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1. (30 points) Multiple choice. Each question has only one correct answer: circle its letter.

(a) This character is used as part of a printf format specifier to control what argument a value
is taken from:

A. @ B. $ C. 0 D. s E. -

This is a printf feature that was not used in Exercise set 1, but it was used in BCMTA
for a benign purpose, and it’s also useful in format string attacks if you want to skip a
lot of argument positions. 0 and - are other format specifier modifiers, and s is another
format specifier, but they all have different purposes. @ does not have a special meaning
for printf.

(b) The pathname passed to the Unix open system call cannot contain this character:

A. / B. \0 C. \ D. * E. space

At the level of the kernel interface, Unix is very permissive about what characters may be
used in filenames. The only special byte values are null and forward slash (/): a slash
separates levels of directory and a null terminates a pathname string. You can specify a
relative or absolute path in open by including slashes, which is what makes the argument
to open a “pathname” instead of a “filename’. Space, *, and \ all have special meanings
to Unix shells so you have to take special steps to include them in filenames, but all are
allowed.

(c) This security design idea is used in both qmail and Android:

A. Using Unix UIDs to isolate code instead of human users

B. Using C++’s std::string class exclusively

C. Requiring add-on software to be cryptographically signed

D. Sandboxing code from the Internet using SFI

E. Having only a single developer

Traditionally Unix UIDs identify users, but in qmail they are used to separate different
parts of qmail, like qmailr for qmail-remote. In Android, each app is assigned its own
UID. Neither qmail nor Android use std::string exclusively, in fact neither is primarily
written in C++. Android apps are signed, but qmail does not have an analogous third-
party extension mechanism. Neither qmail nor Android use SFI; the most similar feature
is that Android apps are primarily written in Java. qmail had only one main developer,
but Android is a commercial project with a large development team.

(d) Which of these values would commonly not change under ASLR?

A. The address of an environment variable

B. The address of main’s stack frame

C. The relative distance between main and printf

D. The relative distance between a return address and a local variable

E. The address of printf

An environment variable and the stack frame of main are both part of the stack, and so
move when the base address of the stack is randomized. printf is usually in shared library
that is randomized separately from the main program (if the main program is randomized
at all), so both the location of printf and the distance between main and printf vary
based on the library’s randomized location. But a return address and a local variable are
both located within the stack, and the layout of a stack frame is chosen by the compiler, so
their relative distance is not changed by ASLR.
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(e) “Heartbleed” was the name of a high-profile vulnerability disclosed in 2014. It was caused
by faulty bounds checking, but because the unsafe access was a read instead of a write,
the only kind of security policy that was directly violated was:

A. confidentiality B. availability C. authentication D. integrity

Reading data that should not be read is a violation of a confidentiality policy.

(f) Under a CFI implementation with two equivalence classes for calls and returns, and no
shadow stack, an attacker could still redirect a function return to:

A. A gadget that starts in the middle of an intended instruction

B. Shellcode in an environment variable

C. A call-preceded gadget

D. The system function in the C library, always

E. The system function in the C library, but only if its address was taken

In a two-equivalence-class CFI implementation, indirect calls can only go to legal call
targets, and returns can only go to legal targets for returns, namely locations right after
call sites. A gadget in the middle of an intended instruction or shellcode in an environment
variable would never be legal control-flow targets at all, so they would be blocked by any
kind of CFI (shellcode in an environment variable would also be blocked by W⊕X). A
coarse-grained CFI system might allow a library function like system to be a legal target,
especially if it is called or has its address taken in the program, but a two-equivalence-class
system would still prevent a return to system, which would be mixing a return with a call
target. A call-preceded gadget is one that starts at a location after a call instruction that
would be a legal place for some return instruction to target, so its address would be part of
the legal return address equivalence class.

(g) Password capabilities are similar to passwords in that:

A. They are chosen by users

B. To be secure, they must have high entropy

C. They are gradually being replaced by fingerprints

D. They are vulnerable to dictionary attacks

E. To be secure, they must be changed frequently

Password capabilities are an OS-internal mechanism that represent the ability to access an
OS resource. They are not chosen by users or based on English words, and it doesn’t make
sense to replace them with a biometric because they are not intended to identify users in the
first place. Because a password capability does not need to be remembered by a human, it
can be chosen long enough that even a long brute-force/“dictionary” attack is impractical,
so it is not important to change it frequently. But a password capability would be insecure
if had low enough entropy that an adversary could guess it, and since the checking of a
password capability might be within a single system, the rate of attack might be relatively
fast.
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(h) One feature commonly added to high-security operating systems is tamper-proof logging.
Which of Saltzer and Schroeder’s design principles is this an instance of?

A. compromise recording

B. separation of privilege

C. confidential reservation

D. separation of powers

E. separation of duty

Logging is useful for security as a kind of compromise recording. If this is going to be
useful a security mechanism, it must not be possible for an attacker who has compromised
the system to also tamper with the logs to remove the evidence of the compromise; the
difficulty of making such logging tamper-proof is part of why this principle is not always
applicable. “Confidential reservation” starts with the same letters but is not one of Saltzer
and Schroeder’s principles. Separate of privilege is another of Saltzer and Schroeder’s
principles, and separation of duty is another name for a kind of separation of privilege
between users. Separation of powers is a concept in politics which is only more distantly
related to separation of privilege.

(i) Which of these CPU features does not lead to transient execution?

A. single-instruction multiple-data (SIMD) instructions

B. branch target prediction

C. return stack buffer usage

D. delayed memory exceptions

E. branch direction prediction

Delayed memory exceptions are the cause of transient execution in the Meltdown attack,
and branch direction prediction and branch target prediction are the two most common
causes of transient execution in the Spectre attack. The return-stack buffer is a specialized
hardware feature used to predict the targets of return addresses. It is thus used for a kind of
target prediction, and the survey paper mentions that it has also been used in Spectre-like
attacks. SIMD instructions allow a processor to do several arithmetic operations at once,
but doing all the operations in parallel is part of the architectural semantics, and does not
require transient execution.
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(j) At the University of Minnesota, you type in the same username and password to log into
CSE Labs workstations, to access the WiFi network, and to view library resources off
campus. This is an example of:

A. two-factor authentication

B. biometric authentication

C. economy of mechanism

D. centralized authentication

E. single sign-on

A password is not biometric, and a password on its own is just a single factor. This
isn’t a good example of economy of mechanism because the different systems are separately
implemented. The best answer is centralized authentication: there is a centralized database
of usernames and passwords that all these otherwise-separate systems connect to. (You
might say that centralization is a description of the implementation, and we don’t actually
now how all of these systems are implemented, but the fact that the same username and
password are used is a sign that part of the mechanism is centralized.) Single sign-on is
a description of the user experience, and I would the three examples listed in the question
are not single sign-on: you would have to type the same username and password three
times to access WiFi, use a library resource in your browser, and connect to a CSE Labs
workstation. However the U’s centralized authentication does provide single sign-on among
resources that do web-based authentication, which include MyU and Canvas as well as the
library proxy. So we also gave partial credit for the answer of “single sign-on”.
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2. (24 points) Social media reliability relations

A commonly-raised concern about social media is that it is sometimes used to propagate un-
reliable information. Inspired by the use of lattices to define integrity policies in multi-level
secure systems, your friend Parker is considering applying a similar mechanism to deal with
unreliable information in Twitter.

(a) Parker’s basic idea is to define an ordering relation v based on reliability. B v A will
hold when user A is more reliable than B; only if this is the case will B be allowed to read
A’s tweets. On the left are some mathematical properties that the relation v might have.
Match them with the intuitive descriptions on the right of what the properties mean in
this context: each one is used exactly once.

A. If A v B and B v C, then A v C

B. A v A

C. If A v B and B v A, then A = B

D. Either A v B or B v A

B Everyone can read their own tweets

C If two users are each at least as reli-
able as the other, they are equally reliable

D For any two people, at least one can
read the other’s tweets

A If you can read a retweet, you can
also read the original tweet

(b) Keeping with the spirit of social networks, Parker has decided that reliability will be
defined based on popularity, specifically by a pair of non-negative integers (t, i) where t is
the number of Twitter followers a user has, and i is their number of Instagram followers.
(t or i is also 0 if the user doesn’t have Twitter or Instagram account at all.) But there
was still some disagreement about the exact definition.

Leslie believes that Twitter is a better indication of reliability than Instagram, and pro-
posed the following definition:

(t1, i1) vL (t2, i2) ⇐⇒ t1 < t2 ∨ (t1 = t2 ∧ i1 ≤ i2)

Does Leslie’s definition satisfy all four properties A-D mentioned above? If not, choose
one property and give an example of a situation in which it does not hold.

All four of the properties A–D hold for vL. In other terminology, this means that vL is a
total order.

(c) Chris thought it was more important for the definition to treat Twitter and Instagram
equally, and proposed the following definition:

(t1, i1) vC (t2, i2) ⇐⇒ t1 ≤ t2 ∧ i1 ≤ i2

Does Chris’s definition satisfy all four properties A-D mentioned above? If not, choose
one property and give an example of a situation in which it does not hold.

vC satisfies A–C, but not D. One example of property D failing is that (0, 10) 6vC (10, 0),
but also (10, 0) 6vC (0, 10). In other words, vC is a partial order but not a total order. It
has pairs which are incomparable, like (0, 10) being incomparable with (10, 0).
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(d) Dakota liked Chris’s suggestion, but wanted a definition that allowed more tweets to be
read, and so proposed the following:

(t1, i1) vD (t2, i2) ⇐⇒ t1 ≤ t2 ∨ i1 ≤ i2

(This is the same as Chris’s, but with “or” instead of “and”.) Does Dakota’s definition
satisfy all four properties A–D mentioned above? If not, choose one property and give an
example of a situation in which it does not hold.

Properties A and C both fail for vD. An example of the failure of A is that (4, 3) vD (1, 4)
(because 3 ≤ 4) and (1, 4) vD (2, 1) (because 1 ≤ 2), but (4, 3) 6vD (2, 1).

As an example of the failure of C you can use the same kind of pairs that were examples
of failures of D in the previous part. For instance (10, 20) vD (20, 10) and (20, 10) vD

(10, 20), but (10, 20) 6= (20, 10). A more open-minded reader might also ask why we can’t
just get out of that counterexample by claiming that (20, 10) = (10, 20) for the purposes of
the ordering. But it doesn’t make sense to consider those equal because they are ordered
differently with respect to other elements. For instance (25, 15) vD (10, 20), because 15 ≤
20, but (25, 15) 6vD (20, 10).

(e) Which of the definitions vL, vC , and/or vD, form(s) a lattice?

Both vL and vC can form a lattice when matching meet and join operators are supplied,
but vD cannot form a lattice, because a lattice is a kind of partial order, and a partial
order has to satisfy all of the properties A–C. We saw that a lot of students only mentioned
one of the definitions in their answer here, perhaps because we were not explicit enough
(the “and/or” and “(s)” were intended to be signs) that we wanted to know the whole list
of definitions that form lattices. But mentioning one of the two correct answers only lost
you one point.

(f) Before Parker and his friends visit California to talk to venture capitalists, is there any
other problem with or objection to their idea they should consider?

There are many possible problems, and there wasn’t any single one we wanted over all
others. On a technical side, these lattices have a lot of levels, so you probably wouldn’t
want to represent them all explicitly. From a practical point of view, this system would
make it hard for new users to get started using the systems, since at first very few people
can read their messages, but without that it’s hard to get followers. Having many followers
may not be a good stand-in for reliability: someone might be popular without having reliable
information. This mechanism requires people who have many followers to get more of their
information outside the social network, but there’s no guarantee that the other information
sources that substitute for the social network will be better. From a business standpoint,
talking to VCs suggests that Parker and friends want to make money from this idea, but
it’s not obvious where the profit opportunity is. If Parker and friends want to start a
new social network, it may be hard to get users if it starts out small and more reliable
information may not be enough to get users to switch. If Parker and friends are hoping
that Twitter or Instagram will buy this idea, it’s not obvious how those companies would
increase revenue by making information more reliable.
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3. (26 points) Return-to-libc attack.

You are trying to carry out an attack against a Linux/x86-32 program that has a buffer overflow
vulnerability. In your preliminary research, you’ve found that the vulnerability is completely
permissive as to the data used in the overflow (even \0 bytes are OK), and ASLR is disabled.
But the bad news is that it only lets you write 44 bytes into a 32-byte buffer, which is not
enough to overwrite a return address.

Your backup plan is to carry out a return-to-libc attack, to let you make the program do the
equivalent of system("/tmp/evil") using code that already exists in the binary. (You have
already prepared the script /tmp/evil.) But you have to figure out how to make that happen
by overwriting just the data that the overflow reaches. Below we’ve shown the C and assembly
code for the relevant parts of the vulnerable program. On the next page, we’ve shown a picture
of the area of memory that holds function g’s stack frame. For the locations that you control,
there are blank spaces for you to fill in the data you want to go in those locations. Each blank
space represents one byte: fill it in with either a single ASCII character like A or two hex digits
like ff. You may leave a blank empty if it is not needed for your attack.

The address of the function system is 0x0804f170. It’s not too important what the program
does after calling system, but if you’d like to have it call exit, the address of that function is
0x804e670.

The blank spaces for the bytes are in order of increasing address left to right. So be careful
about the order in which you write things, for instance depending on if they are a string or an
address. (x86 is little-endian, putting the least-significant byte of a word at the lowest address.)

unsigned char input[44];

void f(char *str) {

int len =

parse(str, input, sizeof(input));

g(input, len);

}

void g(unsigned char *data, int len) {

unsigned char buf[32];

memcpy(buf, data, len); /* oops */

return;

}

f:

/* ... */

call g

add $0x10,%esp

mov %ebp, %esp

pop %ebp

ret

g:

push %ebp

mov %esp,%ebp

sub $0x28,%esp

mov 0xc(%ebp),%eax

sub $0x4,%esp

push %eax

pushl 0x8(%ebp)

lea -0x28(%ebp),%eax

push %eax

call memcpy

add $0x10,%esp

mov %ebp, %esp

pop %ebp

ret
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You’ll that a return-to-libc attack is an older and simpler kind of code reuse attack. Like more
sophisticated ROP attacks, return-to-libc doesn’t use any shellcode: the attack is carried out
only using code that is already present inside the vulnerable program. Most specifically, the
phrase “return-to-libc” refers to hijacking a function return so that it goes not to the normal
return site but to the entry point of an attacker-useful function in the C library. The system

function used in this question is a classic target because of its shellcode-like functionality: given
a string argument represented as a character pointer, it passes the contents of the string to the
shell. We already did the part of figuring out what string he attacker wants to pass, but that
string is probably not already present in the binary, so it should be part of the attack payload.

The one factor that makes this question different from the most classic return-to-libc is that the
overflow is not long enough to overwrite the return address directly. However the overwrite can
replace a saved value of the frame pointer %ebp on the stack, which is enough to replace a return
because it changes the way the program reads data from the stack. Note that even though the
overflow happens inside g, the saved frame pointer is used in f, so it is f’s return instruction
that should get hijacked; this is why we included the code for the last few instructions of f. A
good way of thinking about how this attack should work is that we want to create a fake section
of stack that we are going to trick f into using, by changing its %ebp value. The values in this
fake stack area should have the same offsets from each other that the code in f is expecting, but
the area will be inside the attacker-controller overflow.

The two most important values for the attack are the address of system, and the pointer to
the attacker-supplied command string. You have to be careful in thinking about their positions
because there’s another change of perspective that happens when we switch to executing system:
f treats the address of system like its return address, but then once system starts executing,
it thinks that it has been called. system will look for its argument on the stack, but system

also expects system’s return address to be on the stack. Because the attack “called” system

with a return instead of a normal call, that return address isn’t set up automatically by the
instructions; you need to think about it in constructing the fake stack. The value of system’s
return isn’t going to matter to the success of the attack, but we gave you the address of exit as
a hint that you could use it as the “return” address of system, as a very simple kind of chained
return-to-libc attack. However it is important for the success of the attack that the pointer to
the command string be two words above the address of system, because the location in between
is where system expects to find its own return address.

Where should the overwritten %ebp point, relative to our saved stack frame? The convention
for saved %ebps is that they each point at the calling function’s saved %ebp, so the fake %ebp

should point at the place where f’s saved %ebp would go, one word below f’s return address. As
with system’s return address, the value is not so important because it will only be used after
the attack, but the layout is important.

Because the blank spots correspond to bytes in order of increasing address, but x86 is little-
endian, all the 32-bit addresses need to be written with their bytes reversed. On the other hand,
the string /tmp/evil still has its bytes in increasing address order, so it should be written left
to right, and then up. It’s also necessary to include a null terminator for the command string,
so system knows where it ends. One final point to keep in mind is that it is better to have the
command string at a higher address and the fake stack at a lower address, because system itself
will use the stack below its argument and return address for its own purposes, and we don’t
want system to overwrite the command string before using it.
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Address Original purpose Overwrite with

0xffffc3d4: g arg 2 (len)
0xffffc3d0: g arg 1 (data)
0xffffc3cc: g→f return address

0xffffc3c8: saved %ebp a0 c3 ff ff

0xffffc3c4: unused

0xffffc3c0: unused

0xffffc3bc: buf[0x1c] – buf[0x1f]

0xffffc3b8: buf[0x18] – buf[0x1b] l 00

0xffffc3b4: buf[0x14] – buf[0x17] / e v i

0xffffc3b0: buf[0x10] – buf[0x13] / t m p

0xffffc3ac: buf[0x0c] – buf[0x0f] b0 c3 ff ff

0xffffc3a8: buf[0x08] – buf[0x0b] 70 e6 04 08

0xffffc3a4: buf[0x04] – buf[0x07] 70 f1 04 08

0xffffc3a0: buf[0x00] – buf[0x03]

Some more hints:

• After returning from memcpy, %esp contains 0xffffc3a0 and %ebp contains 0xffffc3c8.

• In AT&T syntax, the destination is the final operand, so for instance mov %eax, %ebx

copies the contents of %eax into %ebx.

• The arguments to functions on Linux/x86-32 are passed on the stack, with the first ar-
gument at the lowest address. For instance, the relative position of the arguments and
return address shown for g is also the same for other functions.

• system will need to create its own stack frame, so make sure that doesn’t overwrite
anything needed for your attack.

• You can assume that all of the stack addresses will be the same each time the program
runs.
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4. (20 points) Matching definitions and concepts. Fill in each blank with the letter of the corre-
sponding answer. Each answer is used exactly once.

(a) C Common Orange Book level for enhanced Unix variants

(b) E Uses ambient authority for undesirable actions

(c) K Trusted code that checks all sensitive operations

(d) S A scripting language based largely on strings

(e) P System call used to drop privileges

(f) J Used to implement debugging and system call interposition

(g) O An isolated environment for untrusted code

(h) H Library function to reload register state

(i) Q Used on directories with multiple independent users

(j) B The absence of a connection between systems

(k) I An attack against kernel isolation using transient execution

(l) A A fuzzing tool that incorporates coverage feedback

(m) T A number identifying a subject in Unix access control

(n) R Will abort instead of overflowing a buffer

(o) G False positive and negative rate in a balanced configuration

(p) F A common mistake in dynamic memory management

(q) M Like a NOP sled for ROP

(r) D A filesystem-only isolation mechanism

(s) L An attack that is possible without an account

(t) N Used to prevent precompuation of password hashes

A. AFL B. air gap C. C2 D. chroot E. confused deputy F. double free
G. EER H. longjmp I. Meltdown J. ptrace K. reference monitor L. remote
exploit M. ret2pop N. salt O. sandbox P. setresuid Q. sticky bit R. strcat s

S. Tcl T. UID
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