K_{0}, v_{0}, V_{0}\right.$
$p(\mu, \Lambda \mid X) \sim$ normal-Wishart $\boldsymbol{U}_{N} \times k_{N}, V_{N}, V_{N}$
$k_{\mathrm{N}}=\begin{aligned} & k_{0}+N \\ & k_{0} \mu_{0}+N m\end{aligned}$
$\mu_{N}=\frac{K_{0} \mu_{0}+N m}{K_{N}}$
$v_{N}=v_{0}+N$
$\mathbf{v}_{\mathrm{N}}=\left(\mathrm{v}_{0}^{1}+\mathrm{C}+\frac{\kappa_{0} N}{\kappa_{\mathrm{V}}}\left(\boldsymbol{m}-\boldsymbol{\mu}_{0}\right)\left(\boldsymbol{m}-\boldsymbol{\mu}_{0}\right)^{T}\right)$
$p(\boldsymbol{x} \mid X)=\iint p(\boldsymbol{x} \mid \mu, \Lambda) p(\mu, \Lambda \mid X) d \mu d \Lambda$
$t_{v_{N}-d+1}\left(\mu_{N} \frac{k_{N}+1}{k_{N}\left(v_{N}-d+1\right)}\left(\mathbf{v}_{N}\right)^{-1}\right)$

Estimating the Parameters of a Function: Regression

Basis/Kernel Functions

- For new x^{\prime}, the estimate r^{\prime} is calculated as

$$
\begin{aligned}
r^{\prime} & =\left(\mathbf{x}^{\prime}\right)^{\top} \\
& =\beta\left(\mathbf{x}^{\prime}\right)^{T} \mathbf{\Sigma}_{N} \mathbf{X}^{\top} \mathbf{r} \quad \text { Dual representation } \\
& =\sum \beta\left(\mathbf{x}^{\top}\right)^{\top} \mathbf{\Sigma}_{N} \mathbf{x}^{t} r^{t}
\end{aligned}
$$

- Linear kernel
- For any other $\phi(\mathbf{x})$, we can write $K\left(\mathbf{x}^{\prime}, \mathbf{x}\right)=\phi\left(\mathbf{x}^{\prime}\right)^{\top} \phi(\mathbf{x})$

$$
r^{\prime}=\sum \beta\left(\mathbf{x}^{\prime}\right)^{\top} \mathbf{\Sigma}_{N} \mathbf{x}^{t} r^{t} \sum \beta K\left(\mathbf{x}^{\prime}, \mathbf{x}^{t}\right) r^{\prime}
$$

${ }^{13}$

Kernel Functions

\qquad

Dirichlet Processes
Nonparametric Bayesian approach for clustering
Chinese restaurant process
Customers arrive and either join one of the existing ables or start a new one, based on the table occupancies:

Join existing table i with $P\left(Z_{i}=1\right)=\frac{n_{i}}{\alpha+n-1}, i=1, \ldots, k$
\qquad
$p(\beta) \sim \operatorname{gamma}\left(a_{0}, b_{0}\right) \quad p(\boldsymbol{w} \mid \beta) \sim \mathcal{N}\left(\mu_{0}, \beta \Sigma_{0}\right)$
$p(w, \beta)=p(\beta) p(w \mid \beta) \sim \operatorname{normal}-$ gamma $\left(\mu_{0}, \Sigma_{0}, a_{0}, b_{0}\right)$
$p(\boldsymbol{w}, \beta \mid \mathbf{X}, \boldsymbol{r}) \sim$ normal-gamma $\left(\mu_{N}, \Sigma_{N}, a_{N}, b_{N}\right)$
$\Sigma_{N}=\left(\mathbf{X}^{T} \mathbf{X}+\Sigma_{0}\right)^{-1}$
$\mu_{N}=\Sigma_{N}\left(X^{T} r+\Sigma_{0} \mu_{0}\right.$
$v=a_{0}+N / 2$
$b_{N}=b_{0}+\frac{1}{2}\left(\boldsymbol{r}^{T} r+\boldsymbol{\mu}_{0}^{T} \Sigma_{0} \mu_{0}-\boldsymbol{\mu}_{N}^{T} \Sigma_{N} \boldsymbol{\mu}_{N}\right)$
Markor Chain Monte Carlo (MCMC) sampling

What's in a Prior?

Defining a prior is subjective

Uninformative prior if no prior preference
How high to go?
Level I: $p(x \mid X)=\int p(x \mid \theta) p(\theta \mid X) d \theta$
Level II: $p(x \mid x)=\int p(x \mid \theta) p(\theta \mid X, \alpha) p(\alpha) d \theta d \alpha$
Empirical Bayes: Use one good α^{*}
Level II ML: $p(x \mid X)=\int p(x \mid \theta) p\left(\theta \mid X, \alpha^{*}\right) d \theta$

Nonparametric Bayes

Model complexity can increase with more data (in practice up to N, potentially to infinity)
Similar to k-NN and Parzen windows we saw before where training set is the parameters

Bayesian Model Comparison

- Marginal likelihood of a model:
$p(X \mid \mathcal{M})=\int p(X \mid \theta, \mathcal{M}) p(\theta \mid \mathcal{M}) d \theta$
Posterior probability of model given data:

$$
p(\mathcal{M} \mid X)=\frac{p(X \mid \mathcal{M}) p(\mathcal{M})}{p(X)}
$$

Bayes' factor:
$P\left(\mathcal{M}_{1} \mid X\right)=\frac{P\left(X \mid \mathcal{M}_{1}\right)}{P\left(\mathcal{M}_{1}\right)}$
Approximations:
BIC: $\log p(X \mid \mathcal{M}) \approx \operatorname{BIC} \equiv \log p\left(X \mid \theta_{\text {ML }}, \mathcal{M}\right)-\frac{|\mathcal{M}|}{2} \log N$ AIC: $\operatorname{AIC} \equiv \log p\left(x \mid \theta_{M L}, \mathcal{M}\right)-\mid M$

Gaussian Processes

${ }^{33}$ - Nonparametric model for supervised learning

- Assume Gaussian prior $p(\mathbf{w}) \sim N(0,1 / \alpha)$
$\mathbf{y}=\mathrm{X} \mathbf{w}$, where $\mathrm{E}[\mathrm{y}]=0$ and $\operatorname{Cov}(\mathbf{y})=\mathrm{K}$ with $\mathrm{K}_{i=}=\left(\mathbf{x}^{i}\right)^{T} \mathbf{x}^{i}$
K is the covariance function, here linear
- With basis function $\phi(\mathbf{x}), K_{i j}=\left(\phi\left(x^{\prime}\right)\right)^{\top} \phi(\mathbf{x}$
$\xrightarrow[r]{\sim N_{N}\left(0, C_{N}\right) \text { where } C_{N}=(1 / \beta) 1+K}$
With new \mathbf{x}^{\prime} added as $\mathbf{x}_{\mathrm{N}+1}, r_{\mathrm{N}+1} \sim \mathrm{~N}_{\mathrm{N}+1}\left(0, \boldsymbol{C}_{\mathrm{N}+1}\right)$

$$
\mathbf{C}_{N+1}=\left[\begin{array}{ll}
\mathbf{C}_{N} & \mathbf{k} \\
\mathbf{k} & c
\end{array}\right]
$$

where $\mathbf{k}=\left[K\left(x^{\prime}, x^{\prime}\right)\right]^{\top}$ and $\mathrm{c}=\mathrm{K}\left(\mathbf{x}^{\prime}, \mathbf{x}^{\prime}\right)+1 / \beta$.
$p\left(r^{\prime} \mid x^{\prime}, X, r\right) \sim N\left(k^{\top} \mathbf{C}_{N-1}, r, c-k^{\top} C_{N-1}\left(k^{\prime}\right)\right.$

Nonparametric Gaussian Mixture
Tables are Gaussian components and decisions based both on prior and also on input x :
$\begin{aligned} \text { Join component } i \text { with } P\left(z_{i}^{\prime}=1\right) & \propto \frac{n_{i}}{\alpha+n-1} p p\left(x^{\prime} \mid X_{i}\right), i=1, \ldots, k \\ \text { Start new component with } P\left(z_{k+1}^{\prime}\right) & \propto \frac{\alpha}{\alpha+n-1} p\left(x^{\left.x^{\prime}\right)}\right.\end{aligned}$

Latent Dirichlet Allocation


```
Nonparametric Bayesian approach for feature
    extraction
    extraction
    Matrix factorization:
        X=ZA}\quad\mp@subsup{Z}{j}{f}={\begin{array}{ll}{1}&{\mathrm{ with probability }\mp@subsup{\mu}{j}{}}\\{0}&{\mathrm{ with probability 1- 1- }}
        \mui~ beta(\alpha,1)
    Nonparametric version: Allow j to increase with more
    data probabilistically
    Indian buffet process: Customer can take one of the
    e existing dishes with prob }\mp@subsup{\mu}{i}{}\mathrm{ or add a new dish to the
```


Rationale

\square No Free Lunch Theorem: There is no algorithm that is always the most accurate
Generate a group of base-learners which when
combined has higher accuracy
Different learners use different
Algorithms

- Hyperparameters
\square Representations/Modalities/Views
- Subproblems

Diversity vs accuracy

Error-Correcting Output Codes
\square K classes; L problems (Dietterich and Bakiri, 1995)
Code matrix W codes classes in terms of learners

$$
\begin{aligned}
& \begin{array}{l}
\text { One per class } \\
L=K
\end{array} \\
& \mathbf{W}=\left[\begin{array}{cccc}
+1 & -1 & -1 & -1 \\
-1 & +1 & -1 & -1 \\
-1 & -1 & +1 & -1 \\
-1 & -1 & -1 & +1
\end{array}\right] \\
& \begin{array}{ll}
\text { Pairwise } \\
L=K(K-1) / 2
\end{array} \\
& \mathbf{W}=\left[\begin{array}{ccccccc}
+1 & +1 & +1 & 0 & 0 & 0 \\
-1 & 0 & 0 & +1 & +1 & 0 \\
0 & -1 & 0 & -1 & 0 & +1 \\
0 & 0 & -1 & 0 & -1 & -1
\end{array}\right]
\end{aligned}
$$

Mixture of Experts
Voting where weights are input-dependent (gating)

Voting

- Linear combination
 $y=\sum_{j=1}^{t} w_{j} d_{j}$
 $w_{j} \geq 0$ and $\sum_{j=1}^{\llcorner } w_{j}=1$
 Classification
 $y_{i}=\sum_{i=1}^{L} w_{j} d_{j}$

Full code $L=2^{(K-1)}$ -

$$
\mathbf{W}=\left[\begin{array}{lllllll}
-1 & -1 & -1 & -1 & -1 & -1 & -1 \\
-1 & -1 & -1 & +1 & +1 & + & +1 \\
-1 & +1 & +1 & -1 & -1 & +1 & +1 \\
+1 & -1 & +1 & -1 & +1 & -1 & +1
\end{array}\right]
$$

With reasonable L, find W such that the Hamming distance btw rows and columns are maximized.
Voting scheme

$$
y_{i}=\sum_{j=1}^{L} w_{j} d_{j i}
$$

Subproblems may be more difficult than one-per-K

Stacking

Bayesian perspective:

$$
P\left(C_{i} \mid x\right)=\sum_{\text {allmodes } \mathcal{M}_{j}} P\left(C_{i} \mid x, \mathcal{M}_{j}\right) P\left(\mathcal{M}_{i}\right)
$$

- If d_{j} are iid

$$
\begin{aligned}
& E[y]=E\left[\sum_{i} \frac{1}{L} d_{j}\right]=\frac{1}{L} L \cdot E\left[d_{j}\right]=E\left[d_{j}\right] \\
& \operatorname{Var}(y)=\operatorname{Var}\left(\sum_{i} \frac{1}{L} d_{j}\right)=\frac{1}{L^{2}} \operatorname{Var}\left(\sum_{i} d_{j}\right)=\frac{1}{L^{2}} L \cdot \operatorname{Var}\left(d_{j}\right)=\frac{1}{L} \operatorname{Var}\left(d_{j}\right)
\end{aligned}
$$

Bias does not change, variance decreases by L
If dependent, error increase with positive correlation

$$
\operatorname{Var}(y)=\frac{1}{L^{2}} \operatorname{Var}\left(\sum_{j} d_{j}\right)=\frac{1}{L^{2}}\left[\sum_{i} \operatorname{Var}\left(d_{j}\right)+2 \sum_{j} \sum_{k j} \operatorname{Cov}\left(d_{j}, d_{j}\right)\right]
$$

Bagging

- Use bootstrapping to generate L training sets and train one base-learner with each (Breiman, 1996)
Use voting (Average or median with regression)
Unstable algorithms profit from bagging

Fine-Tuning an Ensemble
Given an ensemble of dependent classifiers, do not use it as is, try to get independence
Subset selection: Forward (growing)/Backward (pruning) approaches to improve
accuracy/diversity/independence
Train metaclassifiers: From the output of correlated classifiers, extract new combinations that are uncorrelated. Using PCA, we get "eigenlearners." Similar to feature selection vs feature extraction

Fixed Combination Rules
■-ane

AdaBoost

Cascading

Use d_{i} only if preceding ones are not confident

Cascade learners in order of complexity

Iㅗ Early integrati
single learner
Late integration: With each feature set, train one learner, then either use a fixed rule or stacking to combine decisions
Intermediate integration: With each feature set, calculate a kernel, then use a single SVM with multiple kernels
Combining features vs decisions vs kernels

Introduction

3 ?

Game-playing: Sequence of moves to win a game
\square Robot in a maze: Sequence of actions to find a goal Agent has a state in an environment, takes an action and sometimes receives reward and the state changes
Credit-assignment Learn a policy

$v^{*}\left(s_{t}\right)=\operatorname{maxa}_{\pi} v^{\pi}\left(s_{t}\right), \forall s_{t}$

$$
\begin{aligned}
& =\max _{o_{t}} E\left[\sum_{i=1}^{\infty} \gamma^{i-1} r_{t+i}\right] \\
& =\max _{o_{i}}\left[\left[r_{t+1}+\gamma \sum_{i=1}^{\infty} \gamma^{i-1} r_{t+i+1}\right]\right.
\end{aligned}
$$

$$
=\max _{o_{t}}\left[\left[r_{t+1}+\nu^{*}\left(s_{t+1}\right)\right] \quad\right. \text { Bellman's equation }
$$

$V^{*}\left(s_{t}\right)=\max _{a_{t}}\left(E\left[r_{t+1}\right]+\gamma \sum_{s_{t+1}} P\left(s_{t+1} \mid s_{t}, a_{t}\right) V^{*}\left(s_{t+1}\right)\right)$
$V^{*}\left(s_{t}\right)=\max _{a_{i}} Q^{*}\left(s_{t}, a_{t}\right) \quad$ Value of a_{t} in s_{t}
$Q^{*}\left(s_{t}, a_{t}\right)=E\left[r_{t+1}^{a_{t}}\right]+\gamma \sum_{s_{t+1}} P\left(s_{t+1} \mid s_{t}, a_{t}\right) \max _{a_{t+1}} Q^{*}\left(s_{t+1}, a_{t+1}\right)$

Temporal Difference Learning
Environment, $P\left(s_{t+1} \mid s_{t}, a_{t}\right), p\left(r_{t+1} \mid s_{t}, a_{t}\right)$, is not known; model-free learning
There is need for exploration to sample from
$P\left(s_{t+1} \mid s_{t}, a_{t}\right)$ and $p\left(r_{t+1} \mid s_{t}, a_{t}\right)$
\square Use the reward received in the next time step to update the value of current state (action)
The temporal difference between the value of the current action and the value discounted from the next state

i2ml3e-chap18.pdf

Single State: K-armed Bandit

reward
reward
ewards stochastic (keep an expected reward):
$Q_{t+1}(a) \leftarrow Q_{t}(a)+\eta\left[r_{t+1}(a)-Q_{t}(a)\right]$

Model-Based Learning

\qquad
\square Environment, $P\left(s_{t+1} \mid s_{t}, a_{t}\right), p\left(r_{t+1} \mid s_{t}, a_{t}\right)$ known
\square There is no need for exploration
\square Can be solved using dynamic programming
\square Solve for

$$
V^{*}\left(s_{t}\right)=\max _{a_{t}}\left(E\left[r_{t+1}\right]+\gamma \sum_{s+1} P\left(s_{t+1} \mid s_{t}, a_{t}\right) V^{*}\left(s_{t+1}\right)\right)
$$

Optimal policy

$$
\pi^{*}\left(s_{t}\right)=\underset{o_{t}}{\operatorname{argmax}}\left(E\left[r_{t+1} \mid s_{t}, a_{t}\right]+\gamma \sum_{s_{t+1}} P\left(s_{t+1} \mid s_{t}, a_{t}\right) \nu^{*}\left(s_{t+1}\right)\right)
$$

Exploration Strategies

¹z
\square-greedy: With pr ε,choose one action at random uniformly; and choose the best action with pr 1- ε

- Probabilistic:

$$
P(a \mid s)=\frac{\operatorname{expQ}(s, a)}{\sum_{b=1}^{\mathcal{A}} \exp Q(s, b)}
$$

Move smoothly from exploration/exploitation.
\square Decrease ε
\square Annealing
$P(a \mid s)=\frac{\exp [Q(s, a) / T]}{\sum_{b=1}^{\mathcal{A}} \exp [Q(s, b) / T]}$

REINFORCEMENT LEARNING

Elements of RL (Markov Decision Processes)
s_{t} : State of agent at time
a_{t} : Action taken at time t
In s_{t}, action a_{t} is taken, clock ticks and reward r_{t+1} is received and state changes to s_{t+1}
Next state prob: $P\left(s_{t+1} \mid s_{t}, a_{t}\right)$
Reward prob: $p\left(r_{t+1} \mid s_{t}, a_{t}\right)$
Initial state(s), goal state(s)
Episode (trial) of actions from initial state to goal (Sutton and Barto, 1998; Kaelbling et al., 1996)

Value Iteration

```
Initialize \(V(s)\) to arbitrary values
Repeat
    For all \(s \in \mathcal{S}\)
        For all \(a \in \mathcal{A}\)
            \(Q(s, a) \leftarrow E[r \mid s, a]+\gamma \sum_{s^{\prime} \in \mathcal{S}} P\left(s^{\prime} \mid s, a\right) V\left(s^{\prime}\right.\)
            \(V(s) \leftarrow \max _{a} Q(s, a)\)
Until \(V(s)\) converge
```


Deterministic Rewards and Actions

 ${ }^{13}$ —$$
Q^{*}\left(s_{t}, a_{t}\right)=E\left[r_{t+1}\right]+\gamma \sum_{s_{t+1}} P\left(s_{t+1} \mid s_{t}, a_{t}\right) \operatorname{maxax}_{a_{t+1}} Q^{*}\left(s_{t+1}, a_{t+1}\right)
$$

Deterministic: single possible reward and next state

$$
Q\left(s_{t}, a_{t}\right)=r_{t+1}+\gamma \max Q\left(s_{t+1}, a_{t+1}\right)
$$

used as an update rule (backup)

$$
\hat{Q}\left(s_{t}, a_{t}\right) \leftarrow r_{t+1}+\gamma \underset{a_{t+1}}{\max } \hat{Q}\left(s_{t+1}, a_{t+1}\right)
$$

Starting at zero, Q values increase, never decrease

Policy Iteration
Initialize a policy π arbitrarily Repeat

Compute the values using π by solving the linear equations
$V^{\pi}(s)=E[r \mid s, \pi(s)]+\gamma \sum_{s^{\prime} \in \mathcal{S}} P\left(s^{\prime} \mid s, \pi(s)\right) V^{\pi}\left(s^{\prime}\right)$ Improve the policy at each state $\pi^{\prime}(s) \leftarrow \arg \max _{a}\left(E[r \mid s, a]+\gamma \sum_{s^{\prime} \in \mathcal{S}} P\left(s^{\prime} \mid s, a\right) V^{\pi}\left(s^{\prime}\right)\right)$
Until $\pi=\pi^{\prime}$

```
Policy, }\pi:S->\mathcal{A}\quad\mp@subsup{a}{t}{}=\pi(\mp@subsup{s}{t}{}
Value of a policy,}\mp@subsup{V}{}{\pi}(\mp@subsup{s}{t}{}
    Finite-horizon:
```

$$
V^{\pi}\left(s_{t}\right)=E\left[r_{t+1}+r_{t+2}+\cdots+r_{t+T}\right]=E\left[\sum_{i=1}^{T} r_{t+i}\right]
$$

\square Infinite horizon:

$$
\begin{aligned}
& \text { inite horizon: } \\
& V^{\pi}\left(s_{t}\right)=E\left[r_{t+1}+r_{t+2}+\gamma^{2} r_{t+3}+\cdots\right]=E\left[\sum_{i=1}^{\infty} \gamma^{i-1} r_{t+i}\right]
\end{aligned}
$$

$0 \leq \gamma<1$ is the discount rate

Consider the value of action marked by "*' If path A is seen first, $\left.\mathrm{Q} \mathbf{*}^{*}\right)=0 . \mathbf{Q}^{*} \max (0,81)=73$ Then B is seen, $Q\left(^{*}\right)=0.9^{*} \max (100,81)=90$
Or, If path B is seen first, $\left.Q Q^{*}\right)=0.9^{*} \max (100,0)=90$ Then A is seen, $Q(*)=0.9^{*} \max (100,81)=90$

Nondeterministic Rewards and ${ }_{15}$ Actions

Initialize all $Q(s, a)$ arbitrarily
For all episodes
Initalizes
Repeat
Choose a using policy derived from Q, e.g., ϵ-greedy Take action a, ob
Update $Q(s, a)$:

$$
\begin{aligned}
& \text { Jdatate } Q(s, a) \text { : } \\
& O(s, a) \leftarrow O
\end{aligned}
$$

$Q(s, a) \leftarrow Q(s, a)+\eta\left(r+\gamma \sqrt{\max _{a^{\prime}}} Q\left(s^{\prime}, a^{\prime}\right)-Q(s, a)\right)$
Until s is terminal state
$V\left(s_{t}\right) \leftarrow V\left(s_{t}\right)+\eta\left(r_{t+1}+\nu\left(s_{t+1}\right)-v\left(s_{t}\right)\right)$

Sarsa (λ)
Initilize all Q(
For all enisode
Initalize s
Choose a using policy derived from Q eg
Take action a, observe r and s
Choose a^{\prime} using policy derived from Q, e.g., e-greed
$e(s, a+1$
For all s, c
$O(s, c)$
$Q(s, a) \leftarrow Q(s, a)+\eta \overline{j e}^{(s, a)}$
$e(s, a)+\gamma \lambda e(s, a)$
$s \leftarrow s^{\prime}, a \sqsubset a^{\prime}$
$s+-s^{\prime}, a \leftarrow a^{\prime}$
Until s is terminal state

Generalization

Tabular: $Q(s, a)$ or $V(s)$ stored in a table
\square Regressor: Use a learner to estimate $Q(s, a)$ or $V(s)$
$E^{t}(\boldsymbol{\theta})=\left[r_{t+1}+\gamma\left(s_{t+1}, a_{t+1}\right)-Q\left(s_{t}, a_{t}\right)\right]^{2}$
$\Delta \boldsymbol{\theta}=\eta\left[r_{t+1}+\gamma Q\left(s_{t+1}, a_{t+1}\right)-Q\left(s_{t}, a_{t}\right)\right] \nabla_{0}, Q\left(s_{t}, a_{t}\right)$
Eligibility
$\Delta \boldsymbol{\theta}=\eta \delta_{t} \mathbf{e}$
$\delta_{t}=r_{t+1}+\gamma Q\left(s_{t+1}, a_{t+1}\right)-Q\left(s_{t}, a_{t}\right)$
$\mathbf{e}_{t}=\gamma \lambda \mathbf{e}_{t-1}+\nabla_{\theta_{t}} Q\left(s_{t}, a_{t}\right)$ with \mathbf{e}_{0} all zeros

$V^{\prime}=\sum\left[\max R\left(a_{i} \mid o_{j}\right)\right]\left(o_{j}\right)$

$=\max R\left(\left(a_{l} \mid o_{l}\right), R\left(a_{R} \mid o_{\ell}\right), R\left(a_{s} \mid o_{c}\right)\right) P\left(o_{l}\right)+\max \left(R\left(a_{L} \mid o_{R}\right), R\left(a_{R} \mid o_{R}\right), R\left(a_{s} \mid O_{R}\right)\right) P\left(o_{R}\right)$

$$
=\max \left(\begin{array}{ll}
-100 p & +80(1-p) \\
-43 p & -46(1-p) \\
33 p & +26(1-p) \\
90 p & -100(1-p)
\end{array}\right)
$$

i2ml3e-chap19.pdf

Keep a record of previously visited states (actions)
$e_{t}(s, a)= \begin{cases}1 & \text { if } s=s_{t} \text { and } a=a_{t} \\ \gamma \lambda e_{t-1}(s, a) & \text { otherwise }\end{cases}$
$\delta_{t}=r_{t+1}+\gamma\left(s_{t+1}, a_{t+1}\right)-Q\left(s_{t}, a_{t}\right)$
$Q\left(s_{t}, a_{t}\right) \leftarrow Q\left(s_{t}, a_{t}\right)+\eta \delta_{t} e_{t}(s, a), \forall s, a$

(b) Ater sensing or.

Partially Observable States
21 The agent does not know its state but receives an observation $p\left(o_{t+1} \mid s_{t+} a_{t}\right)$ which can be used to infer a belief about states
Partially observable MDP

The Tiger Problem

Two doors, behind one of which there is a tige

\square p: prob that tiger is behind the left door | $r(A, Z)$ | Tiger left | Tiger right |
| :---: | :---: | :---: |
| Open left | -100 | +80 |

$R\left(a_{L}\right)=-100 p+80(1-p), R\left(a_{R}\right)=90 p-100(1-p)$
\square We can sense with a reward of $R\left(a_{s}\right)=-1$

- We have unreliable sensors
$P\left(o_{I} \mid Z_{L}\right)=0.7 \quad P\left(o_{I} \mid Z_{R}\right)=0.3$
$P\left(o_{R} \mid Z_{L}\right)=0.3 \quad P\left(o_{R} \mid Z_{R}\right)=0.7$

Let us say the tiger can move from one room to the other with prob 0.8

$$
\begin{aligned}
& p^{\prime}=0.2 p+0.8(1-p) \\
& v^{\prime}=\max \left(\begin{array}{cc}
-100 p^{\prime} & +80\left(1-p^{\prime}\right) \\
33 p & +26\left(1-p^{\prime}\right) \\
90 p & -100\left(1-p^{\prime}\right)
\end{array}\right)
\end{aligned}
$$

${ }_{26}$

Questions:
\square Assessment of the expected error of a learning algorith

- Assessment of the expected error of a learning algorithm: Is
the error rate of 1 -NN less than 2\%?
- Comparing the expected errors of two algorithms: Is k-NN more accurate than MLP ?
Training/validation/test sets
Resampling methods: K-fold cross-validation

Guidelines for ML experiments

4. Aim of the study

B. Selection of the response variable
c. Choice of factors and levels
D. Choice of experimental design

Performing the experiment
f. Statistical Analysis of the Data
c. Conclusions and Recommendations

Algorithm Preference

Criteria (Application-dependent)

- Misclassification error, or risk (loss functions)
- Training time/space complexity
- Testing time/space complexity
\square Interpretability
\square Easy programmability
\square Cost-sensitive learning

Resampling and

K-Fold Cross-Validation
The need for multiple training/validation sets
$\left\{X_{i,}, V_{i}\right\}$: Training/validation sets of fold i
K-fold cross-validation: Divide X into $\mathrm{k}, \mathrm{X}_{i, i}=1, \ldots, \mathrm{~K}$

$$
\begin{array}{ll}
\mathcal{V}_{1}=X_{1} & \mathcal{T}_{1}=X_{2} \cup X_{3} \cup \cdots \cup X_{\kappa} \\
V_{2}=X_{2} & \mathcal{T}_{2}=X_{1} \cup X_{3} \cup \cdots \cup X_{\kappa}
\end{array}
$$

$$
\mathcal{V}_{\kappa}=X_{\kappa} \mathcal{T}_{\kappa}=X_{1} \cup X_{2} \cup \cdots \cup X_{\kappa-1}
$$

- T_{i} share $K-2$ parts

ROC Curve

$$
\begin{aligned}
& S^{2}=\sum_{t}\left(x^{t}-m\right)^{2} /(N-1) \quad \frac{\sqrt{N}(m-\mu)^{2}}{S} t_{N-1} \\
& P\left\{m-t_{\alpha / 2, N-1} \frac{S}{\sqrt{N}}<\mu<m+t_{\alpha / 2, N-1} \frac{s}{\sqrt{N}}\right\}=1-\alpha
\end{aligned}
$$

Factors and Response

5×2 Cross-Validation

$\square 5$ times 2 fold cross-validation (Dietterich, 1998)

$\mathcal{T}_{1}=X_{1}^{(1)}$	$V_{1}=X_{1}^{(2)}$
$\mathcal{T}_{2}=X_{1}^{(2)}$	$V_{2}=X_{1}^{(1)}$
$\mathcal{T}_{3}=X_{2}^{(1)}$	$V_{3}=X_{2}^{(2)}$
$\mathcal{T}_{4}=X_{2}^{(2)}$	$\mathcal{V}_{4}=X_{2}^{(1)}$
\vdots	
$\mathcal{T}_{9}=X_{5}^{(1)}$	$V_{9}=X_{5}^{(2)}$
$\mathcal{T}_{10}=X_{5}^{(2)}$	$V_{10}=X_{5}^{(1)}$

Hypothesis Testing

Reject a null hypothesis if not supported by the sample with enough confidence
$X=\left\{x^{\prime}\right\}_{t}$ where $x^{i} \sim N\left(\mu, \sigma^{2}\right)$
$H_{0}: \mu=\mu_{0}$ vs. $H_{1}: \mu \neq \mu_{0}$
Accept H_{0} with level of significance α if μ_{0} is in the
100(1- α) confidence interval
$\frac{\sqrt{N}\left(m-\mu_{0}\right)}{\sigma} \in\left(-z_{\alpha / 2}, z_{\alpha / 2}\right)$
Two-sided test

Precision and Recall

\qquad
How to search the factor space?

Response surface desisn for approximating and maximizing

Bootstrapping
10 -
\square Draw instances from a dataset with replacement

- Prob that we do not pick an instance after N draws

$$
\left(1-\frac{1}{N}\right)^{N} \approx e^{-1}=0.368
$$

that is, only 36.8% is new!

un

	Decision	
Truth	Accept	Reject
True	Correct	Type I error
False	Type II error	Correct (Power)

\square One-sided test: $H_{0}: \mu \leq \mu_{0}$ vs. $H_{1}: \mu>\mu_{0}$ Accept if $\frac{\sqrt{N}\left(m-\mu_{0}\right)}{\sigma} \in\left(-\infty, z_{\alpha}\right)$
\square Variance unknown: Use t, instead of z Accept $H_{0}: \mu=\mu_{0}$ if

$$
\frac{\sqrt{N}\left(m-\mu_{0}\right)}{S} \in\left(-t_{\alpha / 2, N-1}, t_{\alpha / 2, N-1}\right)
$$

K-Fold CV Paired \dagger Test

\square Use K-fold cv to get K training/validation folds
\square Use K-fold cv to get K training/validation fold
$\square p_{i}{ }^{1}, p_{i}^{2}:$ Errors of classifiers 1 and 2 on fold i
$p_{i}=p_{i}{ }^{1}-p_{i}{ }^{2}$: Paired difference on fold i
The null hypothesis is whether p_{i} has mean 0
$H_{0}: \mu=0$ vs. $H_{0}: \mu \neq 0$
$m=\frac{\sum_{i=1}^{\kappa} p_{i}}{K} \quad s^{2}=\frac{\sum_{i=1}^{\kappa}\left(p_{i}-m\right)^{2}}{K-1}$
$\frac{\sqrt{K}(m-0)}{s}=\frac{\sqrt{K} \cdot m}{s} \sim t_{k-1} \operatorname{Accept}$ if in $\left(-t_{\alpha / 2, k-1}, t_{\alpha / 2, k-1}\right)$

If H_{0} is true:
$m_{j}=\sum_{i=1}^{\kappa} \frac{x_{i j}}{\kappa} \sim \mathcal{N}\left(\mu, \sigma^{2} / \kappa\right)$
$m=\frac{\sum_{j=1}^{L} m_{j}}{L} \quad s^{2}=\frac{\sum_{j}\left(m_{j}-m\right)^{2}}{L-1}$
Thus an estimatorof σ^{2} is $K \cdot s^{2}$, namely,
$\hat{\sigma}^{2}=\kappa \sum_{j=1}^{L} \frac{\left(m_{j}-m\right)^{2}}{L-1}$
$\sum_{j} \frac{\left(m_{j}-m\right)^{2}}{\sigma^{2} / K} \sim X_{l-1}^{2} \quad S S b \equiv K \sum_{j}\left(m_{j}-m\right)^{2}$
So when H_{0} is true, we have
$\frac{S S b}{\sigma^{2}} \sim X_{t-1}^{2}$

Multivariate Tests

Instead of testing using a single performance measure, e.g., error, use multiple measures for better discrimination, e.g., [fp-rate,fn-rate]
Compare p-dimensional distributions

Parametric case: Assume p-variate Gaussians

$H_{0}: \mu_{1}=\boldsymbol{\mu}_{2}$ vs. $H_{1}: \mu_{1} \neq \boldsymbol{\mu}_{2}$

Normal Approximation to the Binomial
Number of errors X is approx N with mean $N p_{0}$ and Number of error
$\operatorname{var} N p_{0}\left(1-p_{0}\right)$

1- \vec{a}

$$
\frac{x-N p_{0}}{\sqrt{N p_{0}\left(1-p_{0}\right)}} \sim Z
$$

Accept if this prob for $\mathrm{X}=\mathrm{e}$ is less than $z_{1-\alpha}$
\qquad

- Multiple training/validation sets
$x_{i}^{t}=1$ if instance t misclassified on fold i
Error rate of fold i :

$$
o_{i}=\frac{\sum_{t=1}^{N} x_{i}^{t}}{N}
$$

- With m and s^{2} average and ${ }^{N}$ var of p_{i}, we accept p_{0} or less error if

$$
\frac{\sqrt{\kappa}\left(m-p_{0}\right)}{s} \sim t_{k-1}
$$

$5 \times 2 \mathrm{cv}$ Paired F Test

$$
\frac{\sum_{i=1}^{5} \sum_{j=1}^{2}\left(p_{i}^{(j)}\right)^{2}}{2 \sum_{i=1}^{5} s_{i}^{2}} \sim F_{10,5}
$$

Two-sided test: Accept $\mathrm{H}_{0}: \mu_{0}=\mu_{1}$ if $<F_{\text {a, } 10,5}$

Two-sided test: Accept $\mathrm{H}_{0}: \mu_{0}=\mu_{1}$ if in $\left(-t_{\alpha / 2,5} \dagger_{\alpha / 2,5)}\right)$ One-sided test: Accept $\mathrm{H}_{0}: \mu_{0} \leq \mu_{1}$ if $<t_{\mathrm{a}, \mathrm{s}}$

Regardlessof H_{0} our secondestimatorto σ^{2} is the average of group variances S_{j}^{2} :

$$
S_{j}^{2}=\frac{\sum_{i=1}^{k}\left(X_{i j}-m_{j}\right)^{2}}{K-1} \quad \hat{\sigma}^{2}=\sum_{j=1}^{L} \frac{S_{j}^{2}}{L}=\sum_{j} \sum_{i} \frac{\left(X_{i j}-m_{j}\right)^{2}}{L(K-1)}
$$

$\operatorname{ssw} \equiv \sum_{i} \sum_{i}\left(x_{i j}-m_{j}\right)^{2}$
$(K-1) \frac{S_{j}^{2}}{\sigma^{2}} \sim X_{K-1}^{2} \quad \frac{S S w}{\sigma^{2}} \sim X_{L(K-1)}^{2}$
$\left(\frac{S S b / \sigma^{2}}{L-1}\right) /\left(\frac{S S w / \sigma^{2}}{L(K-1)}\right)=\frac{S S b /(L-1)}{S S W /(L(K-1))} \sim F_{L-1, L(K-1)}$
$H_{0}: \mu_{1}=\mu_{2}=\cdots=\mu_{L}$ if $<F_{\alpha, L-1, L(k-1)}$
${ }_{28}$

Multivariate Pairwise Comparison

\square Paired differences: $\boldsymbol{d}_{i}=\boldsymbol{x}_{1 i}-\boldsymbol{x}_{2 i}$

$$
H_{0}: \mu_{d}=\mathbf{0} \text { vs. } H_{1}: \boldsymbol{\mu}_{d} \neq 0
$$

\square Hotelling's multivariate T^{2} test

$$
T^{\prime 2}=K \boldsymbol{m}^{T} \mathbf{S}^{-1} \boldsymbol{m}
$$

\square For $\mathrm{p}=1$, reduces to paired t test

ANOVA table

Multivariate ANOVA

\square Comparsion of $L>2$ algorithms

$$
\begin{aligned}
& H_{0}: \boldsymbol{\mu}_{1}=\boldsymbol{\mu}_{2}=\cdots=\boldsymbol{\mu}_{L} \text { vs. } \\
& H_{1}: \boldsymbol{\mu}_{r} \neq \boldsymbol{\mu}_{s} \text { for at least one pair } r, s \\
& L
\end{aligned}
$$

$\boldsymbol{H}=K \sum_{j=1}^{L}\left(\boldsymbol{m}_{j}-\boldsymbol{m}\right)\left(\boldsymbol{m}_{j}-\boldsymbol{m}\right)^{T}$
$\mathbf{E}=\sum_{j=1}^{L} \sum_{i=1}^{K}\left(\boldsymbol{x}_{i j}-\boldsymbol{m}_{j}\right)\left(\boldsymbol{x}_{i j}-\boldsymbol{m}_{j}\right)^{T}$
$\Lambda^{\prime}=\frac{|\mathbf{E}|}{|\mathbf{E}+\mathbf{H}|}$
is Wilks's Λ distributed with $p, L(K-1), L-1$ degrees of freedom

Comparing Classifiers: $\mathrm{H}_{0}: \mu_{0}=\mu_{1}$ vs.

$H_{1}: \mu_{0} \neq \mu_{1}$$\square$ Single training/validation set: McNemar's Test $\left.$	$\begin{array}{l}e_{00} \\ \text { misclassified }\end{array}$
mumber of examples both	\(\begin{aligned} \& e_{01}: Number of examples

\& misclassified by 1 but not 2\end{aligned} \right\rvert\,\) | misclassified by both | misclassified by 1 but not 2 |
| :--- | :--- |
| $e_{10}:$ Number of examples | e_{11} : Number of examples |
| misclassified by 2 but not 1 | correctly classified by both | misclassified by 2 but not 1 correctly classified by bo

\square Under H_{0}, we expect $e_{01}=e_{10}=\left(e_{01}+e_{10}\right) / 2$

$$
\frac{\left(\left|e_{01}-e_{10}\right|-1\right)^{2}}{e_{01}+e_{10}} \sim X_{1}^{2}
$$

Accept if $<x^{2}{ }_{\alpha, 1}$

Comparing $L>2$ Algorithms:
Analysis of Variance (Anova)

$$
H_{0}: \mu_{1}=\mu_{2}=\cdots=\mu_{L}
$$

- Errors of L algorithms on K folds

$$
x_{i j} \sim \mathcal{N}\left(\mu_{j}, \sigma^{2}\right), j=1, \ldots, L, i=1, \ldots, K
$$

\square We construct two estimators to σ^{2}.
One is valid if H_{0} is true, the other is always valid. We reject H_{0} if the two estimators disagree.

Comparison over Multiple Datasets

Comparing two algorithms

Sign test: Count how many times A beats B over N Satasets, and check if this could have been by chance if A and B did have the same error rate
Comparing multiple algorithms
Kruskal-Wallis test: Calculate the average rank of all Kruskal-Wallis test: Calculate the average rank of all
algorithms on N datasets, and check if these could have algorithms on N datasets, and check if these could have If KW rejects, we do pairwise posthoc tests to find which ones have significant rank difference

