CSci 5271
Introduction to Computer Security
Day 9: OS security basics

Stephen McCamant
University of Minnesota, Computer Science & Engineering

Preview question

In the Unix access control model, subjects are primarily
identified by their:

A. email address

B. username

C. executable inode
D program name
E. UID

Outline
Secure use of the OS, contd

Give up privileges

£) Using appropriate combinations of set*id functions

® Alas, details differ between Unix variants
£) Best: give up permanently
£) Second best: give up temporarily

£) Detailed recommendations: Setuid Demystified
(USENIX'02)

Allow-list environment variables

£) Can change the behavior of called program in
unexpected ways
) Decide which ones are necessary
® As few as possible

£) Save these, remove any others

Outline

Bernstein’s perspective

Historical background

©) Traditional Unix MTA: Sendmail (BSD)
® Monolithic setuid root program
® Designed for a more trusting era
® In mid-90s, bugs seemed endless
©) Spurred development of new, security-oriented
replacements
® Bernstein’'s gmail
® Venema et al’s Postfix

Distinctive gmail features

©) Single, security-oriented developer
£) Architecture with separate programs and UIDs
©) Replacements for standard libraries
£) Deliveries into directories rather than large files

Ineffective privilege separation

©) Example: prevent Netscape DNS helper from
accessing local file system
) Before: bug in DNS code
— read user’s private files
©) After: bug in DNS code

— inject bogus DNS results
— man-in-the-middle attack
— read user’s private web data

Effective privilege separation

) Transformations with constrained 1/0

£) General argument: worst adversary can do is control

output
® Which is just the benign functionality

£) MTA header parsing (Sendmail bug)
£) jpegtopnm inside xloadimage

Eliminating bugs

©) Enforce explicit data flow

©) Simplify integer semantics

©) Avoid parsing

) Generalize from errors to inputs

Eliminating code

£ Identify common functions
£) Automatically handle errors
©) Reuse network tools

©) Reuse access controls

©) Reuse the filesystem

”

The “gmail security quarantee

£) $500, later $1000 offered for security bug
©) Never paid out

£) Issues proposed:

® Memory exhaustion DoS
® Overflow of signed integer indexes

) Defensiveness does not encourage more
submissions

gmail today

©) Originally had terms that prohibited modified
redistribution
® Now true public domain

£) Latest release from Bernstein: 1998; netgmail: 2007
£) Does not have large market share
£) All MTAs, even Sendmail, are more secure now

Outline

Techniques for privilege separation

Restricted languages

£) Main application: code provided by untrusted parties
£) Packet filters in the kernel

£) JavaScript in web browsers
® Also Java, Flash ActionScript, etc.

SFI

£) Software-based Fault Isolation

©) Instruction-level rewriting like (but predates) CFl
©) Limit memory stores and sometimes loads

£) Can't jump out except to designated points

©) Eg., Google Native Client

Separate processes

£) OS (and hardware) isolate one process from another

©) Pay overhead for creation and communication

£) System call interface allows many possibilities for
mischief

System-call interposition

©) Trusted process examines syscalls made by
untrusted

©) Implement via ptrace (like strace, gdb) or via kernel
change

©) Easy policy: deny

Interposition challenges

£) Argument values can change in memory (TOCTTOU)
) OS objects can change (TOCTTOU)

£) How to get canonical object identifiers?

©) Interposer must accurately model kernel behavior

) Details: Garfinkel (NDSS'03)

Separate users

©) Reuse OS facilities for access control

©) Unit of trust: program or application

©) Older example: gmail

©) Newer example: Android

©) Limitation: lots of things available to any user

chroot

£ Unix system call to change root directory
) Restrict/virtualize file system access

£) Only available to root

£) Does not isolate other namespaces

0OS-enabled containers

©) One kernel, but virtualizes all namespaces
©) FreeBSD jails, Linux LXC, Solaris zones, etc.
©) Quite robust, but the full, fixed, kernel is in the TCB

(System) virtual machines

£) Presents hardware-like interface to an untrusted
kernel

£) Strong isolation, full administrative complexity

£ 1/0 interface looks like a network, etc.

Virtual machine designs

©) (Type 1) hypervisor: ‘superkernel’ underneath VMs

©) Hosted: regular OS underneath VMs

©) Paravirtualizaion: modify kernels in VMs for ease of
virtualization

Virtual machine technologies

) Hardware based: fastest, now common
£) Partial translation: e.g,, original VMware

©) Full emulation: e.g. QEMU proper
® Slowest, but can be a different CPU architecture

Modern example: Chrom(ium)

©) Separates “browser kernel” from less-trusted

“rendering engine”
® Pragmatic, keeps high-risk components together

©) Experimented with various Windows and Linux
sandboxing techniques

) Blocked 70% of historic vulnerabilities, not all new
ones

) http://seclab.stanford.edu/websec/chromium/

Outline

OS security: protection and isolation

OS security topics

©) Resource protection
£) Process isolation

£) User authentication
£) Access control

Protection and isolation

£) Resource protection: prevent processes from
accessing hardware

£) Process isolation: prevent processes from interfering
with each other

©) Design: by default processes can do neither

£) Must request access from operating system

Reference monitor

£) Complete mediation: all accesses are checked

©) Tamperproof: the monitor is itself protected from
modification

©) Small enough to be thoroughly verified

Hardware basis: memory protection

£ Historic: segments

) Modern: paging and page protection
® Memory divided into pages (e.q. 4k)
® Every process has own virtual to physical page table
® Pages also have R/W/X permissions

Linux 32-bit example

Oxffffffff

Kernel
use only

- 0xc0000000
Mamlstack
de

grows|down

0x40000000

mdiiheap

Static code + data

0x08048000

Usually unuse d

|«— oweene aoe s —|

Hardware basis: supervisor bit

£) Supervisor (kernel) mode: all instructions available

£) User mode: no hardware or VM control instructions

£) Only way to switch to kernel mode is specified entry
point

£) Also generalizes to multiple “rings”

Outline

OS security: authentication

Authentication factors

£) Something you know (password, PIN)
£) Something you have (e.g., smart card)
£) Something you are (biometrics)

£) CAPTCHASs, time and location, ...

£) Multi-factor authentication

Passwords: love to hate

©) Many problems for users, sysadmins, researchers
©) But familiar and near-zero cost of entry

£) User-chosen passwords proliferate for low-stakes
web site authentication

Password entropy

£) Model password choice as probabilistic process
©) If uniform, log; |S|
£) Controls difficulty of guessing attacks

©) Hard to estimate for user-chosen passwords
® Length is an imperfect proxy

Password hashing

©) ldea: don't store password or equivalent information

£) Password ‘encryption’ is a long-standing misnomer
® Eg, Unix crypt (3)

£) Presumably hard-to-invert function h
) Store only h(p)

Dictionary attacks

©) Online: send quesses to server
£ Offline: attacker can check guesses internally

£) Specialized password lists more effective than literal
dictionaries
® Also generation algorithms (s — $, etc))

£) ~25% of passwords consistently vulnerable

Better password hashing

©) Generate random salt s, store (s, h(s,p))
® Block pre-computed tables and equality inferences
® Salt must also have enough entropy

©) Deliberately expensive hash function

® AKA password-based key derivation function (PBKDF)
® Requirement for time and/or space

Password usability

£) User compliance can be a major challenge
® Often caused by unrealistic demands

) Distributed random passwords usually unrealistic
£) Password aging: not too frequently
£) Never have a fixed default password in a product

Backup authentication

©) Desire: unassisted recovery from forgotten password
©) Fall back to other presumed-authentic channel
® Email, cell phone
©) Harder to forget (but less secret) shared information
® Mother’s maiden name, first pet's name

©) Brittle: ask Sarah Palin or Mat Honan

Centralized authentication

£) Enterprise-wide (e.g, UMN ID)

£) Anderson: Microsoft Passport

£) Today: Facebook Connect, Google ID

£) May or may not be single-sign-on (SSO)

Biometric authentication

©) Authenticate by a physical body attribute
+ Hard to lose

— Hard to reset

— Inherently statistical

— Variation among people

Example biometrics

£) (Handwritten) signatures

€ Fingerprints, hand geometry
£) Face and voice recognition
£ Iris codes

Error rates: ROC curve

Always
Perfect accept
1009

Ve
< EER ‘;.,\QQ
75% /(20% FP
o o
g] 20%en P

&
H / <

8 50% ! ©Flip
o fair
=

25%

Aways| /
reject

% 25% 50% 75% 100%
False positive rate

Outline

Basics of access control

Mechanism and policy

) Decision-making aspect of 0OS

©) Should subject S (user or process) be allowed to
access object (e.q, file) O?

©) Complex, since admin must specify what should
happen

Access control matrix

Slicing the matrix

£) O(nm) matrix impractical to store, much less
administer
£) Columns: access control list (ACL)
® Convenient to store with object
® Eg, Unix file permissions
©) Rows: capabilities
® Convenient to store by subject
® Eg, Unix file descriptors

grades.txt | /dev/hda | /usr/bin/bevi
Alice r w rx
Bob w - rx
Carol r - rx
Groups/roles

©) Simplify by factoring out commonality

£) Before: users have permissions

£) After: users have roles, roles have permissions

£) Simple example: Unix groups

£) Complex versions called role-based access control
(RBAC)

Outline

Unix-style access control

UIDs and GIDs

£) To kernel, users and groups are just numeric
identifiers
©) Names are a user-space nicety
®» Eg, /etc/passwd mapping
£) Historically 16-bit, now 32
£) User O is the special superuser root
® Exempt from all access control checks

File mode bits

©) Core permissions are 9 bits, three groups of three
©) Read, write, execute for user, group, other

0 1s format: rwx r-x r—-

) Octal format: 0754

Interpretation of mode bits

£) File also has one user and group ID

£) Choose one set of bits
® If users match, use user bits
® If subject is in the group, use group bits
® Otherwise, use other bits
£) Note no fallback, so can stop yourself or have
negative groups
mButusualy O C GC U

Directory mode bits

©) Same bits, slightly different interpretation

©) Read: list contents (eg., 1s)

©) Write: add or delete files

©) Execute: traverse

©) X but not R means: have to know the names

Process UIDs and setuid(2)

©) UID is inherited by child processes, and an
unprivileged process can't change it

£) But there are syscalls root can use to change the
UID, starting with setuid

©) Eg, login program, SSH server

Setuid programs, different UIDs

£ If 04000 “setuid” bit set, newly execd process will
take UID of its file owner
® Other side conditions, like process not traced
©) Specifically the effective UID is changed, while the

real UID is unchanged
® Shows who called you, allows switching back

More different UIDs

£) Two mechanisms for temporary switching:
® Swap real UID and effective UID (BSD)
® Remember saved UID, allow switching to it (System V)
£) Modern systems support both mechanisms at the
same time
£ Linux only: file-system UID
® Once used for NFS servers, now mostly obsolete

Setgid, games

©) Setgid bit 02000 mostly analogous to setuid

) But note no supergroup, so UID O is still special

©) Classic application: setgid games for managing
high-score files

Special case: /tmp

£) Wed like to allow anyone to make files in /tmp
£) So, everyone should have write permission

£) But don't want Alice deleting Bob's files

£) Solution: “sticky bit” 01000

Special case: group inheritance

©) When using group to manage permissions, want a
whole tree to have a single group
£) When 02000 bit set, newly created entries with
have the parent's group
® (Historic BSD behavior)

) Also, directories will themselves inherit 02000

Other permission rules

£) Only file owner or root can change permissions
£) Only root can change file owner

® Former System V behavior: “give away chown”
£) Setuid/qid bits cleared on chown

® Set owner first, then enable setuid

Non-checks

) File permissions on stat
) File permissions on link, unlink, rename
) File permissions on read, write

©) Parent directory permissions generally

® Except traversal
® le, permissions not automatically recursive

"POSIX" ACLs

) Based on a withdrawn standardization
£) More flexible permissions, still fairly Unix-like

£) Multiple user and group entries
® Decision still based on one entry

) Default ACLs: generalize group inheritance
©) Command line: getfacl, setfacl

ACL legacy interactions

©) Hard problem: don't break security of legacy code
® Suggests: “fail closed”
£) Contrary pressure: don't want to break functionality
® Suggests: “fail open”
£) POSIX ACL design: old group permission bits are a
mask on all novel permissions

"POSIX" “capabilities”

) Divide root privilege into smaller (~35) pieces

©) Note: not real capabilities

£) First runtime only, then added to FS similar to setuid
£) Motivating example: ping

£) Also allows permanent disabling

Privilege escalation dangers

£) Many pieces of the root privilege are enough to

regain the whole thing
® Access to files as UID O
® CAP_DAC_OVERRIDE
® CAP_FOWNER
® CAP_SYS_MODULE
® CAP_MKNOD
® CAP_PTRACE
® CAP _SYS ADMIN (mount)

Legacy interaction dangers

£) Former bug: take away capability to drop privileges
£) Use of temporary files by no-longer setuid programs
£) For more details: “Exploiting capabilities”, Emeric Nasi

Next time

) Object capability systems
£) Mandatory access control
©) Information-flow security

