Outline

- Introduction
- Related Work
- Adversarial Nets
- Theoretical Results
- Experiments
- Conclusions
- Applications
Introduction

- **Deep learning**
 - Discover hierarchical models that represent probability distributions
- **Discriminative models**
 - Map high-dimensional input to a class label
- **Backpropagation with well-behaved gradient**
- **Deep generative models**
 - Difficult to approximate intractable probabilistic computations
 - Discover probability distribution of data
- **Adversarial nets**
 - Police against counterfeiters
Related Work

● Deep generative models
 ○ Parametric specification of a probability distribution function
 ○ Maximize log-likelihood

● Boltzmann machine (Restricted Boltzmann Machine, RBM)
 ○ Require numerous approximation

● Variational autoencoders (VAE)
 ○ Perform approximate inference

● Generative stochastic networks (GSN)
 ○ Stochastic backpropagation
 ○ Use Markov chains
Related Work
Related Work

Reconstruction

- These biases are new
- Visible layer
- Hidden layer 1
- Reconstructions are the new output
- Activations are the new input
- Weights are the same

\[r = b + \]

\[w_i \ldots w_n \]
Related Work

- **Noise-contrastive estimation (NCE)**
 - Discriminate data from a fixed noise distribution
 - Ratio of the probability densities of the noise distribution and the model distribution
 - Backpropagate through both densities

- **Predictability minimization**
 - Two neural networks compete
 - Sole training criterion
 - Statistically independent between hidden units
 - Compare outputs
 - Optimization problem
Adversarial Nets

- Generative model G
- Discriminative model D
- Minimax two-player game
- No approximate inference or Markov chains
Adversarial Nets

- Train D to maximize the probability of classifying training samples and samples from G correctly
- Train G to minimize $\log(1-D(G(z)))$

$$\min_G \max_D V(D, G) = \mathbb{E}_{x \sim p_{\text{data}}(x)}[\log D(x)] + \mathbb{E}_{z \sim p_Z(z)}[\log(1 - D(G(z)))]$$
Adversarial Nets

(a)

(b)

(c)

(d)

...
Adversarial Nets

Algorithm 1 Minibatch stochastic gradient descent training of generative adversarial nets. The number of steps to apply to the discriminator, \(k \), is a hyperparameter. We used \(k = 1 \), the least expensive option, in our experiments.

\[
\text{for number of training iterations do} \\
\quad \text{for } k \text{ steps do} \\
\quad\quad \bullet \text{Sample minibatch of } m \text{ noise samples } \{z^{(1)}, \ldots, z^{(m)}\} \text{ from noise prior } p_g(z). \\
\quad\quad \bullet \text{Sample minibatch of } m \text{ examples } \{x^{(1)}, \ldots, x^{(m)}\} \text{ from data generating distribution } p_{\text{data}}(x). \\
\quad\quad \bullet \text{Update the discriminator by ascending its stochastic gradient:} \\
\quad\quad \quad \nabla_{\theta_d} \frac{1}{m} \sum_{i=1}^{m} \left[\log D(x^{(i)}) + \log \left(1 - D\left(G\left(z^{(i)}\right)\right)\right) \right]. \\
\quad \text{end for} \\
\quad \bullet \text{Sample minibatch of } m \text{ noise samples } \{z^{(1)}, \ldots, z^{(m)}\} \text{ from noise prior } p_g(z). \\
\quad \bullet \text{Update the generator by descending its stochastic gradient:} \\
\quad \quad \nabla_{\theta_g} \frac{1}{m} \sum_{i=1}^{m} \log \left(1 - D\left(G\left(z^{(i)}\right)\right)\right). \\
\text{end for} \\
\text{The gradient-based updates can use any standard gradient-based learning rule. We used momentum in our experiments.}
Theoretical Results

- Want probability distribution of generator G to be the same as the probability distribution of the data
- Want Algorithm 1 to converge to a good estimator of the probability distribution of the data
- Non-parametric
- Global optimality
- Algorithm 1 optimizes $V(D, G)$
Theoretical Results

4.1 Global Optimality of $p_g = p_{data}$

We first consider the optimal discriminator D for any given generator G.

Proposition 1. For G fixed, the optimal discriminator D is

$$D_G^*(x) = \frac{p_{data}(x)}{p_{data}(x) + p_g(x)}$$ \hspace{1cm} (2)
Theoretical Results

Proof. The training criterion for the discriminator D, given any generator G, is to maximize the quantity $V(G, D)$

$$V(G, D) = \int_x p_{data}(x) \log(D(x))dx + \int_z p_z(z) \log(1 - D(g(z)))dz$$

$$= \int_x p_{data}(x) \log(D(x)) + p_g(x) \log(1 - D(x))dx$$

For any $(a, b) \in \mathbb{R}^2 \setminus \{0, 0\}$, the function $y \rightarrow a \log(y) + b \log(1 - y)$ achieves its maximum in $[0, 1]$ at $\frac{a}{a+b}$. The discriminator does not need to be defined outside of $\text{Supp}(p_{data}) \cup \text{Supp}(p_g)$, concluding the proof. \qed
Theoretical Results

\[C(G) = \max_D V(G, D) \]

\[= \mathbb{E}_{x \sim p_{\text{data}}} [\log D_G^*(x)] + \mathbb{E}_{z \sim p_z} [\log (1 - D_G^*(G(z)))] \]

\[= \mathbb{E}_{x \sim p_{\text{data}}} [\log D_G^*(x)] + \mathbb{E}_{x \sim p_g} [\log (1 - D_G^*(x))] \]

\[= \mathbb{E}_{x \sim p_{\text{data}}} \left[\log \frac{p_{\text{data}}(x)}{p_{\text{data}}(x) + p_g(x)} \right] + \mathbb{E}_{x \sim p_g} \left[\log \frac{p_g(x)}{p_{\text{data}}(x) + p_g(x)} \right] \]
Theoretical Results

Theorem 1. *The global minimum of the virtual training criterion* $C(G)$ *is achieved if and only if* $p_g = p_{\text{data}}$. *At that point,* $C(G)$ *achieves the value* $-\log 4$.
Theoretical Results

Proof. For \(p_g = p_{\text{data}} \), \(D_G^*(\mathbf{x}) = \frac{1}{2} \), (consider Eq. 2). Hence, by inspecting Eq. 4 at \(D_G^*(\mathbf{x}) = \frac{1}{2} \), we find \(C(G) = \log \frac{1}{2} + \log \frac{1}{2} = -\log 4 \). To see that this is the best possible value of \(C(G) \), reached only for \(p_g = p_{\text{data}} \), observe that

\[
\mathbb{E}_{\mathbf{x} \sim p_{\text{data}}} \left[-\log 2 \right] + \mathbb{E}_{\mathbf{x} \sim p_g} \left[-\log 2 \right] = -\log 4
\]

and that by subtracting this expression from \(C(G) = V(D_G^*, G) \), we obtain:

\[
C(G) = -\log(4) + KL \left(p_{\text{data}} \parallel \frac{p_{\text{data}} + p_g}{2} \right) + KL \left(p_g \parallel \frac{p_{\text{data}} + p_g}{2} \right)
\]

(5)

where KL is the Kullback–Leibler divergence. We recognize in the previous expression the Jensen–Shannon divergence between the model’s distribution and the data generating process:

\[
C(G) = -\log(4) + 2 \cdot JSD(p_{\text{data}} \parallel p_g)
\]

(6)

Since the Jensen–Shannon divergence between two distributions is always non-negative, and zero iff they are equal, we have shown that \(C^* = -\log(4) \) is the global minimum of \(C(G) \) and that the only solution is \(p_g = p_{\text{data}} \), i.e., the generative model perfectly replicating the data distribution.
Experiments

● Datasets
 ○ MNIST
 ○ Toronto Face Database (TFD)
 ○ CIFAR-10

● Generator
 ○ Mixture of rectified linear activations and sigmoid activations

● Discriminator
 ○ Maxout activations
 ○ Dropout

● Gaussian Parzen window
 ○ Kernel density estimation
Experiments

<table>
<thead>
<tr>
<th>Model</th>
<th>MNIST</th>
<th>TFD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stacked CAE [3]</td>
<td>121 ± 1.6</td>
<td>2110 ± 50</td>
</tr>
<tr>
<td>Adversarial nets</td>
<td>225 ± 2</td>
<td>2057 ± 26</td>
</tr>
</tbody>
</table>

Table 1: Parzen window-based log-likelihood estimates. The reported numbers on MNIST are the mean log-likelihood of samples on test set, with the standard error of the mean computed across examples. On TFD, we computed the standard error across folds of the dataset, with a different σ chosen using the validation set of each fold. On TFD, σ was cross validated on each fold and mean log-likelihood on each fold were computed. For MNIST we compare against other models of the real-valued (rather than binary) version of dataset.
Experiments
Conclusions

- Generated samples are at least competitive with the better generative models
- Highlight the potential of the adversarial framework
- No explicit representation of the probability distribution of the generator
- A conditional generative model can be obtained
- Demonstrated the viability of the adversarial modeling framework
Conclusions

<table>
<thead>
<tr>
<th></th>
<th>Deep directed graphical models</th>
<th>Deep undirected graphical models</th>
<th>Generative autoencoders</th>
<th>Adversarial models</th>
</tr>
</thead>
<tbody>
<tr>
<td>Training</td>
<td>Inference needed during training.</td>
<td>Inference needed during training. MCMC needed to approximate partition function gradient.</td>
<td>Enforced tradeoff between mixing and power of reconstruction generation</td>
<td>Synchronizing the discriminator with the generator. Helvetica.</td>
</tr>
<tr>
<td>Inference</td>
<td>Learned approximate inference</td>
<td>Variational inference</td>
<td>Learned approximate inference</td>
<td></td>
</tr>
<tr>
<td>Sampling</td>
<td>No difficulties</td>
<td>Requires Markov chain</td>
<td>Requires Markov chain</td>
<td>No difficulties</td>
</tr>
<tr>
<td>Evaluating $p(x)$</td>
<td>Intractable, may be approximated with AIS</td>
<td>Intractable, may be approximated with AIS</td>
<td>Not explicitly represented, may be approximated with Parzen density estimation</td>
<td>Not explicitly represented, may be approximated with Parzen density estimation</td>
</tr>
<tr>
<td>Model design</td>
<td>Models need to be designed to work with the desired inference scheme — some inference schemes support similar model families as GANs</td>
<td>Careful design needed to ensure multiple properties</td>
<td>Any differentiable function is theoretically permitted</td>
<td>Any differentiable function is theoretically permitted</td>
</tr>
</tbody>
</table>

Table 2: Challenges in generative modeling: a summary of the difficulties encountered by different approaches to deep generative modeling for each of the major operations involving a model.
Applications

- Text to image generation
- Image to image translation
- Increasing image resolution
- Predicting next video frame
Applications
Thank you!