CSci 5271 Introduction to Computer Security Day 10: OS security: access control

Stephen McCamant
University of Minnesota, Computer Science & Engineering

Outline

Multilevel and mandatory access control

Announcements intermission

Capability-based access control

MAC vs. DAC

- Discretionary access control (DAC)
 - Users mostly decide permissions on their own files
 - If you have information, you can pass it on to anyone
 - E.g., traditional Unix file permissions
- Mandatory access control (MAC)
 - Restrictions enforced regardless of subject choices
 - Typically specified by an administrator

Motivation: it's classified

- Government defense and intelligence agencies use classification to restrict access to information
- E.g.: Unclassified, Confidential, Secret, Top Secret
- Multilevel Secure (MLS) systems first developed to support mixing classification levels under timesharing

Motivation: system integrity

- Limit damage if a network server application is compromised
 - Unix DAC is no help if server is root
- Limit damage from browser-downloaded malware
 - Windows DAC is no help if browser is "administrator" user

Bell-LaPadula, linear case

- State-machine-like model developed for US DoD in 1970s
- A subject at one level may not read a resource at a higher level
 - Simple security property, "no read up"
- A subject at one level may not write a resource at a lower level
 - * property, "no write down"

High watermark property

- Dynamic implementation of BLP
- Process has security level equal to highest file read
- Written files inherit this level

Biba and low watermark

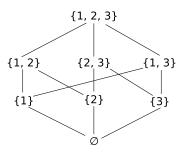
- Inverting a confidentiality policy gives an integrity one
- Biba: no write up, no read down
- Low watermark policy
- \blacksquare BLP \land Biba \Rightarrow levels are isolated

Information-flow perspective

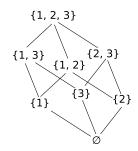
- Confidentiality: secret data should not flow to public sinks
- Integrity: untrusted data should not flow to critical sinks
- Watermark policies are process-level conservative abstractions

Covert channels

- Problem: conspiring parties can misuse other mechanisms to transmit information
- Storage channel: writable shared state
 E.g., screen brightness on mobile phone
- Timing channel: speed or ordering of events
 - E.g., deliberately consume CPU time

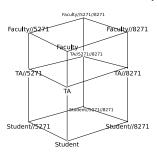

Multilateral security / compartments

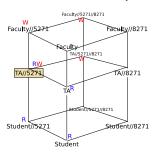
- In classification, want finer divisions based on need-to-know
- Also, selected wider sharing (e.g., with allied nations)
- Many other applications also have this character
 Anderson's example: medical data
- How to adapt BLP-style MAC?


Partial orders and lattices

- Selection of the selection
- Dropping last gives a partial order
- A lattice is a partial order plus operators for:
 - Least upper bound or join ⊔
 - Greatest lower bound or meet □
- **©** Example: subsets with \subseteq , \cup , \cap

Subset lattice example


Subset lattice example


Lattice model

- Generalize MLS levels to elements in a lattice
- BLP and Biba work analogously with lattice ordering
- No access to incomparable levels
- Potential problem: combinatorial explosion of compartments

Classification lattice example

Lattice BLP example

Another notation

Faculty

ightarrow (Faculty, arnothing)

Faculty//5271

 \rightarrow (Faculty, $\{5271\}$)

Faculty//5271//8271

 \rightarrow (Faculty, $\{5271, 8271\}$)

MLS operating systems

- 1970s timesharing, including Multics
- "Trusted" versions of commercial Unix (e.g. Solaris)
- SELinux (called "type enforcement")
- Integrity protections in Windows Vista and later

Multi-VM systems

- One (e.g., Windows) VM for each security level
- More trustworthy OS underneath provides limited interaction
- E.g., NSA NetTop: VMWare on SELinux
- Downside: administrative overhead

Air gaps, pumps, and diodes

- The lack of a connection between networks of different levels is called an air gap
- A pump transfers data securely from one network to another
- A data diode allows information flow in only one direction

Chelsea Manning cables leak

- Manning (née Bradley) was an intelligence analyst deployed to Iraq
- PC in a T-SCIF connected to SIPRNet (Secret), air gapped
- CD-RWs used for backup and software transfer
- Contrary to policy: taking such a CD-RW home in your pocket http://www.fas.org/sgp/jud/manning/022813-etatement.pdf

Outline

Multilevel and mandatory access control

Announcements intermission

Capability-based access control

Note to early readers

- This is the section of the slides most likely to change in the final version
- If class has already happened, make sure you have the latest slides for announcements
- In particular, the BCMTA vulnerability announcement is embargoed

Outline

Multilevel and mandatory access control

Announcements intermission

Capability-based access control

ACLs: no fine-grained subjects

- Subjects are a list of usernames maintained by a sysadmin
- Unusual to have a separate subject for an application
- Cannot easily subset access (sandbox)

ACLs: ambient authority

- All authority exists by virtue of identity
- Kernel automatically applies all available authority
- Authority applied incorrectly leads to attacks

Confused deputy problem

- Compiler writes to billing database
- Compiler can produce debug output to user-specified file
- Specify debug output to billing file, disrupt billing

(Object) capabilities

- A capability both designates a resource and provides authority to access it
- Similar to an object reference
 - Unforgeable, but can copy and distribute
- Typically still managed by the kernel

Capability slogans (Miller et al.)

- No designation without authority
- Dynamic subject creation
- Subject-aggregated authority mgmt.
- No ambient authority
- Composability of authorities
- Access-controlled delegation
- Dynamic resource creation

Partial example: Unix FDs

- Authority to access a specific file
- Managed by kernel on behalf of process
- Can be passed between processes
 - Though rare other than parent to child
- Unix not designed to use pervasively

Distinguish: password capabilities

- Bit pattern itself is the capability
 - No centralized management
- Modern example: authorization using cryptographic certificates

Revocation with capabilities

- Use indirection: give real capability via a pair of middlemen
- $\blacksquare A \to B \text{ via } A \to F \to R \to B$
- Retain capability to tell R to drop capability to B
- Depends on composability

Confinement with capabilities

- A cannot pass a capability to B if it cannot communicate with A at all
- Disconnected parts of the capability graph cannot be reconnected
- Depends on controlled delegation and data/capability distinction

OKL4 and seL4

- Commercial and research microkernels
- Recent versions of OKL4 use capability design from seL4
- Used as a hypervisor, e.g. underneath paravirtualized Linux
- Shipped on over 1 billion cell phones

Next time

Techniques for higher assurance

Joe-E and Caja

- Dialects of Java and JavaScript (resp.) using capabilities for confined execution
- E.g., of JavaScript in an advertisement
- Note reliance on Java and JavaScript type safety