The QR algorithm

The most common method for solving small (dense) eigenvalue problems. The basic algorithm:

QR without shifts

1. Until Convergence Do:
2. Compute the QR factorization $A = QR$
3. Set $A := RQ$
4. EndDo

“Until Convergence” means “Until A becomes close enough to an upper triangular matrix”

Note: $A_{new} = RQ = Q^H (QR)Q = Q^H AQ$

A_{new} Unitarily similar to A → Spectrum does not change
Convergence analysis complicated – but insight: we are implicitly doing a QR factorization of \(A^k \):

QR-Factorize: Multiply backward:

Step 1

\[A_0 = Q_0 R_0 \quad A_1 = R_0 Q_0 \]

Step 2

\[A_1 = Q_1 R_1 \quad A_2 = R_1 Q_1 \]

Step 3:

\[A_2 = Q_2 R_2 \quad A_3 = R_2 Q_2 \]

Then:

\[
[Q_0 Q_1 Q_2] [R_2 R_1 R_0] = Q_0 Q_1 A_2 R_1 R_0
\]

\[
= Q_0 (Q_1 R_1) (Q_1 R_1) R_0
\]

\[
= Q_0 A_1 A_1 R_0, \quad A_1 = R_0 Q_0 \rightarrow
\]

\[
= (Q_0 R_0) (Q_0 R_0) (Q_0 R_0) = A^3
\]

\[
[Q_0 Q_1 Q_2] [R_2 R_1 R_0] == QR \text{ factorization of } A^3
\]

This helps analyze the algorithm (details skipped)
Above basic algorithm is never used as is in practice. Two variations:

(1) Use shift of origin and

(2) Start by transforming A into an Hessenberg matrix
Observation: (from theory): Last row converges fastest. Convergence is dictated by $\frac{|\lambda_n|}{|\lambda_{n-1}|}$

We will now consider only the real symmetric case.

- Eigenvalues are real.
- $A^{(k)}$ remains symmetric throughout process.
- As k goes to infinity the last column and row (except $a_{nn}^{(k)}$) converge to zero quickly.,,
- and $a_{nn}^{(k)}$ converges to lowest eigenvalue.
Idea: Apply QR algorithm to $A^{(k)} - \mu I$ with $\mu = a_{nn}^{(k)}$. Note: eigenvalues of $A^{(k)} - \mu I$ are shifted by μ, and eigenvectors are the same.
QR with shifts

1. Until row $a_{in}, 1 \leq i < n$ converges to zero DO:
2. Obtain next shift (e.g. $\mu = a_{nn}$)
3. $A - \mu I = QR$
5. Set $A := RQ + \mu I$
6. EndDo

➤ Convergence (of last row) is cubic at the limit! [for symmetric case]
Result of algorithm:

\[A^{(k)} = \begin{pmatrix}
\ddots & \ddots & \ddots & \ddots & \cdot \\
\ddots & \ddots & \ddots & \ddots & \cdot \\
\ddots & \ddots & \ddots & \ddots & \cdot \\
\cdot & \cdot & \cdot & \cdot & \cdot \\
0 & 0 & 0 & 0 & \lambda_n
\end{pmatrix} \]

Next step: deflate, i.e., apply above algorithm to \((n - 1) \times (n - 1)\) upper block.
Practical algorithm: Use the Hessenberg Form

Recall: Upper Hessenberg matrix is such that

\[a_{ij} = 0 \text{ for } j < i - 1 \]

Observation: The QR algorithm preserves Hessenberg form (tridiagonal form in symmetric case). Results in substantial savings.

Transformation to Hessenberg form

➢ Want \(H_1 A H_1^T = H_1 A H_1 \) to have the form shown on the right

\[
\begin{pmatrix}
\ast & \ast & \ast & \ast & \ast & \ast \\
\ast & \ast & \ast & \ast & \ast & \ast \\
0 & \ast & \ast & \ast & \ast & \ast \\
0 & \ast & \ast & \ast & \ast & \ast \\
0 & \ast & \ast & \ast & \ast & \ast \\
0 & \ast & \ast & \ast & \ast & \ast
\end{pmatrix}
\]

➢ Consider the first step only on a 6 × 6 matrix
Choose a w in $H_1 = I - 2ww^T$ to make the first column have zeros from position 3 to n. So $w_1 = 0$.

Apply to left: $B = H_1 A$

Apply to right: $A_1 = BH_1$.

Main observation: the Householder matrix H_1 which transforms the column $A(2 : n, 1)$ into e_1 works only on rows 2 to n. When applying the transpose H_1 to the right of $B = H_1 A$, we observe that only columns 2 to n will be altered. So the first column will retain the desired pattern (zeros below row 2).

Algorithm continues the same way for columns 2, ..., $n - 2$.

13-9

GvL 8.1-8.2.3 – Eigen2
Need the “Implicit Q theorem”

Suppose that \(Q^T A Q \) is an unreduced upper Hessenberg matrix. Then columns 2 to \(n \) of \(Q \) are determined uniquely (up to signs) by the first column of \(Q \).

In other words if \(V^T A V = G \) and \(Q^T A Q = H \) are both Hessenberg and \(V(:,1) = Q(:,1) \) then \(V(:,i) = \pm Q(:,i) \) for \(i = 2 : n \).

Implication: To compute \(A_{i+1} = Q_i^T A Q_i \) we can:

- Compute 1st column of \(Q_i \) \([=\text{ scalar } \times A(:,1)]\)
- Choose other columns so \(Q_i = \text{ unitary, and } A_{i+1} = \text{ Hessenberg.} \)
W’ll do this with Givens rotations:

Example: With $n = 5$:

\[
A = \begin{pmatrix}
* & * & * & * & * \\
* & * & * & * & * \\
0 & * & * & * & * \\
0 & 0 & * & * & * \\
0 & 0 & 0 & * & *
\end{pmatrix}
\]

1. Choose $G_1 = G(1, 2, \theta_1)$ so that $(G_1^T A_0)_{21} = 0$

\[
A_1 = G_1^T A G_1 = \begin{pmatrix}
* & * & * & * & * \\
* & * & * & * & * \\
+ & * & * & * & * \\
0 & 0 & * & * & * \\
0 & 0 & 0 & * & *
\end{pmatrix}
\]
2. Choose $G_2 = G(2, 3, \theta_2)$ so that $(G_2^T A_1)_{31} = 0$

\[A_2 = G_2^T A_1 G_2 = \begin{pmatrix}
 * & * & * & * & * \\
 * & * & * & * & * \\
 0 & * & * & * & * \\
 0 & + & * & * & * \\
 0 & 0 & 0 & * & * \\
\end{pmatrix} \]

3. Choose $G_3 = G(3, 4, \theta_3)$ so that $(G_3^T A_2)_{42} = 0$

\[A_3 = G_3^T A_2 G_3 = \begin{pmatrix}
 * & * & * & * & * \\
 * & * & * & * & * \\
 0 & * & * & * & * \\
 0 & 0 & * & * & * \\
 0 & 0 & + & * & * \\
\end{pmatrix} \]
4. Choose $G_4 = G(4, 5, \theta_4)$ so that $(G^T_4 A_3)_{53} = 0$

\[A_4 = G^T_4 A_3 G_4 = \begin{pmatrix} * & * & * & * & * \\ * & * & * & * & * \\ 0 & * & * & * & * \\ 0 & 0 & * & * & * \\ 0 & 0 & 0 & 0 & * \end{pmatrix} \]

- Process known as “Bulge chasing”
- Similar idea for the symmetric (tridiagonal) case
The symmetric eigenvalue problem: Basic facts

Consider the Schur form of a real symmetric matrix A:

$$A = QRQ^H$$

Since $A^H = A$ then $R = R^H$ ➤

Eigenvalues of A are real

and

There is an orthonormal basis of eigenvectors of A

In addition, Q can be taken to be real when A is real.

$$(A - \lambda I)(u + iv) = 0 \rightarrow (A - \lambda I)u = 0 \& (A - \lambda I)v = 0$$

➤ Can select eigenvector to be either u or v
The min-max theorem (Courant-Fischer)

Label eigenvalues decreasingly:

\[\lambda_1 \geq \lambda_2 \geq \cdots \geq \lambda_n \]

The eigenvalues of a Hermitian matrix \(A \) are characterized by the relation

\[\lambda_k = \max_{S, \dim(S) = k} \min_{x \in S, x \neq 0} \frac{(Ax, x)}{(x, x)} \]

Proof: Preparation: Since \(A \) is symmetric real (or Hermitian complex) there is an orthonormal basis of eigenvectors \(u_1, u_2, \cdots, u_n \). Express any vector \(x \) in this basis as \(x = \sum_{i=1}^{n} \alpha_i u_i \). Then : \((Ax, x)/(x, x) = [\sum \lambda_i |\alpha_i|^2]/[\sum |\alpha_i|^2] \).

(a) Let \(S \) be any subspace of dimension \(k \) and let \(\mathcal{W} = \text{span}\{u_k, u_{k+1}, \cdots, u_n\} \).

A dimension argument (used before) shows that \(S \cap \mathcal{W} \neq \{0\} \). So there is a
non-zero \(x_w \) in \(S \cap W \). Express this \(x_w \) in the eigenbasis as \(x_w = \sum_{i=k}^{n} \alpha_i u_i \).

Then since \(\lambda_i \leq \lambda_k \) for \(i \geq k \) we have:

\[
\frac{(Ax_w, x_w)}{(x_w, x_w)} = \frac{\sum_{i=k}^{n} \lambda_i |\alpha_i|^2}{\sum_{i=k}^{n} |\alpha_i|^2} \leq \lambda_k
\]

So for any subspace \(S \) of dim. \(k \) we have \(\min_{x \in S, x \neq 0} (Ax, x)/(x, x) \leq \lambda_k \).

(b) We now take \(S_* = \text{span}\{u_1, u_2, \cdots, u_k\} \). Since \(\lambda_i \geq \lambda_k \) for \(i \leq k \), for this particular subspace we have:

\[
\min_{x \in S_*, x \neq 0} \frac{(Ax, x)}{(x, x)} = \min_{x \in S_*, x \neq 0} \frac{\sum_{i=1}^{k} \lambda_i |\alpha_i|^2}{\sum_{i=k}^{n} |\alpha_i|^2} = \lambda_k.
\]

(c) The results of (a) and (b) imply that the max over all subspaces \(S \) of dim. \(k \) of \(\min_{x \in S, x \neq 0} (Ax, x)/(x, x) \) is equal to \(\lambda_k \) \(\square \)
Consequences:

\[\lambda_1 = \max_{x \neq 0} \frac{(Ax, x)}{(x, x)} \quad \lambda_n = \min_{x \neq 0} \frac{(Ax, x)}{(x, x)} \]

Actually 4 versions of the same theorem. 2nd version:

\[\lambda_k = \min_{S, \ dim(S) = n-k+1} \max_{x \in S, x \neq 0} \frac{(Ax, x)}{(x, x)} \]

Other 2 versions come from ordering eigenvalues increasingly instead of decreasingly.

1. Write down all 4 versions of the theorem
2. Use the min-max theorem to show that \(\|A\|_2 = \sigma_1(A) \) - the largest singular value of \(A \).
Interlacing Theorem: Denote the $k \times k$ principal submatrix of A as A_k, with eigenvalues $\{\lambda_i^{[k]}\}_{i=1}^k$. Then

$$
\lambda_1^{[k]} \geq \lambda_1^{[k-1]} \geq \lambda_2^{[k]} \geq \lambda_2^{[k-1]} \geq \cdots \lambda_{k-1}^{[k]} \geq \lambda_k^{[k]}
$$

Example: λ_i's = eigenvalues of A, μ_i's = eigenvalues of A_{n-1}:

Many uses.

For example: interlacing theorem for roots of orthogonal polynomials
The Law of inertia (real symmetric matrices)

Inertia of a matrix = \([m, z, p]\) with \(m\) = number of \(< 0\) eigenvalues, \(z\) = number of zero eigenvalues, and \(p\) = number of \(> 0\) eigenvalues.

Sylvester’s Law of inertia:

If \(X \in \mathbb{R}^{n \times n}\) is nonsingular, then \(A\) and \(X^TAX\) have the same inertia.

\[\text{Suppose that } A = LDL^T \text{ where } L \text{ is unit lower triangular, and } D \text{ diagonal. How many negative eigenvalues does } A \text{ have?}\]

\[\text{Assume that } A \text{ is tridiagonal. How many operations are required to determine the number of negative eigenvalues of } A?\]
Devise an algorithm based on the inertia theorem to compute the i-th eigenvalue of a tridiagonal matrix.

Let $F \in \mathbb{R}^{m \times n}$, with $n < m$, and F of rank n. What is the inertia of the matrix on the right: $\begin{pmatrix} I & F \\ F^T & 0 \end{pmatrix}$? [Hint: use a block LU factorization]

Note 1: Converse result also true: If A and B have same inertia they are congruent. [This part is easy to show]

Note 2: result also true for Hermitian matrices ($X^H A X$ has same inertia as A).
Bisection algorithm for tridiagonal matrices:

- Goal: to compute i-th eigenvalue of A (tridiagonal)

- Get interval $[a, b]$ containing spectrum [Gershgorin]: $a \leq \lambda_n \leq \cdots \leq \lambda_1 \leq b$

- Let $\sigma = (a + b)/2$ = middle of interval

- Calculate $p = \text{number of positive eigenvalues of } A - \sigma I$

 - If $p \geq i$ then $\lambda_i \in (\sigma, b) \rightarrow$ set $a := \sigma$

 - Else then $\lambda_i \in [a, \sigma] \rightarrow$ set $b := \sigma$

- Repeat until $b - a$ is small enough.
The QR algorithm for symmetric matrices

- Most important method used: reduce to tridiagonal form and apply the QR algorithm with shifts.
- Householder transformation to Hessenberg form yields a tridiagonal matrix because

\[H A H^T = A_1 \]

is symmetric and also of Hessenberg form. It is tridiagonal symmetric.

Tridiagonal form preserved by QR similarity transformation
Practical method

- How to implement the QR algorithm with shifts?
- It is best to use Givens rotations – can do a shifted QR step without explicitly shifting the matrix.
- Two most popular shifts:

\[s = a_{nn} \text{ and } s = \text{smallest e.v. of } A(n - 1 : n, n - 1 : n) \]
Main idea: Rotation matrices of the form

\[
J(p, q, \theta) = \begin{pmatrix}
1 & \ldots & 0 & \ldots & 0 & 0 \\
\vdots & \ddots & \vdots & \ddots & \vdots & \vdots \\
0 & \ldots & c & \ldots & s & 0 \\
\vdots & \ddots & \vdots & \ddots & \vdots & \vdots \\
0 & \ldots & -s & \ldots & c & 0 \\
\vdots & \ddots & \vdots & \ddots & \vdots & \vdots \\
0 & \ldots & 0 & \ldots & \ldots & 1
\end{pmatrix}
\]

\(c = \cos \theta\) and \(s = \sin \theta\) are so that \(J(p, q, \theta)^T A J(p, q, \theta)\) has a zero in position \((p, q)\) (and also \((q, p)\))

Frobenius norm of matrix is preserved – but diagonal elements become larger

Convergence to a diagonal.
Let \(B = J^T A J \) (where \(J \equiv J_{p,q,\theta} \)).

Look at \(2 \times 2 \) matrix \(B([p, q], [p, q]) \) (matlab notation)

Keep in mind that \(a_{pq} = a_{qp} \) and \(b_{pq} = b_{qp} \)

\[
\begin{pmatrix}
 b_{pp} & b_{pq} \\
 b_{qp} & b_{qq}
\end{pmatrix}
= \begin{pmatrix}
 c - s \\
 s & c
\end{pmatrix}
\begin{pmatrix}
 a_{pp} & a_{pq} \\
 a_{qp} & a_{qq}
\end{pmatrix}
\begin{pmatrix}
 c & s \\
 -s & c
\end{pmatrix}
= \begin{pmatrix}
 c - s \\
 s & c
\end{pmatrix}
\begin{pmatrix}
 ca_{pp} - sa_{pq} & sa_{pp} + ca_{pq} \\
 ca_{qp} - sa_{qq} & sa_{pq} + ca_{qq}
\end{pmatrix}
\]

\[
\begin{pmatrix}
 c^2 a_{pp} + s^2 a_{qq} - 2sc a_{pq} \\
 *
\end{pmatrix}
\begin{pmatrix}
 (c^2 - s^2) a_{pq} - sc(a_{qq} - a_{pp}) \\
 c^2 a_{qq} + s^2 a_{pp} + 2sc a_{pq}
\end{pmatrix}
\]

Want:

\[
(c^2 - s^2) a_{pq} - sc(a_{qq} - a_{pp}) = 0
\]
\[
\frac{c^2 - s^2}{2sc} = \frac{a_{qq} - a_{pp}}{2a_{pq}} \equiv \tau
\]

Letting \(t = s/c \) (^\(\tan \theta \)) \rightarrow \text{quad. equation}

\[
t^2 + 2\tau t - 1 = 0
\]

\(t = -\tau \pm \sqrt{1 + \tau^2} = \frac{1}{\tau \pm \sqrt{1 + \tau^2}} \)

Select sign to get a smaller \(t \) so \(\theta \leq \pi/4 \).

Then:

\[
c = \frac{1}{\sqrt{1 + t^2}}; \quad s = c \times t
\]

Implemented in matlab script \texttt{Jacrot(A,p,q)} –
Define: \(A_O = A - \text{Diag}(A) \equiv A \) ‘with its diagonal entries replaced by zeros’

Observations: (1) Unitary transformations preserve \(\| \cdot \|_F \). (2) Only changes are in rows and columns \(p \) and \(q \).

Let \(B = J^T AJ \) (where \(J \equiv J_{p,q,\theta} \)). Then,

\[
a_{pp}^2 + a_{qq}^2 + 2a_{pq}^2 = b_{pp}^2 + b_{qq}^2 + 2b_{pq}^2 = b_{pp}^2 + b_{qq}^2
\]

because \(b_{pq} = 0 \). Then, a little calculation leads to:

\[
\| B_O \|_F^2 = \| B \|_F^2 - \sum b_{ii}^2 = \| A \|_F^2 - \sum b_{ii}^2
\]

\[
= \| A \|_F^2 - \sum a_{ii}^2 + \sum a_{ii}^2 - \sum b_{ii}^2
\]

\[
= \| A_O \|_F^2 + (a_{pp}^2 + a_{qq}^2 - b_{pp}^2 - b_{qq}^2)
\]

\[
= \| A_O \|_F^2 - 2a_{pq}^2
\]
\[\|A_O\|_F \text{ will decrease from one step to the next.} \]

\[\text{Let } \|A_O\|_I = \max_{i \neq j} |a_{ij}|. \text{ Show that} \]
\[\|A_O\|_F \leq \sqrt{n(n-1)} \|A_O\|_I \]

\[\text{Use this to show convergence in the case when largest entry is zeroed at each step.} \]