
CSci 5271
Introduction to Computer Security
Day 3: Low-level vulnerabilities

Stephen McCamant

University of Minnesota, Computer Science & Engineering

Preview question

In a 32-bit Linux/x86 program, which of these objects
would have the lowest address (numerically least when
considered as unsigned)?

A. An environment variable

B. The program name in argv[0]

C. A command-line argument in argv[1]

D. A local float variable in a function called by main

E. A local char array in main

Outline

Low-level view of memory

Logistics announcements

Basic memory-safety problems

Where overflows come from

More problems

Note on x86-32 and x86-64

32-bit and 64-bit x86 have many similarities, but
some differences
64-bit now more common for big systems

32-bit architectures still common in embedded systems,
e.g. 32-bit ARM

This year’s HA1 will still have a 32-bit vulnerable
binary

Makes some attacks easier
Less translation for classic vulnerability and attack
descriptions

Overall layout (Linux 32-bit) Detail: static code and data

Detail: heap Detail: initial stack



Example stack frame Outline

Low-level view of memory

Logistics announcements

Basic memory-safety problems

Where overflows come from

More problems

Outline

Low-level view of memory

Logistics announcements

Basic memory-safety problems

Where overflows come from

More problems

Stack frame overflow

Overwriting adjacent objects

Forward or backward on stack
Other local variables, arguments

Fields within a structure

Global variables

Other heap objects

Overwriting metadata

On stack:
Return address
Saved registers, incl. frame pointer

On heap:
Size and location of adjacent blocks

Double free

Passing the same pointer value to free more than
once

More dangerous the more other heap operations
occur in between

Use after free

AKA use of a dangling pointer

Could overwrite heap metadata

Or, access data with confused type



Outline

Low-level view of memory

Logistics announcements

Basic memory-safety problems

Where overflows come from

More problems

Library funcs: unusable

gets writes unlimited data into supplied buffer

No way to use safely (unless stdin trusted)

Finally removed in C11 standard

Library funcs: dangerous

Big three unchecked string functions
strcpy(dest, src)

strcat(dest, src)

sprintf(buf, fmt, ...)

Must know lengths in advance to use safely
(complicated for sprintf)

Similar pattern in other funcs returning a string

Library funcs: bounded

Just add “n”:
strncpy(dest, src, n)

strncat(dest, src, n)

snprintf(buf, size, fmt, ...)

Tricky points:
Buffer size vs. max characters to write
Failing to terminate
strncpy zero-fill

More library attempts

OpenBSD strlcpy, strlcat
Easier to use safely than “n” versions
Non-standard, but widely copied

Microsoft-pushed strcpy s, etc.
Now standardized in C11, but not in glibc
Runtime checks that abort

Compute size and use memcpy

C++ std::string, glib, etc.

Still a problem: truncation

Unexpectedly dropping characters from the end of
strings may still be a vulnerability

E.g., if attacker pads paths with /////// or
/./././.

Avoiding length limits is best, if implemented
correctly

Off-by-one bugs

strlen does not include the terminator

Comparison with < vs. <=

Length vs. last index

x++ vs. ++x

Even more buffer/size mistakes

Inconsistent code changes (use sizeof)

Misuse of sizeof (e.g., on pointer)

Bytes vs. wide chars (UCS-2) vs. multibyte chars
(UTF-8)

OS length limits (or lack thereof)



Other array problems

Missing/wrong bounds check
One unsigned comparison suffices
Two signed comparisons needed

Beware of clever loops
Premature optimization

Outline

Low-level view of memory

Logistics announcements

Basic memory-safety problems

Where overflows come from

More problems

Integer overflow

Fixed size result 6= math result

Sum of two positive ints negative or less than
addend

Also multiplication, left shift, etc.

Negation of most-negative value

(low + high)/2

Integer overflow example

int n = read_int();

obj *p = malloc(n * sizeof(obj));

for (i = 0; i < n; i++)

p[i] = read_obj();

Signed and unsigned

Unsigned gives more range for, e.g., size t

At machine level, many but not all operations are the
same

Most important difference: ordering

In C, signed overflow is undefined behavior

Mixing integer sizes

Complicated rules for implicit conversions
Also includes signed vs. unsigned

Generally, convert before operation:
E.g., 1ULL << 63

Sign-extend vs. zero-extend
char c = 0xff; (int)c

Null pointers

Vanilla null dereference is usually non-exploitable
(just a DoS)

But not if there could be an offset (e.g., field of struct)

And not in the kernel if an untrusted user has
allocated the zero page

Undefined behavior

C standard “undefined behavior”: anything could
happen

Can be unexpectedly bad for security

Most common problem: compiler optimizes
assuming undefined behavior cannot happen



Linux kernel example

struct sock *sk = tun->sk;

// ...

if (!tun)

return POLLERR;

// more uses of tun and sk

Format strings

printf format strings are a little interpreter

printf(fmt) with untrusted fmt lets the attacker
program it
Allows:

Dumping stack contents
Denial of service
Arbitrary memory modifications!

Next time

Exploitation techniques for these vulnerabilities


