Uninformed Search (Ch. 3-3.4)
Search algorithm

For the next few searches we use: (without the red stuff for trees)

function tree-search(root-node)
 fringe ← successors(root-node)
 explored ← empty
 while (notempty(fringe))
 {node ← remove-first(fringe)
 state ← state(node)
 if goal-test(state) return solution(node)
 explored ← insert(node,explored)
 fringe ← insert-all(successors(node),fringe, if node not in explored)
 }
 return failure
end tree-search
Search algorithm

The search algorithms metrics/criteria:
1. Completeness (does it terminate with a valid solution)
2. Optimality (is the answer the best solution)
3. Time (in big-O notation)
4. Space (big-O)

\[b = \text{maximum branching factor} \]
\[d = \text{minimum depth of a goal} \]
\[m = \text{maximum depth of tree (lowest leaf)} \]
Breadth first search checks all states which are reached with the fewest actions first

(i.e. will check all states that can be reached by a single action from the start, next all states that can be reached by two actions, then three...)
Breadth first search

(see: https://www.youtube.com/watch?v=5UfMU9TsoEM)
(see: https://www.youtube.com/watch?v=nI0dT288VLs)
Breadth first search

BFS can be implemented by using a simple FIFO (first in, first out) queue to track the fringe/frontier/unexplored nodes

Metrics for BFS:
Complete (i.e. guaranteed to find solution if exists)
Non-optimal (unless uniform path cost)
Time complexity = $O(b^d)$
Space complexity = $O(b^d)$
Breadth first search

Exponential problems are not very fun:

<table>
<thead>
<tr>
<th>Depth</th>
<th>Nodes</th>
<th>Time</th>
<th>Memory</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>110</td>
<td>.11 milliseconds</td>
<td>107 kilobytes</td>
</tr>
<tr>
<td>4</td>
<td>1,110</td>
<td>11 milliseconds</td>
<td>10.6 megabytes</td>
</tr>
<tr>
<td>6</td>
<td>10^6</td>
<td>1.1 seconds</td>
<td>1 gigabyte</td>
</tr>
<tr>
<td>8</td>
<td>10^8</td>
<td>2 minutes</td>
<td>103 gigabytes</td>
</tr>
<tr>
<td>10</td>
<td>10^10</td>
<td>3 hours</td>
<td>10 terabytes</td>
</tr>
<tr>
<td>12</td>
<td>10^12</td>
<td>13 days</td>
<td>1 petabyte</td>
</tr>
<tr>
<td>14</td>
<td>10^14</td>
<td>3.5 years</td>
<td>99 petabytes</td>
</tr>
<tr>
<td>16</td>
<td>10^16</td>
<td>350 years</td>
<td>10 exabytes</td>
</tr>
</tbody>
</table>

This is BFS with b=10 (branching factor), can compute 1 million nodes/sec, nodes take up 1 KB each
Uniform-cost search

Uniform-cost search also does a queue, but uses a priority queue based on the cost (the lowest cost node is chosen to be explored)
Uniform-cost search

The only modification is when exploring a node we cannot disregard it if it has already been explored by another node.

We might have found a shorter path and thus need to update the cost on that node.

We also do not terminate when we find a goal, but instead when the goal has the lowest cost in the queue.
Uniform-cost search

Try it yourself!

Run uniform-cost search with:

Initial = Node 0
Goal = Node 7

(Note: this graph is directed)
Uniform-cost search

UCS is..

1. Complete (if costs strictly greater than 0)
2. Optimal

However....

3&4. Time complexity = space complexity = $O(b^{1+C*/\min(\text{edge cost})})$, where C^* cost of optimal solution (much worse than BFS)
Depth first search

DFS is same as BFS except with a FILO (or LIFO) instead of a FIFO queue
Depth first search

Metrics:
1. Might not terminate (not complete) (e.g. in vacuum world, if first expand is action L)
2. Non-optimal (just... no)
3. Time complexity = $O(b^m)$
4. Space complexity = $O(b^m)$

Only way this is better than BFS is the space complexity...