Comparison of Algorithms for the N-Queen Problem

Abstract

This paper addresses the experiment which will take a number of algorithms to
solve Constraint Satisfaction Problem to find which algorithm is doing the best
performance in terms of memory perspective, and execution time perspective.
The Constraint Satisfaction Problem for this experiment, the one of the simplest
Constraint Satisfaction Problem, but well-known classic Constraint Satisfaction
Problem called N-Queens[4] will be used. A solution for N-Queen problem asks
to avoid sharing the same row, column or diagonal by multiple queens. The
efficiencies of algorithms will be compared by time to solve N-Queens problem
and their memory usage comparison also will be measured.

1 INTRODUCTION

N-Queens problem is the problem of placing n queens on a NxN chessboard such that no two
queens attack each other.[3] The N-Queens problem was originated from 8-Queens problem
which is published by Max Bezzel who was the Chess Composer in 1848. After the first
solution published in 1850, N-Queens problem was generalized from 8-Queens problem, in-
troduced in 1850 by Carl Gauss, and became one of the well-known Constraint Satisfaction
Problem. While it has been one of the well-known problems in the artificial intelligence area,
numerous solutions have been found, and various search strategies and algorithms have been
found since the original problem was proposed by Carl Gauss.

Since each queen must not be in the same row, column or diagonal, if one simply tries to
search through every possible combination successfully, the number of possibilities one needs
to examine often grows exponentially as the number of N grows. Table 1 shows how the
number of solutions for N-Queens problem grows as the number of N increases. First five N
amounts will be too small to see its growth, but after sixth value, it will show an increase
in the number of the solution as the search load grows exponentially. Figure 1 demonstrates
how N-Queens problem can be solved by showing one of the solutions for 8-Queens problem.

1

N || the number of solutions
1 1

2 0

3 0

4 2

5 10
6 4

7 40
8 92
9 352
10 724
11 2680
12 14200

Table 1: The number of solutions for the N-Queens problem

Q

Q

Q

Figure 1: Solution to 8-Queens problem

Since simplicity of the N-Queens problem, it has widely been chosen as a test model to
develop and benchmark new Al search problem-solving strategies in the Al area. This paper
will compare various search algorithms in case of the N-Queens Problem by their times to
solve and memory usages to see which approaches are efficient.

The remainder of the paper is organized as follows. Section 2 will review the related
work done in the literature. Section 3 will present the concise description of the approach
to compare each algorithms, including each algorithm details. Section 4 will present the
description of the experiment design and results. Section 5 will show the analysis of the
results. Finally, the paper ends with conclusions and summary.

2 THE LITERATURE REVIEW/RELATED WORK

Various researchers try to show how to overcome N-Queens problem. Various solutions to
N-Queens problem have been published since the original N-Queen problem was proposed by
Carl Gauss. This section will present numerous approaches to solve the N-Queens problem.

2

One of the approaches was search through every search space and collects all of the
possible solutions. Numerous search algorithms have been developed to find every possible
combination for N-Queens problem solution set. Backtracking search algorithm is the one
of the well-known search algorithms, which is generating all possible combinations for the
Constraint Satisfaction Problem. Usually, backtracking search sets the partial solutions to
arrange n queens in the first n rows on board, all in different rows and columns. Any
solution that has two mutually attacking queens on the board can be abandoned. To collect
every possible solution for N-Queens problem, backtracking starts by putting one queen
on the first column of the first row and keep placing next queens on the other rows and
columns continually, while not violating the constraints hold by a previously placed queen.
Once backtracking reaches the situation that the next queen cannot be placed due to the
constraints by previously placed queens, it simply backtracks to the previously placed queen
and tries to find another solution. However, when the search space gets really larger, it often
suffers from the exponential growth of computing time.[8]

The authors of ”Efficient local search with conflict minimization: A case study of the
n-queens problem”[8] presented an alternative to the backtracking search by proposing a
novel local search algorithm with conflict minimization to solve the n-queens problem. They
implemented an efficient local search algorithm for the n-queens problem, and their results
show that this efficient local search is capable of solving the N-Queens in linear time without
backtracking. Also, they suggested that it is able to find the solution for really large size
n-queens problems. It is capable of finding a solution for extremely large N-Queens problems
without suffering from the exponential growth of computing time. [§]

Many other researchers proposed other efficient search algorithms to solve the N-Queens
problem. These algorithms techniques include common traversal of graphs and digraphs
algorithms such as Breadth First Search and Depth First Search[7], forward checking algo-
rithm which is another general CSP algorithm|2], search heuristic methods such as genetic
algorithms[1], and heuristic repairing method[5], and dynamic CSPs]6].

The authors of ” A New Solution for N-Queens Problem using Blind Approaches: DFS and
BF'S Algorithms.” [7] used depth-first-search and breadth-first-search to solve the N-Queens
problem. The authors proposed a new blind algorithm for solving the N-Queens using a
combination of DFS and BFS searches by the recursive approach. The proposed algorithm
act based on placing queens on chess board directly. They ran multiple experiments to
show the result that performance and run time with the combination of DFS and BFS were
much better than backtracking methods and hill climbing methods. Also, they compared the
performance and run time between DFS and BF'S algorithm to show that the DFS algorithms
are quicker than BFS algorithm and they also show that DFS uses less required memory by
showing the number of extended node in DFS algorithm is less than BFS algorithm.[7]

In the other reference, ” Constraint satisfaction problems: Algorithms and applications”
2], the authors start defining CSPs and describing the basic techniques for solving them by
using three different algorithms, and compare the performance of these algorithms. Authors
introduce the forward checking algorithm by comparing with the backtracking algorithm to
show that it checks the constraints between the current and past variables and the future

variables. In this way, it leads the branch with failure to be pruned earlier than the back-
tracking algorithm. Even though it does more work than simple backtracking when each
assignment is added to the current partial solution, in order to reduce the size of the search
tree and thereby reduce the overall amount of work done.[2]

Additionally, in the reference ”Solving Large-Scale Constraint Satisfaction and Schedul-
ing Problems Using a Heuristic Repair Method,” [5] the authors describes a simple heuris-
tic method for solving large-scale constraint satisfaction by using heuristic repair method.
Given an initial assignment for the variables in a problem, the method operates by searching
through the space of possible repairs. The search is guided by an ordering heuristic, the
min-conflicts heuristic, that attempts to minimize the number of constraint violations after
each step. They explain how the method works by searching the space and guided by an
ordering heuristic which tries to minimize the constraint, and shows that the performance
of this approach is better than backtracking techniques.[5]

Also, the authors of ”Solving n-Queen problem using global parallel genetic algorithm” [1]
show that the genetic algorithm can be used to solve N-Queens problem. They presented
custom chromosome representation, fitness function to evaluate, and the results with several
n values. They proved that genetic algorithms are able to solve combinatory problems with
simple "yes” and "no” answers. Furthermore, tests showed that genetic algorithm is able to
find different solutions for a given number of queens. Additionally, they used parallelization
to show it significantly improve genetic algorithm’s performance since genetic algorithm
performs a large number of computations.[1]

Lastly, the authors of ”A dynamic programming solution to the n-queens problem”[6]
shows that even dynamic programming can solve the n-queens problem. They started their
approach by describing the simple algorithm based on dynamic programming which can
solve the n-queens problem in time O(f(n)8"). They implemented the algorithm consists of
performing dynamic programming with the breadth first search. Since dynamic programming
uses memoization, it will have space requirements, and they specified it depends on the
maximum size of a queue at any point in the algorithm. At the end of the algorithm, the
number of solutions will be residing in the queue. [6]

3 EXPERIMENT DESCRIPTION/ALGORITHMS

The goal of this paper is to compare the performance differences of each algorithm to see
which approach is efficient in time and memory usage. To do this experiment, I am going
to use the publicly available code called AIMA-lisp. AIMA-lisp already implemented the
environment to make N-Queens problem, methods for this experiments such as algorithms,
and the function to measure execution time and memory usage. Run time and memory
usage will be tested for each algorithm and compared to see efficiency of each algorithm by
the results of each experiment.

3.1 N-Queens in AIMA

Here is the AIMA’s N-Queens problem code. I am going to make the test environment
with this code in lisp environment by simply calling make-nqueens-problem with passing
appropriate N values as the arguments. This will take N values and pass it to nqueens-
initial-state function to create N-Queens problem’s initial environment.

Listing 1: AIMA’s N-Queens problem code

(defun make—nqueens—problem (&rest args &key (n 8) (explicit? nil))
(apply #’create—nqueens—problem
cinitial—state (nqueens—initial—state n explicit?)
args))$

(defun nqueens—initial—state (n &optional (explicit? nil) (complete? nil))
(let ((s (make—CSP—state
;unassigned (mapcar #’(lambda (var)
(make—CSP—var :name var
:domain (iota n)))
(iota n))
cassigned nil
cconstraint—fn (if explicit?
(let ((constraints (nqueens—constraints n)))
#’(lambda (varl vall var2 val2)
(CSP—explicit—check
varl vall var2 val2 constraints)))
#'nqueens—constraint—fn))))
(if complete? (CSP—random—completion s) s)))

Here are some information about some candidates algorithms.

3.2 Brute-Force Search

Here is the code for brute-force search in AIMA. It will expand nodes according to the
specification of PROBLEM until it finds a solution or runs out of nodes to expand. The
QUEUING-FN decides which nodes to look at first. This QUEUING-FN will be used to
handle the order for differentiating DFS and BFS search algorithms.

Listing 2: AIMA’s Brute-Force search code
(defun general—search (problem queuing—fn)
(let ((nodes (make—initial—queue problem queuing—fn))
node)

(loop |
(setq node (remove—front nodes))

(if (goal—test problem (node—state node)) (RETURN node))
(funcall queuing—fn nodes (expand node problem)))))

if (empty—queue? nodes) (RETURN nil))
f

3.3 Depth-First-Search and Breath-First-Search

Here is the code for Depth-First-Search which is using brute-force search’s QUEUING-FN.
It will search the deepest nodes in the search tree first since it takes enqueue-at-front as the
argument for general-search.

Listing 3: AIMA’s Depth-First-Search code

(defun depth—first—search (problem)
(general—search problem #’enqueue—at—front))

Here is the code for Breadth-First-Search which is using brute-force search’s QUEUING-
FN. It will search the shallowest nodes in the search tree first since it takes enqueue-at-front
as the argument for general-search.

Listing 4: AIMA’s Breadth-First-Search code

(defun breadth—first—search (problem)
(general—search problem #’enqueue—at—end))

3.4 Search Algorithms That Use Heuristic Information

I also picked some candidates from the heuristic search algorithms such as greedy search,
tree A* search, and uniform-cost-search. Every heuristic algorithm uses best-first-search as
a foundation code with eval-fn to differentiate each algorithm. Greedy search uses heuristic
as distance to the goal, tree A* search uses estimated total cost as F = G + H (G: traveled
distance, H: heuristic cost), and uniform-cost-search uses the node’s depth as its cost. Here
are codes for each algorithm.[9]

Listing 5: AIMA’s Heuristic Algorithms

(defun best—first—search (problem eval—fn)
(general—search problem #’(lambda (old—q nodes)
(enqueue—by—priority old—q nodes eval—fn))))

(defun greedy—search (problem)
(best—first—search problem #'node—h—cost))

(defun tree—ax—search (problem)
(best—first—search problem #'node—f—cost))

(defun uniform—cost—search (problem)
(best—first—search problem #’'node—depth))

3.5 Backtracking Search and Forward Checking Algorithm

Lastly, it is definitely needed to pick Backtracking search and forward checking search as
candidates since these two algorithms are most common algorithms to handle the constraint
satisfaction problem including N-Queens problem. AIMA’s backtracking search algorithm
uses CSP-LEGAL-STATEP to check a consistency before the goal check, and avoid expand-
ing inconsistent states. Forward checking search added a test to make sure the assignments
so far have not eliminated all the possible values for one of the unassigned variables. Assumes
that the problem definition uses CSP-forward-checking-successors, which removes conflicting
values from the domains of the unassigned variables each time a variable is assigned.[9]

Listing 6: AIMA’s Backtracking search and Forward Checking search

(defun csp—backtracking—search (problem &optional
(queuing—fn #’enqueue—at—front))
(let ((nodes (make—initial—queue problem queuing—fn))
node)
(loop (if (empty—queue? nodes) (RETURN nil))
(setq node (remove—front nodes))
(when (CSP—legal—statep (node—state node))
(if (goal—test problem node) (RETURN node))
(funcall queuing—fn nodes (expand node problem))))))

(defun csp—forward—checking—search (problem &optional
(queuing—fn #’enqueue—at—front))
(setf (csp—problem—forward—checking? problem) t)
(let ((nodes (make—initial—queue problem queuing—fn))
node)
(loop (if (empty—queue? nodes) (RETURN nil))
(setq node (remove—front nodes))
(when (and (CSP-—legal—statep (node—state node))
(not (CSP—empty—domainp (node—state node))))
(if (goal—test problem node) (RETURN node))
(funcall queuing—fn nodes (expand node problem))))))

4 EXPERIMENTS/RESULTS

For the first experiment, I will measure time to solve N-Queens problem for each search
algorithm to decide which algorithm is fastest and efficient for N-Queens problem, and to
see how each search algorithm makes the result differently. For the second experiment, I will
measure memory usage for each search algorithm to see how each search algorithm takes the
space to solve N-Queens problem and to decide which algorithm is space efficient.

For the search algorithm candidates, I decided to compare three different groups of search.
A first group is a group of simple algorithms such as depth-first-search, breadth-first-search,
and iterative deepening search. A second group is a group of the heuristic search algorithms
such as tree-A*-search, greedy-search, and uniform-cost search. The last group is the algo-
rithms which are notably used for the Constraint Satisfaction Problems such as backtracking
search and forward checking search.

Before running the experiment, I needed to find reference point value for N to compare
each algorithm within the same environment. To decide the reference point value for N,
[will use brute-force search (Naive search), one of the candidate algorithms, to find the
possible maximum number of N, which brute-force search can capable of finding a solution
since brute-force search will take the longest time to find the solution. Simple brute-force
algorithm would be a very poor for solving the N-Queen problem since placing a single
queen in each row will have N¥ combinations. In this way, I can get the number of queens
to get results from every search algorithms to be compared. Once I get the possible maximum
number of N, I will fix the maximum number N to create the environment for this experiment.

After performing brute-force search to find appropriate value N, I come up with a the
values of N: 6. A Larger value of N than 6 would not work on the machine I tested since its
search space was too large to take a long time and seems to stuck because we have general
search algorithms as candidates.

With fixed N value as 6, I ran the first experiment to measure run time to solve 6-Queens
problem. In the Table 2, I ran every candidate algorithms for 6-Queens on the same machine
and measured the time to solve 6-Queens problem.

| Algorithm | Run Time(seconds) |
BFS 4.39682
DFS 0.05819
Iterative Deepening 0.226043
Greedy 0.434645
Tree A* 0.594049
Uniform Cost 0.600404
Backtracking 0.003507
Forward Checking 0.001294

Table 2: Time to solve N-Queens N: 6

With fixed N value as 6, I ran the second experiment to measure memory usage 6-Queens
problem. In the Table 3, I ran every candidate algorithms for 6-Queens on the same machine
and measured the memory usage of 6-Queens problem.

‘ Algorithm H Memory Usage(bytes) ‘

BFS 23983720

DFS 9130728
Iterative Deepening 9177704

Greedy 13124152

Tree A* 24702312

Uniform Cost 24702312
Backtracking 204416
Forward Checking 118048

Table 3: Memory Usage of N-Queens N: 6

5 ANALYSIS OF THE RESULTS

According to up results, we can see the run time and memory usages for each candidate
algorithm. Comparison result for run time can be seen in the Figure 2. Comparison result
for memory usage can be seen in the Figure 3.

Run Time to Solve

Forward Checking
Backtracking
Lniform Cost

Tree A
Greedy

Algorithm

Iterative Deepening

DF5

I

I

.

.

|
BFS
Seconds

Figure 2: Time to solve 6-Queens

Memory Usage

Forward Checking
Backtracking |
Uniform Cost

Tree A

|

|
Greedy I

|

]

|

Algorithm

lterative Deepening
DFS
BFS

Figure 3: Memory Usage 6-Queens

For the first group, general search algorithms, we can see the run time to reach the solution
in DF'S algorithm was 0.05819 seconds, the time for BFS algorithm was 4.39682 seconds while
the time for Iterative deepening DFS was 0.226043 seconds. Therefore, the DFS algorithm
is much quicker than BFS algorithm, and Iterative deepening DFS is obviously slower than
DFS, since it has to repeatedly visit top rows of tree nodes, unlike DFS. A number of
extended node in DFS algorithm is less than BFS algorithm, therefore, the needed memory
for BF'S is more than DFS.

For the second group, heuristic search algorithms, we can see the run time to reach the
solution in Greedy search was 0.434645 seconds, the time for Tree A* search was 0.594049
seconds while the time for Uniform cost search was 0.600404 seconds. Therefore, the greedy
search is quicker than Tree A* search and Uniform. Because greedy search only expands
the node that appears to be closest to the goal, in this case, it will only explore the first
spot available until it reaches the goal while tree A* search avoids expanding paths that are
already expensive with calculated heuristic values. A number of extended node in greedy
search is obviously less than tree-A* search and uniform cost search, therefore, the needed
memory for greedy is less than tree-A* and uniform cost search.

For the last group, search algorithms which are most widely used for CSP, we can see
the run time to reach the solution in backtracking was 0.003507 seconds, while the time for
forward checking search was 0.001294 seconds. Therefore, the forward checking search is
quicker than backtracking search. It was expected since backtracking search tries to find
every possible combination to the goal while forward checking search doesn’t explore the
node with constraint and prune it earlier. A number of extended node in forward checking

10

search is obviously less than backtracking search, therefore, the needed memory for forward
checking is less than backtracking search.

6 CONCLUSION

This paper experimented the efficiency of various algorithms from different types of search
that work by placing the queens on N-Queens problem with given value N as 6. Simple
search algorithms and heuristic algorithms were not good enough to surpass traditional CSP
methods like backtracking search and forward checking search. Traditional CSP methods
were really better than other search methods, and it shows why these methods acknowledged
becoming traditional CSP methods. For the future works, we can make heuristic functions
more elaborately to see if heuristic searches improved and surpass these traditional CSP
methods. Also, we can also add more efficient search algorithms to the candidate list to
solving the N-Queens problem and compare to find a better solution.

References

[1] M. Bozikovic, M. Golub, and L. Budin. Solving n-queen problem using global parallel
genetic algorithm. In International Conference on Computer as a tool EUROCON 20083,
2003.

[2] S. C. Brailsford, C. N. Potts, and B. M. Smith. Constraint satisfaction problems: Al-
gorithms and applications. European Journal of Operational Research, 119(3):557-581,
1999.

[3] M. G. Kaosar, M. Shorfuzzaman, and S. Ahmed. A novel approach to solving n-queens
problem. In Proceedings of the §th World Multi conference on Systemic, Cybernetics and
Informatics (SCI 2004), Orlando, Florida, USA, pages 1-5, 2004.

[4] C. Letavec and J. Ruggiero. The n-queens problem. INFORMS Transactions on Educa-
tion, 2(3):101-103, 2002.

[5] S. Minton, M. D. Johnston, A. B. Philips, and P. Laird. Solving large-scale constraint-
satisfaction and scheduling problems using a heuristic repair method. In AAAI vol-
ume 90, pages 17-24, 1990.

[6] I. Rivin and R. Zabih. A dynamic programming solution to the n-queens problem.
Information Processing Letters, 41(5):253-256, 1992.

[7] F. Soleimanian, B. Seyyedi, and G. Feyzipour. A new solution for n-queens problem
using blind approaches: Dfs and bfs algorithms. International Journal of Computer
Applications, 2012.

11

[8] R. Sosi¢ and J. Gu. Efficient local search with conflict minimization: A case study of the
n-queens problem. Knowledge and Data Engineering, IEEE Transactions on, 6(5):661—
668, 1994.

[9] P. N. Stuart Russell. Aima lisp code.

12

