
When Raft Meets SDN: How to Elect a Leader and
Reach Consensus in an Unruly Network

Yang Zhang, Eman Ramadan, Hesham Mekky, Zhi-Li Zhang
University of Minnesota, Twin Cities

Minneapolis, Minnesota
yazhang,eman,hesham,zhzhang@cs.umn.edu

ABSTRACT
In SDN, the logically centralized control plane (“network
OS”) are often realized via multiple SDN controllers for scal-
ability and reliability. ONOS is such an example, where it
employs Raft – a new consensus protocol developed recently
– for state replication and consistency among the distributed
SDN controllers. The reliance of network OS on consensus
protocols to maintain consistent network state introduces an
intricate inter-dependency between the network OS and the
network under its control, thereby creating new kinds of fault
scenarios or instabilities. In this paper, we use Raft to illus-
trate the problems that this inter-dependency may introduce in
the design of distributed SDN controllers and discuss possible
solutions to circumvent these issues.

CCS CONCEPTS
• Networks → Network control algorithms; Network pro-
tocol design; Routing protocols;

KEYWORDS
Consensus, Raft Algorithm, SDN, Resilient Routing

1 INTRODUCTION
Software-defined networking (SDN) simplifies network de-
vices by moving control plane functions to a logically cen-
tralized control plane; therefore data plane devices become
simple programmable forwarding elements. SDN controllers
use OpenFlow APIs [16] to set up forwarding rules and collect
statistics at the data plane, which enables controller software
and data plane hardware to evolve independently. Under SDN,

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.
APNET ’17, August 3–4, 2017, Hong Kong, China
© 2017 Association for Computing Machinery.
ACM ISBN 978-1-4503-5244-4/17/08. . . $15.00
https://doi.org/10.1145/3106989.3106999

physical connectivity between two end points do not guaran-
tee they can communicate with each other – the underlying
(logical) communication graph depends on the network poli-
cies reflected by the flow entries installed by the controller.
For scalability and reliability, the logically centralized con-
trol plane (“network OS”) is often realized via multiple SDN
controllers (see Figure 1), forming a distributed system. Open
Network Operating System (ONOS) [2] and OpenDayLight
(ODL) [17] are two such Network OS examples supporting
multiple SDN controllers for high availability.

In distributed network OS such as ONOS and ODL, the
replicated controllers rely on conventional distributed system
mechanisms such as consensus protocols for state replication
and consistency. Paxos [14, 15] is a widely used distributed
consensus protocol in production software [4, 5, 9, 13] to
ensure liveness and safety. Unfortunately, Paxos is very diffi-
cult to understand and implement in practical systems [20].
Raft [20] attempts to address these complexities by decom-
posing the consensus problem into relatively independent
sub-problems: leader election, log replication, and safety. It
implements a more “easy-to-understand” consensus protocol
that manages a replicated log to provide a building block
for building practical distributed systems. Both ONOS and
ODL use certain implementations of Raft to ensure consis-
tency among replicated network states. For example, ONOS
maintains a global network view to SDN control programs
that is logically centralized, but physically distributed among
multiple controllers. It employs Raft to manage the switch-to-
controller mastership and to provide distributed primitives to
control programs such as ConsistentMap, which guarantees
strong consistency for a key-value store.

The reliance of distributed network OS on consensus pro-
tocols to maintain consistent network state introduces an in-
tricate inter-dependency between the network OS (as a dis-
tributed system) and the network it attempts to control. This
inter-dependency may create new kinds of fault scenarios or
instabilities that have neither been addressed in distributed
systems nor in networking. In particular, it may severely af-
fect the correct or efficient operations of consensus protocols,
as will be expounded in this paper. The key issue lies in
the fact that the design of fault-tolerant distributed system
mechanisms such as consensus algorithms typically focus on

https://doi.org/10.1145/3106989.3106999

APNET ’17, August 3–4, 2017, Hong Kong, China Y. Zhang et al.

Data	Plane

Control	Plane
C1

C2 C3

S1 S2 S3 S4

S5
S6S7

Figure 1: SDN Control Plane Setup.

Follower Candidate Leader

times	out,	

start	election

receives	votes

from	majority

times	out,	

new	election

discovers	server	with

higher	termdiscovers	current	leader

or	a	new	term

start

Figure 2: Raft States.
time

successful election split votes normal operation

term 1 (T1) T2 T3 T4

Figure 3: Raft Terms.

server failures alone, while assuming the underlying network
will handle connectivity issues on its own. For example, the
design of Paxos or Raft assumes that the network may arbitrar-
ily delay or drop messages; however, as long as the network
is not partitioned, messages from one end point will even-
tually be delivered to another end point. Such assumptions
about the network hold true in classical IP networks, where
distributed routing algorithms running on routers cooperate
with each other to establish new paths after failures. SDN
now creates cyclic dependencies among control network con-
nectivity, consensus protocols, and control logic managing
the network, where the control logic managing the network
is built on top of a distributed system (e.g., ONOS) which
relies on consensus protocols for consistency and control net-
work connectivity for communication, whereas the network
data plane (and control network) hinges on this distributed
system to set up rules to control and enforce “who can talk
to whom” among networking elements. Consequently, new
failure scenarios can arise in SDN.

In this paper, we first provide a brief overview of Raft in
Section 2. We then illustrate a few network failure scenarios
that may arise when applying Raft to a distributed SDN con-
trol cluster (see Section 3). We demonstrate how these failure
scenarios can severely affect the correct or efficient operations
of Raft: in the best case they significantly reduce the available
“normal” operation time of Raft; and in the worst case, they
render Raft unable to reach consensus by failing to elect a con-
sistent leader. It is worth noting that the problems highlighted
here are different from those addressed by, e.g., the celebrated
CAP Theorem in distributed systems [3, 7], which establishes
impossibility results regarding simultaneously ensuring avail-
ability and (strong) consistency under network partitions. This
result has been recently generalized in [21] to SDN networks
in terms of impossibility results regarding ensuring network
policy consistency under network partitions. In contrast, we
argue that thanks to the inter-dependency between the net-
work OS as a distributed system and the network it attempts
to control, SDN introduces new network failure scenarios that
are not explicitly handled by existing consensus algorithms
such as Raft, thereby severely affecting their correct or ef-
ficient operations. In Section 4, we discuss possible “fixes”
to circumvent these problems. In particular, we argue that in
order to fundamentally break this inter-dependency, it is cru-
cial to equip the SDN control network with a resilient routing

mechanism such as PrOG [24] that guarantees connectivity
among (non-partitioned) SDN controllers under arbitrary fail-
ures. Using a vanilla Raft implementation [19] and PrOG, we
provide preliminary evaluation results in Section 5. Finally,
we discuss the related work in Section 6 and conclude the
paper in Section 7.

2 RAFT OVERVIEW
Raft [20] is a consensus algorithm designed as an alternative
to (multi-)Paxos [14, 15], to be easier to understand, with
formal proof of its correctness. Raft is as efficient as Paxos,
but its structure is different. It provides a better foundation for
building practical systems. Raft separates consensus into the
following subproblems: (1) Leader election: when the current
leader fails; (2) Log replication: the leader accepts log entries
from clients and replicates them, forcing other logs to be con-
sistent with its own log; and (3) Safety: a few restrictions on
leader election are enforced to ensure safety, i.e., if any mem-
ber applied a particular command to its state machine, then no
other member may apply a different command for the same
entry. Raft starts by electing a leader, then it gives the leader
full responsibility for managing the replicated log. When it is
safe to apply log entries to state machines, the leader instructs
servers to apply them to their local state machines.
Raft States. Raft clusters typically contain odd number of
members. As in Figure 2, a server can be in one of three
states: follower, candidate, or leader. Each cluster has one
leader, and others are just followers passively receiving RPCs
from the leader or candidates. Raft Terms. As shown in
Figure 3, time is divided in terms of arbitrary length. Terms
are monotonically increasing integers, where each term begins
with an election. If a candidate wins an election, it serves as
the leader for the rest of the term. Terms allow Raft servers
to detect obsolete information such as stale leaders. Current
terms are exchanged whenever servers communicate. When a
leader or a candidate learns that its current term is out of date
(i.e., there exists a higher term number), then it immediately
reverts to the follower state. Servers reject vote requests and
replicated log entry with a stale term number from the leader.
Raft Leader Election. A leader in Raft sends periodical
heartbeats to all followers. If a follower receives no heartbeat
messages over a predefined period of time (election timeout),
it assumes there is no leader and starts a new election. It incre-
ments its current term, votes for itself, and moves to candidate

When Raft Meets SDN: How to Elect a Leader and
Reach Consensus in an Unruly Network APNET ’17, August 3–4, 2017, Hong Kong, China

OF1

OF4 OF3

OF2 OF5

R1

R2

R3 R4

R5

(a) Control Cluster under Normal
Operations.

OF1

OF4 OF3

OF2 OF5

R1

R2

R3 R4

R5

(b) Oscillating Leadership.

OF1

OF4 OF3

OF2 OF5

R1

R2

R3 R4

R5

(c) No Leader Exists.

Figure 4: Motivating Examples.

state. Then, it sends request-to-vote RPCs to other servers,
for three possible outcomes. Win Election: if it receives votes
from a majority, it sends heartbeats to all servers to prevent
new elections and establish its authority for its term. Lose
Election: While waiting for votes, the candidate server may
receive a heartbeat message from another server claiming to
be the leader. If the received term number is at least as large as
the candidate’s current term, then it surrenders as a follower.
Split Votes: If no candidate server receives majority of votes,
then one of the servers will timeout for not receiving heartbeat
messages from any leader and start a new election. Raft uses
randomized timeouts to ensure split votes is a rare event. Raft
enforces restrictions on elected leaders e.g., a server votes to
a candidate if its term is higher, and the candidate’s log is at
least as up-to-date as its own, otherwise the server rejects the
vote request. Therefore, receiving a majority of votes means
that the new leader log contains all committed entries.

3 RAFT MEETS SDN
In distributed network OS such as ONOS and ODL, multi-
ple controllers must maintain a consistent global view of the
network. This is achieved by employing a consensus proto-
col such as Raft to ensure consistency among the replicated
network states maintained by each controller. The connec-
tivity among these controllers can be provided either via a
dedicated control network (“out-of-band”) or via “in-band”
(virtual) control network through the data plane under their
control [2, 12, 17, 21]. In either case, we refer to the (ded-
icated or virtual) network connecting the controllers as the
control network. We assume that it consists of OpenFlow
switches with flow rules installed by the same controller clus-
ter to which it provides connectivity.

Figure 4(a) shows an SDN control cluster with 5 controllers
in a full-meshed control network with five OF switches. The
controllers run Raft to ensure consistency among the repli-
cated (critical) network states they maintain. We will use a
few toy (contrived) examples to illustrate the new failure sce-
narios that may arise when applying Raft to a distributed SDN
control cluster for consensus. In the following scenarios, we
assume that initially R1 is the leader (in red) and green indi-
cates that the logs of a member (controller) is up-to-date. The

current term is T1 as seen by all members. Up links are black,
while down link are red, and the cluster is not partitioned.
Scenario 1: Oscillating Leaders. Figure 4(b) shows a Raft
cluster, where the links (R1, R3), (R1, R4), and (R2, R5) fail.
Either R3 or R4 will time out for not receiving heartbeats.
Assuming R3 times out first, then it will increment its term
number to T2, vote for itself, and request votes from R2, R4
and R5. After getting the votes, R3 will be the leader, and the
current term vector becomes (R1=1,R2=2,R3=2,R4=2,R5=2).
After that, R1 will step down after learning about the higher
term T2 from R2 or R5 through heartbeat messages, and up-
date its term to T2. R1 and R3 cannot communicate, because
the link (R1, R3) is down. R1 will time out, and increase its
term number. Thus, it can get R2, and R5 votes to become a
leader for term T3, and force R3 to step down and snatches
the leadership, because its term number is larger than T2. The
term vector becomes (R1=3,R2=3,R3=2,R4=2,R5=3). Then,
we are back to the initial settings, and the whole scenario can
be repeated.

Assuming after R3 became the leader again for T4, it re-
ceives some requests and updates the logs for all nodes except
R1. Thus, when R1 tries to become the leader for T5, it will
not receive votes from R2 and R5, because their logs are
more recent than R1’s log, and the current term vector will
be (R1=5,R2=5,R3=4,R4=4,R5=5). Thus, R3 will step down.
Currently, there is no leader, so whoever times out first can
be the leader except R1. If R3 or R4 time out first, what we
just discussed will be repeated.

Assuming R2 times out first, increments its term to T6, and
becomes a leader. In this case, R5 will not receive heartbeats
((R2, R5) is down), and try to become a leader. Thus, we can
notice the leadership will be oscillating between either (R2,
R5) or (R1, R3, and R4). In the worst case, the cluster can be
dead, since clients sending requests to the current leader will
be redirected to the new leader. By the time they contact the
new leader, it will change again.
Condition. Up-to-date nodes have a quorum, but they cannot
communicate with each other.
Scenario 2: No Leader Exists. Figure 4(c) shows a Raft
cluster, where the leader R1 successfully updated R4 and R5
logs, but failed to update R2 and R3 logs (in purple), due to

APNET ’17, August 3–4, 2017, Hong Kong, China Y. Zhang et al.

link failure, packet drop or network congestion. Assuming R2
times out first for not receiving heartbeats, it will increase its
term to T2, forcing R1 to step down. In this case, even though
R2 and R3 have a quorum (R2 connected to R1 and R3; R3
connected to R2, R4, and R5), they will not be able to become
a leader, because their logs are not up-to-date. R1, R4, and R5
cannot be the leader also, because they do not have a quorum.
Therefore, the cluster is not live anymore, even though the
underlying network is not partitioned.
Condition. Nodes have a quorum, but they have obsolete
logs, and nodes having up-to-date logs, do not have a quorum.

In summary, consensus distributed systems are designed
agnostic from underlying network, with the assumption of
all-to-all communication between network entities, as long
as the underlying network is not partitioned. In SDN, these
consensus systems are used to manage the underlying net-
work. Therefore, making progress depends on updating the
OpenFlow rules, which depends on the connectivity between
servers (chicken and egg situation.) Hence, a novel approach
needs to be designed to solve this issue in SDN networks.

4 POSSIBLE SOLUTIONS
In this section, we illustrate the solution requirements and
discuss the limitations of some possible solutions. Then, we
briefly introduce a prospective solution for this problem.
Solution Requirements. The problem with Raft, and dis-
tributed protocols in general, is the assumption of all-to-all
connectivity among cluster members as long as the network
is not partitioned. In SDN, switches in the data plane for-
ward traffic based on decisions made by the control plane,
which uses a consensus protocol like Raft to ensure the state
is replicated correctly. Upon failures, controllers may lose
connection to each other and to switches in the network. More-
over, in SDN failures can be physical, i.e., physical link/node
failures, or logical, e.g., two servers are physically connected,
but there are no corresponding rules installed, thus prevent-
ing them from communicating. Therefore, with unpredictable
network failures, the solution should be resilient against ar-
bitrary link/node failures and ensure that controllers retain
reachability among them whenever the underlying network is
physically connected.

4.1 Gossiping
One common distributed systems solution to restore connec-
tivity is via gossiping. Thus, to achieve connectivity, Raft can
be extended to enable servers to gossip and forward heart-
beats through other servers to overcome the failures affecting
their direct communication. This solution may help avoid the
scenarios mentioned in Section 3 by probabilistically forward-
ing Raft messages (heartbeat, replicated logs, ... etc.) through
some other servers, which may have a path to the original

message’s destination. If the number of these servers are large
enough, there is a high probability one of them is able to
forward the message to its destination. As long as followers
receive these messages from the leader, the cluster can still
be live, as they will renew their heartbeatTime, and avoid
starting a new election process.

However, the problem with such a solution is that it may
work in some cases only, as it depends on the underlying
network connectivity and which servers are selected to for-
ward messages. As it assumes uncorrelated link failures and
might be affected by new link failures and Raft timeouts, it
is not guaranteed to work in all cases and scenarios. Alterna-
tively, flooding can be used instead to ensure message delivery.
However, it may lead to network congestion, which may not
only increase packet delay and affect data plane flows, but
create additional packet losses/network failures. We believe
that built-in resiliency in the (control network/data plane) is
essential for high-availability of SDN controllers. The control
network (data plane) should not rely on the control plane to
recover from failures, and should have pre-installed rules in
switches for automatic failure recoveries. Fortunately, this
can be achieved via a new routing paradigm proposed in [24],
known as “routing via preorders”, which provides adaptive
resilient routing to ensure all-to-all communications among
servers regardless of network failures, as long as the under-
lying network is not partitioned. We briefly discuss it as a
prospective solution next.

4.2 Routing via Preorders
Main Ideas. Considering a network G = (V ,E) representing
the control plane, and a flow F from a source s to a destina-
tion d , where s, d are SDN control cluster servers. A preorder
is defined on a node set V ′ where s,d ∈ V ′, and V ′ ⊆ V .
This preorder specifies the relation between any two nodes
u,v, where v → u means v is a child of u, and v ↔ u
means u,v are siblings. The result is a directed connected
(sub)graph G ′ = (V ′,E ′), where each edge in E ′ (⊆ E) is ori-
ented either uni-directional or bi-directional, and G ′ is called
a preordered graph (PrOG in short.) At each node, packets
can be forwarded to any of its parents or siblings, (i.e., fol-
low any directed path from s to d without enumerating all
paths between them.) Bi-directional links are only activated
along one direction upon failures. Through its construction,
PrOG includes all possible paths between s, d. Therefore, it
ensures controllers retain connectivity, as long as the under-
lying graph is not partitioned, allowing Raft participants to
exchange data even if direct communication links are unavail-
able. PrOGs are constructed for each source-destination pair,
using a modified version of breadth-first search.

Upon failures, the affected parts of PrOG are deactivated,
and traffic is routed along the remaining part, where each node

When Raft Meets SDN: How to Elect a Leader and
Reach Consensus in an Unruly Network APNET ’17, August 3–4, 2017, Hong Kong, China

R1

R2

R3

R4

R5

1 2 3 4 5 6 7 8 9 10 11 12 13

Failures

S
e
rv
e
r

Term

Leader
Follower

Candidate

(a) Raft: leadership keeps oscillating between
servers (unstable).

R1

R2

R3

R4

R5

1 2 3 4 5 6 7 8 9 10

Failures

S
e
rv
e
r

Term

Leader
Follower

Candidate

(b) Raft: no viable leader (liveness lost).

R1

R2

R3

R4

R5

1 2 2 2 2

Failures Stable

S
e
rv
e
r

Term

Leader
Follower

Candidate

(c) PrOG: leadership is stable.

Figure 5: Results for simulating the motivation examples in Figure 4 using vanilla Raft and PrOG-assisted Raft.

uses its alternative outgoing links if they exist. Upon link/node
recovery, relevant links are activated. The original PrOG is
restored, when all links/nodes recover. PrOG also provides
an additional feature, where the constructed graph can have a
bounded threshold for the cost of the included paths from s to
d (see [24] for more details.) Thus, a threshold can be defined
for normal operations, and a relaxed threshold to be used upon
failures. Therefore, Raft members can communicate within a
predefined threshold even when there are failures. PrOGs are
then converted to OpenFlow rules pre-installed in switches.
Switches are provided with a small functionality required
to maintain and update an internal state. For example, each
switch maintains the state of its outgoing links whether they
are active or not, and sends activation/deactivation messages
upon link recovery/failure.
Summary. “Routing via Preorders” uses local data plane
operations to achieve resiliency under arbitrary link/node
failures, without any involvement from the control plane to re-
compute routes, since they are pre-computed and pre-installed.
Thus, it avoids the cyclic dependency between control net-
work connectivity and management, where controllers need to
setup rules to recover from failures, but cannot reach switches
because of failures. Therefore, it provides all-to-all commu-
nications among cluster members for a stable Raft leader-
ship and enables the cluster to progress regardless of failures.
Finally, it is a general solution as it does not require any
modifications to Raft, and can be used by other distributed
protocols as well. The correctness and overheads of PrOG are
discussed [25]. We will expand its design for control network
resiliency in a future paper.

5 PRELIMINARY RESULTS
In this section, we compare the results of vanilla Raft and
PrOG-assisted Raft to show that PrOG resolves the issues
presented in Section 3 and enables a more resilient and robust
SDN distributed control platform.
Experiment Setup. Standard Raft C++ implementation in
LogCabin [19] is used in the experiments. LogCabin is a dis-
tributed storage system which supports all major Raft features

like log replication, membership changes, etc.. The basic set-
ting of our experiment is to create six Docker containers [8]
(Ubuntu 14.04) in which five containers serve together as a
Raft cluster, while the other one serves as a client which reads
logs from the cluster or writes logs to the cluster. Topology is
setup as illustrated in Figure 4 and Open vSwitch [23] (OVS)
instances are used as software switches. Data written to the
Raft cluster is replicated across all cluster members (i.e., con-
tainers) by a Raft leader. We disable vote withhold [22] and
simulate the two failure scenarios described in Section 3.
Results. To demonstrate the effectiveness of PrOG, we mainly
present three types of results: 1) leadership shifting diagram.
2) statistics of clients’ failed attempts when accessing cluster
leader; 3) statistics of cluster availability time. Leadership
shifting diagram is a straight-forward way of observing the
states of Raft servers at each term before and after failure
occurs. In Figure 5, the x-axis shows the current term number,
and the y-axis shows the raft server. Different colors shows
the different states: leader (red), follower (green), and candi-
date (orange), e.g., Figure 5(a) R1 starts as follower in term
1, then leader for term 2, then follower again for term 3, and
so on. Note that for leaders, we don’t show the transition to
candidate since it is implied by successful transition to leader.

Figure 5(a) shows the results for Figure 4(b). It shows the
leadership keeps oscillating and not stable. In our experi-
ments, we noticed that this blocks the client from being able
to read or write to the storage for a large number of trials
(detailed later.) Figure 5(b) shows the results for Figure 4(c),
in which no viable leader exists, since servers cannot directly
communicate with each other, therefore the client cannot read
or write to the storage anymore. Figure 5(c) shows that our
extension resolves the issues in Figure 5(a), because servers
can indirectly communicate with each other through other
servers, therefore the client can read from and write to the
storage quickly. The system is stable from term 2.

When a client performs read/write operations on the Raft
cluster, it will randomly select one server in the cluster. If the
selected server is not the current leader, it replies with the cur-
rent leader’s IP. However, if there is no leader at the moment,
no suggestion is returned and the client will randomly select

APNET ’17, August 3–4, 2017, Hong Kong, China Y. Zhang et al.

Number of Failed Attempts for Accessing Raft Cluster Leader
0 5 10 15 20 25 30 35 40

Em
pi

ric
al

 C
DF

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Vanilla Raft Read
Vanilla Raft Write
PrOG-assisted Raft Read
PrOG-assisted Raft Write

(a) Client suffers much more failed attempts for accessing cluster
leader in vanilla Raft.

Operation Duration (7s) #10 5
0 1 2 3 4 5 6 7 8

Em
pir

ica
l C

DF

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Vanilla Raft Read
Vanilla Raft Write
PrOG-assisted Raft Read
PrOG-assisted Raft Write

(b) Latency of a request operation increases accordingly.

Figure 6: Vanilla Raft vs. PrOG-assisted Raft.

another server to contact. The client issues 100 read/write
requests with 1-second interval under the failure scenario in
Figure 4(b) for each round of experiments, and then we count
the number of failed attempts before the client successfully
reaches the current cluster leader as shown in Figure 6(a).
Moreover, we also measure the duration of each read/write
request as shown in Figure 6(b). The results demonstrate
that PrOG-assisted Raft is more robust to network failures.
In terms of why most durations in Vanilla Raft are close to
N × 105µs (N is positive integer), it is because the client is set
by default in LogCabin to wait 105µs before trying another
server’s IP.

We also carefully analyzed the log of the five Raft servers
to sum up availability time of the whole Raft system under
the oscillating leadership scenario. The availability time in
our experiments is defined as the total time period in which a
leader is available, because the distributed system can only
serve clients when a leader exists. We perform five rounds of
three-minute experiments and calculate system availability
time. The average availability time is 75.67s (42.04% out
of 180s) and 248 times of leadership shifting happen, even
though the network is not partitioned.

6 RELATED WORK
SDN availability. SDN controllers may take advantage of
established techniques from the distributed systems literature.
For example, a control cluster with multiple controllers could
use a distributed storage system for durable state replication.
Distributed SDN controller designs rely on consensus algo-
rithm such as Paxos used by ONIX [12] and Raft used by
ONOS [2], and even stronger consistency guarantees are re-
quired by Ravana [10]. LegoSDN [6] focuses on controller
crash failures caused by software bugs. Statesman [28] demon-
strates incrementally mitigating up-to-date state to switch
with obsolete state when a control master fails. Liron [26] pro-
poses a model for designing distributed control plane which
maintains connectivity between a distributed control plane
and the data plane. In comparison, we study the availability
issues in consensus algorithm, and propose PrOG to enhance
Raft. HyperFlow [11] utilizes publish-subscribe messaging

paradigm among controller instances to replicate network
events, and local state is built solely by controller applica-
tion based on subscribed event. We assume that Network
OS employs consensus algorithms such as Raft to maintain
the correctness of control logic managing the network, and
enhaces it with a “self-healing” resilient control network.
Robust message exchange. Robust message exchange in
SDN is fundamental for controller availability. Webb et al.
[29] propose a way of deploying tightly-coupled distributed
system in wide area in a scalable way. It preserves efficient
pairwise communication through an overlay network with
gossip-based communication protocol. Schiff et al. [27] pro-
pose a synchronization framework for control planes based on
atomic transactions, implemented in-band, on the data-plane
switches. Akella et al. [1] architectures SDN for robustness to
faults. They tackle the problem of in-band network availability
and synthesize various distributed system ideas like flooding,
global snapshots, etc. Muqaddas et al. [18] quantify the traffic
exchanged amongst controller running Raft and summarize
that the inter-controller traffic scales with the network size.
PrOG provides a general robust and resilient message ex-
change mechanisms for both in-band and out-of-band control
channels. network size.

7 CONCLUSION
SDN controllers use distributed consensus protocols like Raft
to manage the network state and provide a highly available
cluster to the underlying networking elements. Therefore,
SDN controller liveness depends on all-to-all message de-
livery between cluster servers. In this paper, we use Raft to
illustrate the problems which may be induced by this inter-
dependency in the design of distributed SDN controllers. We
also discuss possible solutions to circumvent these issues.
Our preliminary results show the effectiveness of PrOG in im-
proving the availability of leadership in Raft used by critical
applications like SDN controller clusters.
Acknowledgement. This research was supported in part by
DTRA grant HDTRA1-14-1-0040, DoD ARO MURI Award
W911NF-12-1-0385 and NSF grants CNS-1618339, CNS-
1618339 and CNS-1617729.

When Raft Meets SDN: How to Elect a Leader and
Reach Consensus in an Unruly Network APNET ’17, August 3–4, 2017, Hong Kong, China

REFERENCES
[1] Aditya Akella and Arvind Krishnamurthy. 2014. A Highly Available

Software Defined Fabric. In Proc. HotNets.
[2] Pankaj Berde et al. 2014. ONOS: Towards an Open, Distributed SDN

OS. In Proc. HotSDN.
[3] Eric A. Brewer. 2000. Towards Robust Distributed Systems.
[4] Mike Burrows. 2006. The Chubby Lock Service for Loosely-coupled

Distributed Systems. In Proc. OSDI.
[5] Tushar D Chandra, Robert Griesemer, and Joshua Redstone. 2007.

Paxos Made Live: an Engineering Perspective. In Proc. PODC.
[6] Balakrishnan Chandrasekaran and Theophilus Benson. 2014. Tolerating

SDN Application Failures with LegoSDN. In Proc. HotNets.
[7] Seth Gilbert et al. 2002. Brewer’s Conjecture and the Feasibility of

Consistent, Available, Partition-tolerant Web Services. SIGACT News.
[8] Docker Inc. 2016. Docker Containerization Platform. https://www.

docker.com/.
[9] Sushant Jain et al. 2013. B4: Experience with a Globally-deployed

Software Defined WAN. Proc. SIGCOMM CCR.
[10] Naga Katta et al. 2015. Ravana: Controller Fault-tolerance in Software-

defined Networking. In Proc. SOSR.
[11] Takayuki Dan Kimura. 1993. Hyperflow: A Uniform Visual Language

for Different Levels of Programming. In Proc. CSC.
[12] Teemu Koponen et al. 2010. Onix: A Distributed Control Platform for

Large-scale Production Networks. In Proc. OSDI.
[13] Avinash Lakshman and Prashant Malik. 2010. Cassandra: a Decentral-

ized Structured Storage System. SIGOPS Operating Systems Review.
[14] Leslie Lamport. 1998. The Part-time Parliament. ACM Transactions

on Computer Systems.
[15] Leslie Lamport. 2001. Paxos Made Simple. ACM SIGACT News.

[16] Nick McKeown et al. 2008. OpenFlow: Enabling Innovation in Campus
Networks. SIGCOMM CCR.

[17] Jan Medved et al. 2014. Opendaylight: Towards a Model-driven SDN
Controller Architecture. In Proc. WoWMoM.

[18] Abubakar Siddique Muqaddas et al. 2016. Inter-controller Traffic in
ONOS Clusters for SDN Networks.

[19] Diego Ongaro. 2016. LogCabin: A Distributed Storage using Raft.
https://github.com/logcabin.

[20] Diego Ongaro and John Ousterhout. 2014. In Search of an Understand-
able Consensus Algorithm. In Proc. USENIX ATC.

[21] Aurojit Panda et al. 2013. CAP for Networks.
[22] Jehan-Francois Paris et al. 2015. Pirogue, a Lighter Dynamic Version

of the Raft Distributed Consensus Algorithm. In Proc. IPCCC.
[23] Ben Pfaff et al. 2015. The Design and Implementation of Open vSwitch.

In Proc. NSDI.
[24] Eman Ramadan, Hesham Mekky, Braulio Dumba, and Zhi-Li Zhang.

2016. Adaptive Resilient Routing via Preorders in SDN. In Proc. DCC.
[25] Eman Ramadan, Hesham Mekky, Cheng Jin, Braulio Dumba, and Zhi-

Li Zhang. 2017. Provably Resilient Network Fabric with Bounded
Latency. In Under Submission.

[26] L. Schiff, S. Schmid, and M. Canini. 2016. Ground Control to Major
Faults: Towards a Fault Tolerant and Adaptive SDN Control Network.
In Proc. DSN-W on IFIP.

[27] Liron Schiff, Stefan Schmid, and Petr Kuznetsov. 2016. In-Band Syn-
chronization for Distributed SDN Control Planes. SIGCOMM CCR.

[28] Peng Sun et al. 2014. A Network-state Management Service. In Proc.
SIGCOMM.

[29] Kevin C. Webb et al. 2013. Scalable Coordination of a Tightly-coupled
Service in the Wide Area. In Proc. SOSP TRIOS.

https://www.docker.com/
https://www.docker.com/
https://github.com/logcabin

	Abstract
	1 Introduction
	2 Raft Overview
	3 Raft Meets SDN
	4 Possible Solutions
	4.1 Gossiping
	4.2 Routing via Preorders

	5 Preliminary Results
	6 Related Work
	7 Conclusion
	References

