
Network Function Virtualization Enablement Within
SDN Data Plane

Hesham Mekky⇤, Fang Hao†, Sarit Mukherjee†, T. V. Lakshman†, and Zhi-Li Zhang⇤
⇤University of Minnesota. †Nokia Bell Labs.

Abstract—Software Defined Networking (SDN) can benefit a
Network Function Virtualization solution by chaining a set of
network functions (NF) to create a network service. Currently,
control on NFs is isolated from the SDN, which creates routing
inflexibility, flow imbalance and choke points in the network as
the controller remains oblivious to the number, capacity and
placement of NFs. Moreover, a NF may modify packets in
the middle, which makes flow identification at a SDN switch
challenging. In this paper, we postulate native NFs within the
SDN data plane, where the same logical controller controls
both network services and routing. This is enabled by extending
SDN to support stateful flow handling based on higher layers
in the packet beyond layers 2-4. As a result, NF instances can
be chained on demand, directly on the data plane. We present
an implementation of this architecture based on Open vSwitch,
and show that it enables popular NFs effectively using detailed
evaluation and comparison with other alternative solutions.

I. INTRODUCTION

Network Function Virtualization (NFV) revolutionizes the
design, deployment, and consumption [1] in virtualized data
centers. Conventionally, a Network Function (NF), such as
load balancer, is often implemented as a specialized hardware
device. NFV decouples the NFs from the hardware platform
and makes them run on software like virtual machines running
atop a hypervisor on a commodity server, which reduces cost
and makes deployment easier. A network service is created
by chaining a sequence of NFs together, and routing the
packets through the NF chain. Ideally, such a service chain is
constructed on demand according to dynamic policy settings.
Different service chains should be allowed to share certain NF
elements for better resource utilization.

Software Defined Networking (SDN) is an ideal candidate
for dynamic packet flow management for NFV since the
SDN routers or switches support packet forwarding based
on more elaborate flow definition than L2 or L3 destination
addresses. This enables fine-grained routing control based
on policies. In addition, the centralized control plane with
complete knowledge of the network makes it possible to
better optimize the forwarding path. However, there are a few
drawbacks: (1) As traffic must be chained through NF entities,
policy routing becomes inflexible and traffic choke points get
created in the network, which is harmful and unnecessary;
(2) The controller does not have full visibility into the NFs,
e.g., how many instances exist, placement of instances, and
traffic volume a particular instance can handle. Likewise, the
control plane of the NFs is often exposed to limited network
information. Such isolated system architecture leads to non-
optimal NFs and network utilization; and (3) The NFs tend

to change the state of the packets, and such changes are
invisible to the SDN controller. There are various types of
state changes by NFs: changing the packet contents (e.g.,NAT
changes addresses/ports), dropping packets (e.g., firewall), or
absorbing packets and generating new ones (e.g., L7 load
balancer terminates client’s TCP session and establishes new
session with the appropriate server). The SDN controller
remains unaware of how packets are modified by the NFs
in the middle, and may lose the capability to track flows [2].

Two approaches have been proposed in the literature that
address these issues from two angles. OpenNF [3] proposes
a virtualized NF architecture where NFs are controlled by
a central OpenNF controller that interacts with the SDN
controller. It maintains two distinct sub-systems and NFs remain
separate entities outside the SDN. Flowtag [2] proposes to use
SDN to support service chaining by redefining certain packet
header fields as tags to track flows. This still keeps NFs outside
the purview of SDN. It also requires customized changes to
each NF to make them tag-aware, which introduces dependency
between the processing logic at different NFs.

In this paper, we propose NEWS (NFV Enablement Within
SDN Data Plane), a solution focusing on how SDN’s complete
knowledge of the network state can be maintained in a central
controller while having it support NFs organically, efficiently
and scalably. NEWS extends the current SDN architecture to
make NFs integral parts of the SDN. This implies that there are
no separate NF entities, and no separate control protocols for
them. Chaining multiple NFs and scaling of the service happens
natively within the SDN framework. We extend today’s SDN
architecture to address these issues. Our goal is to keep one
controller in the network that is aware of all the states in the
network, and can manage both the network and the network
functions. Next, we present NEWS overview in Section II, the
architecture in Section III and service chaining in Section IV.
Then, we present our evaluation in Section V, related work in
Section VI, and conclude in Section VII.

II. NEWS OVERVIEW & CHALLENGES

In NEWS, we address the following challenges.
Placement of NF: A naive solution is to implement NFs at

the controller, and let switches forward packets to the controller.
This is inefficient since the controller becomes a choke point
leading to long delays and low throughput. NEWS extends SDN
to support stateful packet processing natively at the hypervisor
switches. This design takes advantage of the popularity of
software switches in data centers [4], [5] as well as in service

VNFVM

VM$

VM$
VM$

(a) Service chaining using NF
VMs (traffic detouring & choke
points).

VM# OVS#

VM#

VM#
VM#OVS#

OVS#

OVS#

(b) NFV enablement within
SDN data plane.

Fig. 1. Current state of the art NFV vs. NEWS data plane.

provider’s networks [6], where software switches run at the
network edge to enable sophisticated policy and lower the cost,
while conventional hardware switches are used in the core for
simple and fast forwarding. Both the research community [7]
and industry [6] have shown that software switches can reach
processing capacity of hundreds of Gbps. The exponential
growth in core density per host processor [8], [9] makes it
feasible to run a number of data plane processing network
functions at line rate within a server. While today’s SDN allows
the controller to install flow processing rules at the switches,
in NEWS, we allow the controller to load application (app)
modules at the switches; each app corresponds to a primitive
function, e.g., a firewall consists of many primitive functions
such as connection tracking, connection limiting, SNAT, etc.
Apps are invoked in the same way regular flow actions are
invoked (using OpenFlow vendor extensions), allowing NF
logic to be executed natively in the data plane.

NF Primitives: NEWS takes advantage of the redundant
functionalities implemented by different network functions to
reduce the memory footprint, and break down NFs to basic
primitives. For instance, the iptables firewall implements
SNAT, DNAT, and ACLs, which are also implemented by load
balancers such as HAProxy [10]. Therefore, NEWS apps are
implemented based on the primitive building blocks of NFs,
and they can be dynamically loaded by the controller.

Chaining NFs: Sophisticated network services require com-
bining multiple NFs in a sequence. Since NFs are implemented
as app actions in NEWS, NF chaining simply involves calling
such app actions in a sequence. Within a switch, we create
a logical chain of different app modules for each flow that
requires a network service. In most cases, the flow gets
complete treatment for the service in a single switch, avoiding
inefficient detouring, choke points and packet copies (see
Figure 1). Section IV discusses NEWS support for cases where
the chain is long and involves multiple switches on the path.

Scalable Deployment: In NEWS, the controller installs an
app module chain and the flow matching rules in a switch
for network services. Scalability and elasticity are achieved by
dynamically configuring the number of switches supporting
a specific network service, and sending the flows to those
switches using ECMP or other load balancing techniques [11]).
This ensures that our proposed solution scales out with both
the number of composed services and the traffic.

Dynamic Service Creation: The central controller must

OpenFlowAPI

Connection
Manager

Open	vSwitch

Flow	Table	
Pipeline	 App	table

App	1 App	2

Controller

App	1 App	2

Kernel
Flow	Table

Controller	app	module
keeps	global	state

Dataplane app	module
keeps	local	state

User	space

11

12

13

14

55

16
17

18

Fig. 2. NEWS System Architecture

be aware of all services in the network and be able to
add/delete services on demand. As evident from the above
description, the central controller in NEWS is in charge
of app module activation at the switches and sending the
appropriate policy to the app using OpenFlow, e.g., “load the
connection limiting app and limit TCP connections to 100.”
We implement app modules as dynamically loadable software
libraries that can be enabled/disabled remotely by the controller
at runtime. Therefore, it remains aware of the network state,
and creates/destroys NFs when needed. Thus, both network
traffic and NFs are managed from one point of control.

We extend Open vSwitch (OVS) [12], for implementing
NEWS. We quantify the amount of processing power needed
at the switches to perform these additional functions. Note that
some amount of computation power is needed to implement
NFV, be it performed at virtual machine NFs or at extended
OVS instances. Through experiments, we establish that in
order to implement the same network service, the extended
OVS instances are not using extra processing power than
NFs and unmodified OVS instances combined, i.e., processing
power is utilized in a different fashion at different places. Our
experiments show that network services composed using NEWS
offer competitive performance compared to existing solutions.
For instance, the firewall service composed using NEWS is
much faster than the conventional virtual firewall that runs in
VMs, achieving performance very close to, and sometimes
better than, the recently developed OVS conntrack [13].
Likewise, the Content Aware Load Balancer based on NEWS
has much less delay and better scalability compared to the
popular L7 load balancer HAProxy [10].

III. SYSTEM ARCHITECTURE

Virtual switches such as OVS are commonly available in
data centers. They offer an ideal platform for our design since
they open up the opportunity of inserting app logic in the
data path via software extensions. We design a solution that
extends OVS to be application-aware while conforming with
the OpenFlow protocol. We also attempt to make the design
modular, with a clean interface to OVS to allow new apps to
be plugged in easily. Obviously, loading a full-blown NF into
OVS is not going to be efficient unless OVS is given more
cores that were originally given to the NFs, and even in that
case, the binary can get bigger and may not fit in the cache.
Therefore, in NEWS we break down these NFs into smaller
building block functions that can be loaded independently. For

instance, iptables extensions, e.g., connlimit, hashlimit
, conntrack, etc., are implemented as separate modules in
NEWS. Similarly, other NFs such as LB and IDS can be broken
down into basic building blocks such as L4 LB, L7 LB, and
RegEx matching, where each block implements one app. In
addition, the policy and initial state for the modules comes
from the controller, e.g., number of connections to limit or
RegEx values to use. For simplicity, we will refer to all firewall
app modules as FW and all load balancer modules as LB.

A. Existing Open vSwitch (OVS) Design

Figure 2 shows the high-level architecture for NEWS. The
four main components of the existing OVS are shown on the
left, including connection manager, OpenFlow API, userspace
flow table pipeline and the kernel flow table. The flow table
pipeline contains one or more flow tables, each with flow rules
that specify how matched packets are processed. A packet
can be processed by multiple flow tables using the “goto”
instruction in the rules. To speed up packet processing, the
kernel flow table caches the flow actions so that active flows
can be processed in the kernel. The solid blue arrows (steps
1-5) show how packets are processed by the application at
the controller in OVS. An incoming packet is first matched
with the kernel table. If there is no match, the packet is sent
up to the flow table pipeline in the userspace. A table-miss
rule is contained in each table, which tells what to do when
the packet does not match any other rules in the table, e.g.,
goto to another table or to the controller. In the latter case, the
OpenFlow API calls the connection manager to encapsulate the
packet in a Packet_In message and send it to the controller.
When the controller receives the Packet_In, one or more
applications on the controller may process the message and
install rules in the switch flow tables via a Flow_Mod message
so that later packets are processed on the switch.

B. Design Choices

We intercept the packet before sending it to the controller,
so that application logic can be applied to the packet without
leaving the switch. The controller determines the rule on what
apps are applied to the packet, and should also dynamically load
and initialize the required apps as needed while conforming
with OpenFlow. To do so, we need to first decide where to
intercept the packet and where to maintain the application state.
We consider the following three choices in turn:
Option 1: Controller proxy or message filter. The first option
is to implement a controller proxy or message filter, which sits
between the controller and OVS. It can be a standalone proxy
colocated with OVS in the same host, e.g., FlowVisor [14].
Since the proxy monitors messages exchanged between the
controller and switch, it can invoke the application logic to
process packets locally before contacting the controller. To
reduce overhead, we can implement a message filter module
inside OVS, to intercept messages at the OVS connection
manager, and call application logic. This option provides nice
isolation between applications and OVS code. However, it leads
to significant redundancy in packet processing. For instance,

when the application intercepts the Packet_In message from
the switch, it needs to decapsulate the already encapsulated
message and recover the original data. The application also
needs to implement its own flow table so that it can look up
policy rules. Both message decap/encap and flow lookup add
extra performance overhead and development cost.
Option 2: Stateful application module in kernel. The second
option is to implement application logic in the kernel as a
special action. This achieves good performance since packets
are processed without leaving the kernel. The main challenge
is the complexity of kernel development: beside writing the
application code, one has to figure out how to integrate the
kernel code with OVS in a modular and extensible way. One
example of this approach is the recently developed OVS
conntrack module, which supports a stateful firewall and NAT. A
new conntrack action is added in OVS to track the flow state
(new or established). A new conn_state metadata is added
as part of the flow rule so that the flow connection state can
be taken into consideration when packets are processed. The
conntrack action is implemented using the existing conntrack
module in Netfilter. Although this implementation has nicely
integrated conntrack functionality into OVS, it has several
limitations. First, conntrack is an independent module that
is controlled by Netfilter, so the switching and firewall rules
are installed by different entities. Second, this approach only
works for Linux kernel since it uses conntrack kernel module.
It will be difficult to port the solution to other data path
implementations such as DPDK. Also, this approach is mostly
suitable in cases where kernel modules are already available.
Option 3: Stateful application module in userspace with a
stateless kernel. The third option is to intercept the packet
at the end of userspace flow table lookup, and implement
the application logic and state in userspace. To intercept the
packets right after the standard flow table matching, we use
the last flow table in the pipeline as a special app-table, shown
in Figure 2. All table-miss rules with the action of “output to
controller” are modified to “goto app-table”, so that all packets
that are originally processed by the controller will instead first
pass through the app-table. Unlike the standard flow table,
special app actions can be called from the app-table to handle
the packets. Such app actions are implemented as OpenFlow
vendor extensions. The dotted arrows (steps 6-8) in Figure 2
show how the packets are “detoured” to the app-table in the
our architecture. For simple actions that require fast processing
but does not require maintaining state, we can still implement
them as kernel actions, e.g.,TCP splicing in an example of such
action, shown in Section V. We believe this option achieves a
good balance between ease of implementation and performance.
Hence we use this approach in NEWS.

C. Integrating with OVS flow processing
In many cases, part of the app logic can be executed using

existing OVS flow tables. For example, if a FW app decides
to drop a flow after processing the first packet, it can generate
a regular flow rule and insert it into the OVS flow table, then
later packets can be handled directly by the standard flow

tables. This is done using OVS flow insertion APIs from the
app to insert the rule into the userspace flow table. However,
our experiments showed that userspace flow insertion is a
significant performance bottleneck because of OVS locking
for the userspace flow tables to support multi-threading; each
thread acquires a lock before reading/writing to the flow tables.

We instead insert the rules directly into the kernel table via
netlink. Although the kernel flow table also has a lock, the
lock operates much faster in the kernel than in the userspace.
However, the kernel flow is only a temporary cache, in which
the flow entries may be replaced based on their access patterns.
To maintain flow state consistently, the flow rules generated by
the apps are also kept in an interim rule cache in the userspace.
If the kernel flow entry is deleted before the flow ends, the
next packet that arrives will be delivered to the userspace and
the app rule will be invoked. Before invoking app actions, we
check to see if the packet matches any existing flow rule in
the interim rule cache. If so, the matching rule is inserted back
into the kernel; otherwise the packet is processed by the apps
and a new flow rule can be generated. The implementation of
the app interim rule cache is much simpler than the OVS flow
table since there is no need for pipelining or priority matching.
Read and write locks are used for the interim rule cache so
that multiple reads can be executed in parallel. To reduce the
locking granularity, a hash function is used to partition the
entire interim rule cache into multiple hash tables; each table
is implemented as a separate hash table that can be locked
individually. This new design has improved the performance
significantly over our initial design, e.g., the LB that used to
support fewer than 100 concurrent flows, can now support one
to two orders of magnitude more flows.

To make the apps dynamically extendable and loadable, the
app actions are made transparent to OVS. Only one wrapper
action news is exposed to OVS, as an OpenFlow vendor
extension. The individual app actions are implemented as
subactions, which are in turn invoked from news engine. For
example, when OVS invokes the app action fw, it invokes it as
news(app=fw), invoking action news and passing (app=fw)

as the parameter. The news action handler then calls the actual
app based on the subaction contained in the parameter, in this
case fw. In this way, apps can be added or removed from
NEWS at runtime without requiring OVS recompilation. Since
news action always precedes any NEWS apps, i.e., the news

action is a demultiplexer. We omit news when writing the app
actions in the rest of the paper for simplicity.

D. App Table and App Actions
The app table operates similar to the standard flow table.

Packets are matched with OpenFlow rules, and the correspond-
ing actions are executed for the matching rule. If matching
fails in the app table, the table-miss rule is used to send the
packet to the controller. The controller installs/removes rules
from the app table using the standard Flow_Mod command.

App actions are specified as vendor actions in the OpenFlow
protocol [15]. The app table rules run only at the userspace;
they are not installed in the kernel to avoid slowing down

the fast path. An app action may do any combination of the
following operations: (1) determine actions for the current
packet; (2) modify its local state; (3) generate or modify the
rule to be installed in the kernel table for processing this flow
and also update the interim rule cache entry in userspace; (4)
remove flows from kernel table and the userspace interim rule
cache; (5) generate a packet out to other switches; and (6)
send Packet_In, Flow_Removed, or App_Update vendor
messages to the controller. Operations (3) to (6) are done
by calling the set of APIs exposed from the OpenFlow API
module and OVS APIs (Figure 2 step 8), which include the
following: add_flow, del_flow, packet_in, packet_out,
and flow_removed. Each app also provides a message handler,
so that it can be called from news when the controller sends
messages to the app. Message exchanges between the controller
and local app modules are encapsulated in OpenFlow vendor
messages, and they are passed to the app through news, and
therefore OVS does not need to understand the format of these
messages, or be changed after adding new apps or messages.

E. App Chaining and Execution

Multiple apps can be chained together to implement complex
network services. The order of app actions are determined
based on the service policies. Each app action may modify the
packet header and its metadata, and also generate or modify
the actions that are to be installed in the kernel flow table. Such
actions are stored in the interim rule cache that we described
in Section III-C. The first app that processes a flow creates an
entry for the flow in the interim rule cache. This entry stores
the rule that is generated by the apps for this flow. The last
app action in any app chain is always Install, which installs
the rule set into the interim rule cache and kernel table. The
flow’s metadata contains the index of the flow in the interim
rule cache and also the break flag, which can be used to
prevent later apps in the chain from execution. For example,
the firewall app can decide to drop the packet and set break
=true, so that the following LB app can ignore the packet.
Note that all the app actions are still invoked – we do not
change the OpenFlow semantics, but the apps ignore the packet
when they see break being set. However, the Forward and
Install apps always execute regardless of the flag. Forward
determines the output port for the packet unless there is a
prior action drop. Install calls OVS APIs to install the rule
unless the action set is empty.

F. Flow Installation and Removal

All the flows in the userspace, standard flow table or app
table, can be installed/removed by the controller. The kernel
flow entries are installed by the userspace OVS daemon, either
triggered by the standard flow table rules or by the app table.
Likewise, when the kernel flows are removed, the corresponding
standard flow table rules or app table rules are invoked to update
statistics and counters. We extend OVS with a flag to indicate
that the current execution is part of flow-removal process, and
therefore NEWS apps can perform any required logic that is part
of this flow removal. An example of this process is explained

later in the firewall app (Section V). Flows in the interim rule
cache are maintained based on the app logic.

G. State Management
Apps reside in the controller and the OVS data plane, where

each data plane app module maintains local state accessed
during packet processing. The controller app maintains the
aggregated state for the app to allow for a global view of the
NF. The controller app is responsible for managing the global
policy/state. We used vendor extensions in OpenFlow to add
a new message that is used to push/pull state between the
controller app and their corresponding slaves in the switch data
plane. This message includes the following fields: app_id
, msg_id, and data. We assume that the controller app
developer will agree with the switch app developer on the
messages that is used to communicate state. The app_id is
used by NEWS to pick the app that is responsible for decoding
this message, and the msg_id is used by the app to decode
the actual data sent by the controller app, which enables the
app on the controller to send different messages to the app on
the switch. For instance, the app_id=2 identifies the L7 LB,
and the msg_id=1 identifies the path_end message, which
is used to match against HTTP GET requests ending with a
specific value, and the rest of the data is just the array of
URLs and the end-servers IPs.

H. An Example: Firewall & Load Balancer
The following example shows how NEWS architecture works.

Suppose the network policy is “web traffic to server x needs to
go through the FW then the LB”. The FW rule specifies that
only web traffic is allowed, and maximum number of active
TCP connections is 1,000. The LB rule is to distribute the load
to servers s1 and s2 by hashing according to the source IP
address. The controller sets up the policy by inserting the rule
(dst_ip=x,tcp,dport=80: fw,lb,fwd,install) to the
app table, where fw, lb, fwd, and install will call Firewall,
Load Balancer, Forward, and Install apps, respectively. When a
new flow (src_ip=a,sport=6000,tcp,dst_ip=x,dport

=80) arrives, it gets sent from the kernel to the flow table in
userspace. The flow table table-miss rule will send the packet
to the app table, then news invokes the apps as follows.

1. Firewall keeps track of the number of active flows
using a counter n_flows. Suppose currently n_flows <

1000, then the following rule is generated and stored in the
interim rule cache: (src_ip=a,sport=6000,tcp,dst_ip=
x,dport=80: []) and n_flows is incremented. The empty
action set indicates the flow is accepted but no actions produced.
Firewall also sets break=false flag and stores the rule’s index
in the packet metadata.

2. Load Balancer looks up the server IP address using hash

(src_ip). Suppose the hash result is s1, then the rule in the
interim rule cache is updated: (src_ip=a,sport=6000,tcp
,dst_ip=x,dport=80: set dst_ip=s1). It also changes
the dst_ip of the packet from x to s1.

3. Forward looks up the routing table to find the output
port pt1 based on s1, then it updates the rule in the

interim rule cache: (src_ip=a,sport=6000,tcp,dst_ip
=x,dport=80: set dst_ip=s1, out=pt1).

4. Install retrieves the rule from the interim rule cache and
installs it in the kernel and the userspace interim rule cache,
and sends the packet.

As a result, the apps jointly generated the flow rule according
to the network policy without going to the controller. Note
that Firewall drops the flow if n_flows > 1000, and it sets
break=true flag in metadata and generates the rule: (src_ip
=a,sport=6000,tcp,dst_ip=x,dport=80: drop). This
causes LB and Forward to ignore this packet. At the end, Install
sets up the drop rule into the kernel table and drop the packet.
One issue not covered so far is handling flow termination.
When a flow ends either by a FIN or RST packet or timeout,
the firewall must decrement n_flows. Hence the firewall gener-
ates a slightly different rule: (src_ip=a,sport=6000,tcp,
dst_ip=x,dport=80,tcpflag=-fin-rst: null); there-
fore, regular packets without FIN or RST flags being set are
forwarded, while the FIN or RST packets will not match this
rule and will go to userspace. This will trigger the app table
rule and cause the firewall app to decrement n_flows. The
firewall app also maintains flow idle timer and removes the
rules and decrements n_flows when the flow expires.

I. Loadable App Actions

NEWS design allows new apps to be loaded at runtime
without the need to restart the switch or recompile the code.
We implement an OpenFlow vendor action news, and invoke all
the apps as subactions inside news. To understand the dynamic
app loading process, let us start from a clean state with no
apps. To load an app, the controller issues a custom OpenFlow
vendor message Load_Module(app_id,app_name), which
triggers NEWS to lookup the file libapptable-<app_name

>.so in a pre-determined path. Then, NEWS loads the app
dynamic library and stores the (app_id,app_name) mapping,
and invokes the app init method to initialize the internal state
of the app. On success, news sends back to the controller app
success message, and afterwards the controller can push policy
to the app. All apps are required to export three functions:

• init(handlers, revalidators): initializes the app
with the number of threads for packet processing
(handlers) and cleanup threads (revalidators).

• xlate_actions(flow, actions, packet):
executes actions for the given flow in the interim
rule cache.

• destroy(): destroys the app and cleans internal state.
As a result, apps are developed independent of OVS

and are loaded during runtime. The controller dynamically
enables/disables apps on the data path for a flow based on the
flow’s service requirement and resource availability at various
switches. Furthermore, this design is by and large independent
of OVS data path implementations, and can be easily adapted
to run on other OVS data paths such as DPDK or a userspace
data path. As we will show in Section V-C, the overhead for
loadable modules is negligible compared to compiled modules.

Fig. 3. Reproduced from [2]: Service chaining example 1

IV. SERVICE CHAINING

A service chain is created by routing flows through a
sequence of NFs. The NFs in a chain modifies the packet
headers without coordination with other routers and NFs. This
makes steering a flow through a service chain hard as the
downstream routers or NFs may depend on the unmodified
headers. Figure 3 shows an example where a NAT and a firewall
are chained together. It is hard for the firewall to implement
the policy “block web access of the internal hosts H1 and
H3” since it can only see the address set by the NAT, not
the original address. Flowtags [2] proposes to use a flow tag
to track flows. NAT tags the packet according their original
address, and the firewall sets up the rule according to the tags.
Different NFs must agree on the definition of tags, and unused
fields in the header must be agreed upon for reading/writing
tags. This scheme accommodates hardware appliances and/or
software instances of stand-alone NFs after modifying them
generate and/or consume flow tags.

NEWS is a complete software-defined approach for integrat-
ing the NFs into the network itself by installing app modules
in the virtual switches running on servers. The exponential
growth in core density per host processor [8], [9] makes it
feasible to run a number of data plane processing NFs at line
rate within a server. Therefore, NEWS tries to fit the whole
service chain within a single software switch. This gives us an
opportunity to address the issue in Figure 3 differently: instead
of using dependent flow tags, we adjust the placement of NFs
in the service chain to make sure each NF is exposed to the
information that it needs to access. NEWS solves that example
by adding the following match/action rule:(in_port=1:
fw, nat, fw, fwd, install). We insert another firewall
action at the left side of NAT, which can see the original host
addresses and hence can enforce the rule. Note that we cannot
simply move the firewall from the right side of NAT to its left
because the firewall is also needed for filtering external traffic
from the Internet. As a result, there are two calls to the firewall
app in this chain. The left firewall enforces internal rules and
the right one enforces external rules. Although this approach
seems simple, it may be too expensive to implement if the NFs
are conventional hardware appliances or even virtual instances,
since duplication of NFs would incur significant hardware
expenses and also introduce delays in packet processing. In
NEWS, since NFs in a service chain are simply software
modules that can be invoked within the same thread, they
can easily be duplicated without adding overhead.

We believe normal service chains in practice (consisting of
3-4 NFs) can be easily accommodated within a software switch

�

���

�

���

�

�� �� �� �� �� �� �� �� ��

�
��
��
�
��
��
�
���
�
��
��

���� ���������������

�����������
���������������

����

(a) Small flows (1KB)

���
���
���
���
���
���
���
����
����

�� �� �� �� �� �� �� �� ��

�
��
��
�
��
��
�
���
�
��
��

���� ���������������

�����������
���������������

����

(b) Large flows (10MB)

Fig. 4. Firewall Performance

�
�
�
�
�
�
�
�
�

� ��� ���� ���� ���� ����

�
��
��
�
��
��
�
���
�
��
��

���� ���������������

����� ����
��� ����
����� ��
��� ��

(a) Small/Medium (1/100KB)
flows

���
���
���
���
���
���
���
���
���

� ��� ���� ���� ����

�
��
��
�
��
��
�
���
�
��
��

������� ������

��
����

(b) Large flows (10MB)

Fig. 5. Connection Tracking Performance

running in a single server. For elasticity, the server instance
can be horizontally scaled out to handle loads. NEWS does
not necessarily restrict the chain to one server. There may be
cases where the service chain may be too long 1 or the chain’s
processing may be too heavy duty to fit in a one server. In such
cases, the chain is subdivided into two or more sub-chains such
that each sub-chain fits into a server. Each sub-chain instance
can scale out independently as needed. When packets need
to be forwarded downstream based on packet headers that is
already modified by an upstream sub-chain, tunnels can be
used to connect the sub-chains together. In NEWS, the tunnel
header is added in the forward action shown in Figure ??.
Note that the NF modules along the chain do not need to be
aware of the tunnels. The controller determines if tunnels are
needed and if so, what tunnel id should be used.

V. EVALUATION

We built two NFs in NEWS: a firewall and a content-aware
LB. We choose to build a firewall since it is commonly used
in practice, and to compare NEWS with OVS conntrack. The
content-aware LB is used to demonstrate the benefits of the
scale out architecture. We also evaluate the impact of the
dynamic enablement of apps on data path performance. We
used five Linux (Ubuntu 12.04) machines with Xeon(R) CPU
(12 hyper-threads @2GHz, 15M cache, and 16G RAM). Each
machine has an Ethernet Quad 1Gb NIC. One machine acts as a
middlebox running the system under test, e.g., NEWS, iptables,
etc. Two machines act as clients, each running 5 containers
generating load, and two machines act as servers, each running
5 containers running Apache servers. We implemented our apps
by extending OVS v2.3.0 and the Floodlight SDN controller.

A. Firewall Connection Limiting & Connection Tracking

The firewall service is composed using the following app
chain in NEWS: (connlimit=<limit>,fwd,install). As
described in Section III-H, a firewall app is implemented to
support connlimit action. The app maintains a firewall rule
table, and applies the rules to the input packet when called.

1Although chains with more than 4 NFs are rare in practice.

fwd action determines the output port for this packet, and
install action inserts the rule into the OVS kernel table. The
userspace flow table contains ten rules 2 each one handles load
generated from one client, and a miss in the fast path will
occur when a new micro-flow comes in. For instance, in the
x-axis in Figure 4a 5k/sec load corresponds to 5k micro-flow
misses in the kernel fast path that are matched against the ten
rules in the userspace slow path.

We compare our prototype with the Linux iptables under
two common setups: (1) iptables in a Virtual Machine
(referred as iptables-vm); and (2) iptables in a container
(referred as iptables-docker). In both cases, OVS runs in the
host to “chain” the service, i.e., forwards the packet to and
from iptables. To compare the three firewall services: NEWS
based, iptables-vm and iptables-docker, we run each of them
one at a time, in the same host with the same resources. To
simplify the experiment, only one firewall app is used in the
chain (connlimit): a new TCP connection is rejected if the
number of active connections to a server exceeds a threshold;
the connection is accepted otherwise. A RST packet is sent
back to the source when the connection is rejected. To improve
performance, the internal state of the firewall app is partitioned
into multiple hash tables protected by read/write locks.

Figure 4a shows the end-to-end performance of the three
firewall services with small files (1KB). The HTTP requests are
generated at rates ranging from 1K to 9K requests/second.
We observe that NEWS and iptables-docker have similar
performance. iptables-docker and NEWS are much better than
iptables-vm. iptables-docker has the best performance because
there is no packet copying in that configuration. Since all
packets are handled in the kernel, and there is no copying
between OVS kernel and iptables kernel module, the data path
is very efficient. On the other hand, iptables-vm introduces
the most overhead because packets have to be copied between
the host and the guest VM, which slows down the data path
significantly. To understand why NEWS is close to iptables-
docker but slightly worse, recall that in NEWS, the first packet
of a flow is forwarded to userspace, and then a micro-flow
kernel rule gets installed. Later packets of the flow are then
handled within the kernel, and therefore NEWS incurs slightly
more overhead for the first packet and none for other packets.
Figure 4b shows the performance for large files (10MB).
Similar to the small file size case, iptables-vm has the worst
performance. In fact, in iptables-vm many downloads cannot
complete due to packet losses and timeouts when the rate
reaches beyond 3K downloads/sec. Hence the corresponding
curve only shows three data points. Interestingly, we find that
NEWS is slightly better than iptables-docker for large file
downloads because when the flow contains many packets, the
overhead of first packet is less significant. In iptables-docker,
even though packets do not leave the kernel, they are processed
by both OVS and iptables, which incurs slightly more overhead
compared to NEWS, where packets are only processed by OVS.

2In the experiment, we vary the number of rules ranging from 10 to 50K
and the performance remains almost the same.

We also compare the performance of NEWS and OVS
conntrack [13] implementation which integrates iptables con-
ntrack into OVS. In connection tracking, connections from
clients to servers are accepted, while servers to clients are
rejected. Figure 5a shows the average download time under
various rates. For file sizes of 1KB and 100KB, we find that
OVS conntrack is slightly better than NEWS, although the
difference is not significant. This is not surprising since the
OVS conntrack uses the same conntrack module from iptables,
hence its performance should be comparable to iptables-docker.
We also observe that the difference in download time for
the two implementations are close (about 0.5ms) under the
two significantly different flow sizes. This difference is likely
caused by the processing delay of the first packet of each
flow at userspace in NEWS. Figure 5b compares the average
download time vs. goodput for conntrack [13] and NEWS when
downloading 10MB files. Goodput is defined as the ratio of the
amount of user data transmitted successfully divided by the time
duration. We find that NEWS is slightly better than conntrack,
which is consistent with our observation that OVS conntrack
incurs more processing overhead in the kernel since the packets
are processed by both OVS and the conntrack module. In
NEWS, packets are only processed by the OVS data path
module. For large flows, the extra kernel processing overhead
in OVS conntrack is more significant than the overhead from
the first packet userspace processing in NEWS.

B. Content-aware Server Selection

To enable Content-aware Server Selection, we extended the
OVS kernel module to support TCP SEQ/ACK rewriting actions,
since they are simple/stateless and has to be applied to all
packets. More complex but less frequently invoked actions
including TCP handshake and server selection are implemented
as app actions in the userspace. In server selection, a client’s
request to a virtual IP address, VIP of a server pool, is redirected
to an appropriate server dynamically based on the request URL.
This is done in two steps: (1) the data center gateway distributes
requests to multiple front-end vSwitches using ECMP; (2) the
front OVS selects the server based on the request URL, and
forwards the packet to the back-end OVS, then to the server.
On the return path, the packet is forwarded by the back-end
OVS directly to the client. Figure 6 shows a simple mapping
of the app onto the proposed architecture with intermediate
message flow. We omit the gateway and first stage ECMP,
and just show the two Open vSwitches: front-end (SW1) and
back-end (SW2). Standard OpenFlow flow tables are shown
in solid lines, and app tables are shown in dashed lines. In
our implementation the server selection app resolves the VIP
to either S1 or S2. Initially the controller adds default rules
to submit table-misses to the app table in SW1 and SW2. In
addition, the server selection controller app adds flow entries
into the app table as shown in the figure.

When a client request arrives at SW1, the app table rule
fires and SW1 performs the TCP handshake with the client to
advance to the HTTP GET request. During this phase (steps
1-3), SW1 uses SYN cookies to preserve the connection state,

Controller(

SW1(SW2(

Server(Selec/on(

1.SYN&Client(

srcIP=Ext,dstIP=VIP,
dstTp=80(

TCP(Handshake,(
Server(Selec/on(

tableCmiss(packetCin(

2.SYN(ACK&

tableCmiss(goto(AppTable)(

IP=S1(TCP(Handshake(

IP=S2(TCP(Handshake(

tableCmiss(packetCin(

tableCmiss(goto(AppTable)(

S1(

S2(

(a) App-rule installation and TCP hand-
shake with client

Controller(

SW1(SW2(

Server(Selec/on(

3.#ACK#
C(

srcIP=C,dstIP=VIP,(
srcTp=xxxx(

Set(vip(to(S1,(
forward(to(S1(

table?miss(goto(AppTable)(

srcIP=Ext,dstIP=VIP,
dstTp=80(

TCP(Handshake,(
Server(Selec/on(

table?miss(packet?in(

4.HTTP#

table?miss(goto(AppTable)(

IP=S1(TCP(Handshake(

IP=S2(TCP(Handshake(

table?miss(packet?in(

S1(

S2(

(b) Flow-rule insertion at SW1

Controller(
S1(

SW1(SW2(

Server(Selec/on(

S2(

C(

S1(!(C(rewrite(seq(&(IPs,(forward(

C(!(S1(rewrite(ack(&(IPs,(forward(

table=miss(goto(AppTable)(

IP=S1(TCP(Handshake(

IP=S2(TC(Handshake(

table=miss(packet=in(

7.#HTTP#

srcIP=C,dstIP=VIP,(
srcTp=xxxx(

Set(vip(to(S1,(
forward(to(S1(

table=miss(goto(AppTable)(

srcIP=Ext,dstIP=VIP,
dstTp=80(

TCP(Handshake,(
Server(Selec/on(

table=miss(packet=in(

(c) TCP handshake with S1 and flow-rule
insertion at SW2

Fig. 6. Content-aware server selection.

and stops execution of the server selection app by inserting
a “break=true” after packet-out-ing the SYN-ACK packet.
Only after the HTTP GET request packet arrives, the execution
“continues” to server selection which extracts the requested
URL and uses it to select a server from the pool. If the mapping
is not available locally at the switch, it sends the packet to
the controller, which resolves and returns the mapping back
to SW1 (say S1), as shown in steps 5 and 6 of Figure 6b.
Server selection app writes a forwarding rule for the rest of
the connection into the kernel flow table of SW1 to rewrite
the destination VIP to S1 and forwards the packet towards
S1. When the switch in front of S1 (i.e., SW2) receives the
packet, it matches the app table rule. It then invokes the TCP
handshake app that plays back the handshake with S1 based
on the headers of the packet. During this phase, right after
receiving the SYN-ACK from S1, it can compute the deltas
used for TCP splicing, and therefore it installs the appropriate
rewrite rules in the kernel flow table of SW2 (see Figure 6c).
When S1 replies, SW2 performs TCP splicing to adjust the
sequence and acknowledgement gaps for the connection to go
through transparently between the client and S1. SW2 also
rewrites the source address back to the VIP.

We compare NEWS server selection with HAProxy [10].
We set up two client hosts, two server hosts and one load
balancer. Each client or server runs two containers. First, we
run HAProxy at the load balancer node, and use httperf

[16] to generate load. Both directions of the flow go through
HAProxy since it needs to splice the connection. In the second
experiment, we run NEWS front-end OVS at the load balancer
node, and run back-end OVS at each server host. In this case,
the reverse flow from the server to the client do not have to
go through the front-end OVS as we explained before, which
allows reverse traffic to be sent separately.

Figure 7a shows the average download time vs. goodput
under different rates. We observe that NEWS introduces much
less delay on the data path than HAProxy since in HAProxy
every packet goes to the userspace, but in NEWS only the first
few packets are sent to userspace. Figure 7b shows the average
CPU utilization at the load balancer node. As load increases,
the increase in CPU utilization is much more significant with
HAProxy than with NEWS, indicating NEWS has much better
scalability than HAProxy. Figure 7c shows the CPU utilization
at the server host, which shows that NEWS incurs more server

�
���
�
���
�
���
�

� ��� ���� ���� ����

�
��
��
�
��
��
�
���
��
�
��

������� ������

����
�������

(a) Download time.

�
��
��
��
��
��
��
��
��

� ��� ���� ���� �����
��
��
���
��
���
�
��
�

������� ������

����
�������

(b) CPU load at load bal-
ancer.

�
�
��
��
��
��
��

� ��� ���� ���� �����
��
��
���
��
���
�
��
�

������� ������

����
�������

(c) CPU load at server host.

Fig. 7. NEWS L7 Load Balancer App vs. HAProxy.

TABLE I
IMPACT OF LOADABLE MODULES ON DATA PATH

Rate (pkt/s) Avg RTT(ms)
Loaded Compiled

1k 0.7 0.7
10k 0.3 0.4

100k 0.5 0.6

CPU overhead than HAProxy, although the extra overhead
is much less compared to the gain at the load balancer host.
The overhead is caused by the TCP handshake app that runs
in the userspace. This experiment demonstrates that NEWS
can scale the capacity of the load balancer by distributing
the processing load onto each server host. As a result, the
distributed framework eliminates “choking points”.

C. Loadable App Modules

We evaluate the overhead of loadable app modules to
examine latency in loading an app, and whether loadable apps
affects the data path performance. Loading time is measured
using the system clock. Our benchmarks show that the average
loading time is about 1ms, and it varies across apps, depending
on their internal state initialization. To examine the impact on
data path latency, we used hping to measure the RTT between
sending a SYN packet and receiving the ACK for both cases of
loadable modules and compiled modules. As shown in Table I,
the difference in RTT between the two is negligible.

D. Discussion
Deep Packet Inspection. Apps in NEWS process the first few
packets of a flow to determine the action. Once the action
is determined, the app inserts a micro-flow into the kernel
data path to speed up packet switching. However, there is
a class of NFs that examines every packet, e.g., intrusion
detection systems. Therefore, in NEWS, each packet of a flow
will be propagated up to the userspace where the app examines
it, which slows down switching and reduces throughput. We
intend to use the OVS recent release for a DPDK [17] data path
that receives packets directly from the NIC to the userspace,
and thus NEWS apps executes on them without performance
penalty (i.e., NEWS does not depend on a specific data path).
Distributed State Management. App state is distributed across
the controller and multiple data plane instances. The controller
app initializes the instances and regularly communicates with
them to push/pull current state, e.g., a connlimit policy is
populated by the controller app into data plane instances. For
correct operation, state across instances must be synchronized.
This issue is not unique to NEWS and it was studied in the cloud
context [18]. While we do not prescribe any specific solution
here, we believe that existing state management solutions [3]
can be adapted in NEWS.

VI. RELATED WORK

Network services are implemented by steering flows through
NF chain. SDN enables dynamic service chaining, although
tracking flows traversing through middleboxes is a challenge
since the packets may be altered along the way. Novel
approaches uses statistical inference [19] or tags in the
packet [2]. Inference may cause errors and finding fields in
the packet for tags may not be possible. NEWS avoids flow
tracking by careful placement of NFs that ensures that NFs are
exposed to the information they require. Also, most service
chaining is done locally by chaining apps, which enables
flexible processing logic. Middlebox virtualization has also
been studied extensively [20], [21]. ETTM [22] uses special
end-host modules for middleboxs. OpenNF [3] proposes an
architecture based on virtual NFs and SDN focusing on using
SDN to assist NF state management [3]. This is complementary
to our work since similar state migration techniques can be
applied in NEWS. ClickOS [23] uses minimal OS image for
middleboxes, where service chaining is done by forwarding
traffic between these middleboxes. In NEWS, NFs are collection
of modules, at finer granularity than individual NFs, e.g.,
one can compose connlimit (part of firewall) and DNAT
(part of NAT), which makes service composition flexible and
efficient. In general, we propose to integrate services into SDN
data plane for unified control. Prior work studied SDN traffic
engineering [24], [25], L3 [26], [27] and L4 load balancing [11].
NEWS builds on that to address application-awareness in data
plane, and addresses L7 load balancing problems and other NFs,
which require application-awareness. AVANT-GUARD [28] has
been proposed to protect SDN from SYN floods using TCP
splicing in SDN switches. NEWS is a general framework for
different types of NFs, and can address security NFs as well.

VII. CONCLUSION

NEWS enables native NFV within SDN by extending the
data plane and allowing NFs to be dynamically enabled on the
data path at the most appropriate/efficient locations according
to policies and network resources. Our results show that NEWS
offer competitive performance compared to other approaches.
More importantly, NEWS is designed to be independent of
the NFs data path implementations and NFs are added to the
system without recompilation or restarting. We plan to further
optimize performance and explore other services.

ACKNOWLEDGMENT

This research was supported in part by NSF grants CNS-
1411636, CNS-1618339 and CNS-1617729, DTRA grant HDTRA1-
14-1-0040 and DoD ARO MURI Award W911NF-12-1-0385.

REFERENCES

[1] R. Jain et al., “Network Virtualization and Software Defined Networking
for Cloud Computing: A Survey,” IEEE Communications, 2013.

[2] S. K. Fayazbakhsh et al., “Enforcing Network-Wide Policies in Presence
of Dynamic Middlebox Actions using FlowTags,” in NSDI, 2014.

[3] A. Gember-Jacobson et al., “OpenNF: Enabling Innovation in Network
Function Control,” in SIGCOMM, 2014.

[4] T. Koponen et al., “Network Virtualization in Multi-tenant Datacenters,”
in NSDI, 2014.

[5] A. Greenberg, “SDN for the cloud,” http://conferences.sigcomm.org/
sigcomm/2015/pdf/papers/keynote.pdf, 2015.

[6] “Alcatel-Lucent joins virtual router race,” lightreading.com, 2014.
[7] M. Honda et al., “mSwitch: A Highly-Scalable, Modular Software Switch,”

in SOSR, 2015.
[8] G. Blake et al., “A Survey of Multicore Processors,” IEEE Signal

Processing, 2009.
[9] H. Sutter, “Design for Manycore Systems,” http://www.drdobbs.com/

parallel/design-for-manycore-systems/219200099, 2009.
[10] HAProxy, “High Performance Load Balancer,” haproxy.org/, 2015.
[11] P. Patel et al., “Ananta: Cloud Scale Load Balancing,” in SIGCOMM,

2013.
[12] B. Pfaff et al., “The Design and Implementation of Open vSwitch,” in

NSDI, 2015.
[13] “Stateful Connection Tracking and NAT,” openvswitch.org/support/

ovscon2014/, 2014.
[14] R. Sherwood et al., “FlowVisor: A Network Virtualization Layer,”

OpenFlow Switch Consortium, 2009.
[15] ONF, “OpenFlow Switch Specification,” www.opennetworking.org/, 2012.
[16] D. Mosberger et al., “httperf: A Tool for Measuring Web Server

Performan,” in Internet Server Performance Workshop, 1998.
[17] DPDK, “Data Plane Development Kit,” http://www.dpdk.org/, 2015.
[18] B. Raghavan et al., “Cloud Control with Distributed Rate Limiting,” in

SIGCOMM, 2007.
[19] Z. A. Qazi et al., “SIMPLE-fying Middlebox Policy Enforcement Using

SDN,” in SIGCOMM, 2013.
[20] A. Gember et al., “Toward Software-defined Middlebox Networking,” in

HotNets, 2012.
[21] V. Sekar et al., “Design and Implementation of a Consolidated Middlebox

Architecture,” in NSDI, 2012.
[22] C. Dixon et al., “ETTM: A Scalable Fault Tolerant Network Manager,”

in NSDI, 2011.
[23] J. Martins et al., “ClickOS and the Art of Network Function Virtualiza-

tion,” in NSDI, 2014.
[24] S. Jain et al., “B4: Experience with a Globally-deployed Software Defined

Wan,” in SIGCOMM, 2013.
[25] C.-Y. Hong et al., “Achieving High Utilization with Software-driven

WAN,” in SIGCOMM, 2013.
[26] R. Wang et al., “OpenFlow-based Server Load Balancing Gone Wild,”

in HotICE, 2011.
[27] N. Handigol et al., “Aster* x: Load-Balancing Web Traffic over Wide-

Area Networks,” 2009.
[28] S. Shin et al., “AVANT-GUARD: Scalable and Vigilant Switch Flow

Management in Software-defined Networks,” in CCS, 2013.

