LARGE SPARSE EIGENVALUE PROBLEMS

- Projection methods
- The subspace iteration
- Krylov subspace methods: Arnoldi and Lanczos
- Golub-Kahan-Lanczos bidiagonalization

General Tools for Solving Large Eigen-Problems

- Projection techniques – Arnoldi, Lanczos, Subspace Iteration;
- Preconditionings: shift-and-invert, Polynomials, ...
- Deflation and restarting techniques
- Computational codes often combine these three ingredients

A few popular solution Methods

- Subspace Iteration [Now less popular – sometimes used for validation]
- Arnoldi’s method (or Lanczos) with polynomial acceleration
- Shift-and-invert and other preconditioners. [Use Arnoldi or Lanczos for \((A - \sigma I)^{-1}\).]
- Davidson’s method and variants, Jacobi-Davidson
- Specialized method: Automatic Multilevel Substructuring (AMLS).

Projection Methods for Eigenvalue Problems

Projection method onto \(K\) orthogonal to \(L\)

- Given: Two subspaces \(K\) and \(L\) of same dimension.
- Approximate eigenpairs \(\tilde{\lambda}, \tilde{u}\), obtained by solving:

 \[
 \text{Find: } \tilde{\lambda} \in \mathbb{C}, \tilde{u} \in K \text{ such that } (\tilde{\lambda} I - A)\tilde{u} \perp L
 \]

- Two types of methods:

 Orthogonal projection methods: Situation when \(L = K\).

 Oblique projection methods: When \(L \neq K\).

 First situation leads to Rayleigh-Ritz procedure
Rayleigh-Ritz projection

Given: a subspace X known to contain good approximations to eigenvectors of A.

Question: How to extract 'best' approximations to eigenvalues/eigenvectors from this subspace?

Answer: Orthogonal projection method

- Let $Q = [q_1, \ldots, q_m] = $ orthonormal basis of X
- Orthogonal projection method onto X yields:
 \[Q^H(A - \lambda I) \tilde{u} = 0 \rightarrow \]
 \[Q^H A Q y = \tilde{\lambda} y \text{ where } \tilde{u} = Q y \]

Known as Rayleigh Ritz process

Subspace Iteration

Original idea: projection technique onto a subspace of the form $Y = A^k X$

Practically: A^k replaced by suitable polynomial

Advantages:
- Easy to implement (in symmetric case);
- Easy to analyze;

Disadvantage: Slow.

- Often used with polynomial acceleration: $A^k X$ replaced by $C_k(A) X$. Typically $C_k = $ Chebyshev polynomial.

Algorithm: Subspace Iteration with Projection

1. **Start:** Choose an initial system of vectors $X = [x_0, \ldots, x_m]$ and an initial polynomial C_k.
2. **Iterate:** Until convergence do:
 (a) Compute $\tilde{Z} = C_k(A) X$. [Simplest case: $\tilde{Z} = AX$.]
 (b) Orthonormalize \tilde{Z}: $[Z, R_Z] = qr(\tilde{Z}, 0)$
 (c) Compute $B = Z^H A Z$
 (d) Compute the Schur factorization $B = Y R_B Y^H$ of B
 (e) Compute $X := Z Y$.
 (f) Test for convergence. If satisfied stop. Else select a new polynomial C_k' and continue.
THEOREM: Let \(S_0 = \text{span}\{x_1, x_2, \ldots, x_m\} \) and assume that \(S_0 \) is such that the vectors \(\{P_i x_i\}_{i=1}^{m} \) are linearly independent where \(P \) is the spectral projector associated with \(\lambda_1, \ldots, \lambda_m \). Let \(P_k \) the orthogonal projector onto the subspace \(S_k = \text{span}\{X_k\} \). Then for each eigenvector \(u_i \) of \(A \), \(i = 1, \ldots, m \), there exists a unique vector \(s_i \) in the subspace \(S_0 \) such that \(Ps_i = u_i \). Moreover, the following inequality is satisfied

\[
\| (I - P_k)u_i \|_2 \leq \| u_i - s_i \|_2 \left(\frac{\lambda_{m+1}}{\lambda_i} + \epsilon_k \right)^k,
\]

where \(\epsilon_k \) tends to zero as \(k \) tends to infinity.

Krylov subspace methods

Principle: Projection methods on Krylov subspaces:

\[
K_m(A, v_1) = \text{span}\{v_1, Av_1, \ldots, A^{m-1}v_1\}
\]

- The most important class of projection methods [for linear systems and for eigenvalue problems]
- Variants depend on the subspace \(L \)
- Let \(\mu = \text{deg. of minimal polynom. of } v_1 \). Then:
 - \(K_m = \{p(A)v_1| p = \text{polynomial of degree } \leq m - 1\} \)
 - \(K_m = K_\mu \) for all \(m \geq \mu \). Moreover, \(K_\mu \) is invariant under \(A \).
 - \(\text{dim}(K_m) = m \) iff \(\mu \geq m \).

Arnoldi’s algorithm

Goal: to compute an orthogonal basis of \(K_m \).

Input: Initial vector \(v_1 \), with \(\|v_1\|_2 = 1 \) and \(m \).

ALGORITHM: Arnoldi’s procedure

For \(j = 1, \ldots, m \) do

Compute \(w := Av_j \)

For \(i = 1, \ldots, j \), do

\[
\begin{align*}
 h_{i,j} &:= (w, v_i) \\
 w &:= w - h_{i,j}v_i \\
 h_{j+1,j} &:= \|w\|_2 \\
 v_{j+1} &:= w/h_{j+1,j}
\end{align*}
\]

End

Based on Gram-Schmidt procedure
Result of Arnoldi’s algorithm

Let: \(H_m = \begin{pmatrix} x & x & x & x & x \\ x & x & x & x & x \\ x & x & x & x & x \\ x & x & x & x \\ x & x & x \\ x & x \end{pmatrix} \), \(H_m = \begin{pmatrix} x & x & x & x & x \\ x & x & x & x & x \\ x & x & x & x \\ x & x & x \\ x & x \end{pmatrix} \)

Results:

1. \(V_m = [v_1, v_2, ..., v_m] \) orthonormal basis of \(K_m \).
2. \(AV_m = V_{m+1}H_m = V_mH_m + h_{m+1,m}v_{m+1}e_T^m \)
3. \(V_m^T AV_m = H_m \equiv \overline{H}_m \) last row.

Application to eigenvalue problems

1. Write approximate eigenvector as \(\tilde{u} = V_m y \)
2. Galerkin condition:
 \((A - \tilde{\lambda} I)V_m y \perp K_m \rightarrow V_m^H (A - \tilde{\lambda} I)V_m y = 0 \)
3. Approximate eigenvalues are eigenvalues of \(H_m \)
 \(H_m y_j = \tilde{\lambda}_j y_j \)
4. Associated approximate eigenvectors are \(\tilde{u}_j = V_m y_j \)
5. Typically a few of the outermost eigenvalues will converge first.

Hermitian case: The Lanczos Algorithm

- The Hessenberg matrix becomes tridiagonal:
 \(A = A^H \) and \(V_m^H AV_m = H_m \rightarrow H_m = H_m^H \)
- Denote \(H_m \) by \(T_m \) and \(\overline{H}_m \) by \(\overline{T}_m \). We can write
 \(T_m = \begin{pmatrix} \alpha_1 & \beta_2 \\ \beta_2 & \alpha_2 & \beta_3 \\ & \beta_3 & \alpha_3 & \beta_4 \\ & & \ddots & \ddots \end{pmatrix} \)
- Relation \(AV_m = V_{m+1}T_m \)

Consequence: three term recurrence

\(\beta_{j+1} v_{j+1} = Av_j - \alpha_j v_j - \beta_{j} v_{j-1} \)

ALGORITHM 2. Lanczos

1. Choose an initial \(v_1 \) with \(\|v_{-1}\|_2 = 1 \);
 Set \(\beta_1 \equiv 0, v_0 \equiv 0 \)
2. For \(j = 1, 2, ..., m \) Do:
3. \(w_j := Av_j - \beta_j v_{j-1} \)
4. \(\alpha_j := (w_j, v_j) \)
5. \(w_j := w_j - \alpha_j v_j \)
6. \(\beta_{j+1} := \|w_j\|_2. If \beta_{j+1} = 0 then Stop \)
7. \(v_{j+1} := w_j / \beta_{j+1} \)
8. EndDo

Hermitian matrix + Arnoldi \rightarrow Hermitian Lanczos
In theory, v_i's defined by 3-term recurrence are orthogonal.

However: in practice, severe loss of orthogonality.

Observation [Paige, 1981]: Loss of orthogonality starts suddenly, when the first eigenpair has converged. It is a sign of loss of linear independence of the computed eigenvectors. When orthogonality is lost, then several copies of the same eigenvalue start appearing.

Reorthogonalization

- Full reorthogonalization – reorthogonalize v_{j+1} against all previous v_i's every time.
- Partial reorthogonalization – reorthogonalize v_{j+1} against all previous v_i's only when needed [Parlett & Simon]
- Selective reorthogonalization – reorthogonalize v_{j+1} against computed eigenvectors [Parlett & Scott]
- No reorthogonalization – Do not reorthogonalize - but take measures to deal with 'spurious' eigenvalues. [Cullum & Willoughby]

Lanczos Bidiagonalization

We now deal with rectangular matrices. Let $A \in \mathbb{R}^{m \times n}$.

ALGORITHM : 3. Golub-Kahan-Lanczos

1. Choose an initial v_1 with $\|v_1\|_2 = 1$; Set $\beta_0 \equiv 0$, $u_0 \equiv 0$
2. For $k = 1, \ldots, p$ Do:
 3. $\hat{u} := Av_k - \beta_{k-1} u_{k-1}$
 4. $\alpha_k = \|\hat{u}\|_2$; $u_k = \hat{u}/\alpha_k$
 5. $\hat{v} = A^T u_k - \alpha_k v_k$
 6. $\beta_k = \|\hat{v}\|_2$; $v_{k+1} := \hat{v}/\beta_k$
7. EndDo

Let:

- $V_{p+1} = [v_1, v_2, \cdots, v_{p+1}] \in \mathbb{R}^{n \times (p+1)}$
- $U_p = [u_1, u_2, \cdots, u_p] \in \mathbb{R}^{m \times p}$

Result:

- $V_p^T V_p + 1 = I$
- $U_p^T U_p = I$
- $AV_p = U_p B_p$
- $A^T U_p = V_{p+1} B_p^T$
Observe that:
\[A^T(AV_p) = A^T(U_p \hat{B}_p) = V_{p+1}B_p \]

\[B_p^T \hat{B}_p \] is a (symmetric) tridiagonal matrix of size \((p+1) \times p\)

Call this matrix \(T_k\). Then:

\[(A^TA)V_p = V_{p+1}\overline{T}_p \]

Standard Lanczos relation!

Algorithm is equivalent to standard Lanczos applied to \(A^TA\).

Similar result for the \(u_i\)'s [involves \(AA^T\)]

Work out the details: What are the entries of \(\overline{T}_p\) relative to those of \(B_p\)?