Neural Network

Presented by Daniel Boley
Outline

• Perceptron
• Nonlinearities
• Training
• Recent Developments
Perceptron Unit

Feed Forward:
- \(\hat{y}_j = w_j \odot \mathbf{x}_i \)
- \(y_j = f(\hat{y}_j) \)

Back Propagation:
- \(\frac{dy_j}{d\hat{y}_j} = f'(\hat{y}_j) = g(y_j) \)
- \(\frac{dy_j}{dw_{ji}} = x_i \)
- \(\frac{dy_j}{dx_i} = w_{ji} \)

Product Rule:
- \(\frac{dy_j}{dw_{ji}} = x_i \cdot g(y_j) \)
- \(\frac{dy_j}{dx_i} = w_{ji} \cdot g(y_j) \)

Propagate derivative of error:
- \(\frac{dE}{dw_{ji}} = x_i \cdot g(y_j) \cdot \frac{dE}{dy_j} \)
- \(\frac{dE}{dx_i} = w_{ji} \cdot g(y_j) \cdot \frac{dE}{dy_j} \)
- Propagate to the previous layer.
- \(\frac{dE}{d\hat{x}_i} = g(x_i) \cdot w_{ji} \cdot g(y_j) \cdot \frac{dE}{dy_j} \)
Nonlinearities

Activation Functions:

- **Sigmoid**: \(f(\hat{y}) = \frac{1}{1 + \exp(-\hat{y})} \), \(f'(\hat{y}) = g(y) = y(1 - y) \).
- **Tanh**: \(f(\hat{y}) = \frac{\exp(2\hat{y}) - 1}{\exp(2\hat{y}) + 1} \), \(f'(\hat{y}) = g(y) = 1 - y^2 \).
- **ReLU**: \(f(\hat{y}) = \max\{0, \hat{y}\} \), \(f'(\hat{y}) = g(y) = \{1 \text{ if } y > 0; \ 0 \text{ o.w.}\} \).
- **Leaky ReLU**: \(f(\hat{y}) = \max\{\alpha \hat{y}, \hat{y}\} \), \(f'(\hat{y}) = g(y) = \{1 \text{ if } y > 0; \ \alpha \text{ o.w.}\} \)
 where \(0 < \alpha << 1 \).
- **Softmax**: \(f_k(\hat{y}) = \frac{\exp(\alpha \hat{y}_k)}{\sum \exp(\alpha \hat{y}_\ell)} \);
 \(\frac{df_k(\hat{y})}{d\hat{y}_j} = g_k(y) = \alpha f_k(y)(\delta_{jk} - f_j(y)) \), \(\delta_{jk} = \text{Kronecker delta} \).

Error Functionals

- **Quadratic**: \(E = \sum_\ell (z_\ell - t_\ell)^2 \); \(\frac{dE}{dz_j} = 2(z_j - t_j) \).
- **KL Divergence**: \(E = -\sum_\ell [t_\ell \log z_\ell + (1 - t_\ell) \log(1 - z_\ell)] \);
 \(\frac{dE}{dz_j} = \frac{(z_j - t_j)}{z_j(1 - z_j)} \).
Simple Multilayer Network

- Simple multilayer network with 2 fully connected layers (not counting inputs).
- Each layer consists of
 - V, W: linear combinations of its inputs
 - g: an [elementwise] nonlinearity “activation function”
- Training:
 - Training samples presented to network one by one.
 - Outputs z_i compared to “true” desired labels t_i.
 - Weights V, W updated to improve match $z_i \leftrightarrow t_i$.
 - Updates: propagate gradients back through the network, layer by layer.

<table>
<thead>
<tr>
<th>input</th>
<th>hidden layer</th>
<th>outer layer</th>
</tr>
</thead>
<tbody>
<tr>
<td>x</td>
<td>V</td>
<td>W</td>
</tr>
<tr>
<td>$x_0 \equiv 1$</td>
<td>$y_0 \equiv 1$</td>
<td>$z_0 \equiv 1$</td>
</tr>
<tr>
<td>x_1</td>
<td>$\hat{y}_1 \rightarrow g \rightarrow y_1$</td>
<td>$\hat{z}_1 \rightarrow g \rightarrow z_1$</td>
</tr>
<tr>
<td>x_2</td>
<td>$\hat{y}_2 \rightarrow g \rightarrow y_2$</td>
<td>$\hat{z}_2 \rightarrow g \rightarrow z_2$</td>
</tr>
<tr>
<td>\cdot</td>
<td>\cdot</td>
<td>\cdot</td>
</tr>
<tr>
<td>x_m</td>
<td>$\hat{y}_n \rightarrow g \rightarrow y_n$</td>
<td>$\hat{z}_p \rightarrow g \rightarrow z_p$</td>
</tr>
</tbody>
</table>
Training

- **Construct** network.
- **Initialize** weights to random values.

For s in sample training set:
- **Feed** s to network computing all internal activation values.
- **Compute** derivatives $\frac{dE}{dw^k_{ij}}$ for all layers k.
- **Update** weights: $w^k_{ij} + = -\frac{dE}{dw^k_{ij}} \circ \text{learning_rate}$.
Training prototype code

Ts = true labels
rate = .01;

[d,n] = size(digits); % training data
V = [...]; W = [...]; random initialization
for epoch = 1:1000;
 for k = 1:n
 [dE_dV, dE_dW, E, z, y] = deltaNN(V, W, digits(:, k), Ts(:, k));
 V = V - rate * dE_dV;
 W = W - rate * dE_dW;
 end;
end;
function \([dE_dV,dE_dW,E,z,y]=\text{deltaNN2}(V,W,x,t)\)
% \(x\) -- \(V\) --> \(y\) -- \(W\) --> \(z\)

% Forward Propagation
\(yhat = V*[1;x]\);
\(y = \tanh(yhat)\);
\(zhat = W*[1;y]\);
\(z = \tanh(zhat)\);
\(E = \text{sum}((z-t).^2)/2\);

% Backward Propagation - Last Layer
\(dE_dz = z-t;\)
\(dz_dzhat = 1-z.^2;\)
\(dzhat_dW = [1,y'];\)
\(dE_dzhat = dE_dz .* dz_dzhat;\)
\(dE_dW = dE_dzhat * dzhat_dW;\)

% Backward Propagation - Hidden Layer
\(dzhat_dy = W;\)
\(dy_dyhat = 1-y.^2;\)
\(dyhat_dV = [1,x'];\)

% Backward Propagation - Input Layer
\(dE_dy = dzhat_dy' * dE_dzhat;\)
\(dE_dyhat = dE_dy(2:end) .* dy_dyhat;\)
\(dE_dV = dE_dyhat * dyhat_dV;\)
Recent Developments

Most Popular New Concepts

• Convolution
• Activation Functions: ReLU, Softmax
• Down Sampling
• Stochastic Gradient Descent
• Dropout (to reduce overfitting)

Novel Architectures

• Recurrent Neural Networks (RNN)
• Long Short-Term Memory (LSTM)
• Encoders/Decoders
• Adverserial Neural Networks: Generator + Discriminator
Long Short-Term Memory

Block diagram of the LSTM recurrent network “cell.” Cells are connected recurrently to each other, replacing the usual hidden units of ordinary recurrent networks. An input feature is computed with a regular artificial neuron unit. Its value can be accumulated into the state if the sigmoidal input gate allows it. The state unit has a linear self-loop whose weight is controlled by the forget gate. The output of the cell can be shut off by the output gate. All the gating units have a sigmoid nonlinearity, while the input unit can have any squashing nonlinearity. The state unit can also be used as an extra input to the gating units. The black square indicates a delay of a single time step.

From *Deep Learning* by I Goodfellow, Y Bengio, A Courville.