
CSci 5271
Introduction to Computer Security

Day 11: Side Channels and Transient Execution

Stephen McCamant

University of Minnesota, Computer Science & Engineering

Outline

Side and covert channels

Transient execution

Transient execution and kernel isolation: Meltdown

Transient execution and kernel isolation: Spectre

Fixes, lessons learned, and the future

Analog vs. digital side channels

A side channel is an unexpected way in which a system reveals information,
different from how information is intentionally output
Analog side channels are mediated by the physical world outside the machine,
e.g.:

Sound of the hard-disk running
Power usage

Digital side channels reveal information while staying inside the computer
abstraction, e.g.:

You can’t read a file, but the error message reveals that it exists
Running time of an operation depends on what else is running

Side channels vs. covert channels

In a side channel, information is revealed from an unsuspecting victim.
Sound of many people erasing indicates that an exam question is difficult

In a covert channel, the source of the information is working together with the
receiver to transmit it when they shouldn’t.

Cough once if the answer is “true”, twice if it is “false”

Often the channel itself is the same, it just differs how you use it
And not everyone is careful about this distinction

“Architectural”

An instruction-set architecture (ISA) is an abstraction that hides details
Above the line: programmer visible state
Below the line, pipelining, caches, etc.

Another form of this terminology distinction you will hear is:
“Architectural” means the above-the-line view
“Micro-architectural” means the below-the-line view

If information is available only because of a micro-architectural behavior, that’s
likely a side channel

Cache timing side channels

Micro-architectural side channels are a problem of growing concern recently

Maybe the worst in terms of being pervasive and high-bandwidth is the timing
of cache operations

Every memory access uses caches
Cache performance is based on history of previous operations
Caches hold everyone’s data without separation
The speed of operations is easy to measure

Basic idea: timing how long my memory accesses take reveals information
about your memory accesses

Directly reveals only addresses, not data contents

Secret information in addresses

The addresses of instruction accesses reveal what code your programming is
running

The grading function might have a branch that is only taken when a student
qualifies for extra credit

The addresses of data accesses reveal what data your program is accessing
Converting a numeric grade into a letter grade might use an array indexed by
numeric grade

Often the most practically important victims are functions for encrypting data
based on a small secret key

Square-multiply algorithm in RSA depends on key bits
AES implementation uses a “T table” indexed based on unencrypted bytes and
key

Example techinque: “prime + probe”

1. Attacker does a lot of memory accesses to fill up the cache with its own data
(“prime”)

2. Wait and let the victim perform a memory access of its own

3. The attacker retries accessing all of its data, and measures how long the
accesses take (“probe”)

If one of the pieces of the attacker’s data is slow to access, that indicates
that it had been evicted to replace it with some of the victim’s data

Cache covert channel sender

In a covert channel, you can design a memory access to maximize cache
information leakage

int array[1024];

int secret = get_secret();

array[secret * 16]++;

Multiplying by 16 ensures that each different secret value indexes a different
64-byte cache block

Commonly the channel does not reveal the offset within a block

Outline

Side and covert channels

Transient execution

Transient execution and kernel isolation: Meltdown

Transient execution and kernel isolation: Spectre

Fixes, lessons learned, and the future

Transient execution: basic idea

There are several micro-architectural reasons why the CPU might do some
steps of execution of instructions, but ultimately discard them

Instruction executions that do not architecturally matter are called “transient” or
“speculative”

Transient instructions have no architectural effect. But if they have a
micro-architectural effect, that can be a side/covert channel

This leads to some surprising vulnerabilities that were discovered in 2017

Reasons for transient execution

Out-of-order execution
CPU starts executing instructions out of order, when their input data is ready

Late recognition of exceptions
A CPU may not decide that an instruction will raise an exception until it is retired

Branch prediction
CPU guesses which side of a branch will be taken, and starts speculatively
executing it before the branch condition is evaluated

Transient execution and memory

Transient execution includes speculative loads from memory
Important for performance, similar to pre-fetching

Transient stores generally not sent outside the processor core
Less important for performance, since stores don’t have many dependencies
Stores will be buffered and sent to cache and memory on retirement
Transient stores can affect transient loads via store-to-load forwarding

Exceptions from transient accesses are ignored

Outline

Side and covert channels

Transient execution

Transient execution and kernel isolation: Meltdown

Transient execution and kernel isolation: Spectre

Fixes, lessons learned, and the future

Kernel and user memory

In many recent systems, kernel and user memory live in the same virtual
address space

E.g., x86-32 Linux used low 3GB for user, top 1G for kernel
Makes it easier for kernel to transfer data to/from processes
No need to flush the TLB when making a system call

Kernel/user separation still important for security
Kernel can hold system secrets, and other users’ data

A bit in the page table entry (“U/S” on x86) distinguishes which pages are for
kernel only

Attempted access to kernel data from user program leads to page fault

Timing of a page fault

Problem: the page fault is often recognized not when the access occurs, but
when the faulting instruction retires

Instructions after an illegal kernel memory access will be transient

But, these transient instructions can still have micro-architectural effects

Attack idea:
Write cache covert channel code using the result of a faulting kernel memory
access
Recover from the fault, and then look for the side effect of the transient access
in the cache

Meltdown attack structure

int array[1024];

prime_cache(array);

int secret = *kernel_mem_ptr;

array[secret * 16]++; /* transient only */

/* recover here after segfault */

probe_cache(array);

You might be surprised that this works: so were the people who first found it
in 2017

This version affects Intel processors but not AMD-compatible ones

Ethics note: don’t try something like this on a lab machine
Violates Labs and University rules, might hurt other users
(Also, probably patched by now.)

Outline

Side and covert channels

Transient execution

Transient execution and kernel isolation: Meltdown

Transient execution and kernel isolation: Spectre

Fixes, lessons learned, and the future

Example: JavaScript bounds check

Your web browser runs JavaScript code from untrusted sources like
advertisers, so must enforce security at runtime

For instance, JavaScript arrays have runtime bounds checks in the C
implementation

if (index < 0 || index > ary_size) {

raise_js_error();

} else {

void *value = raw_array[index];

/* ... */

}

Branch prediction and bounds check

if (index < 0 || index > ary_size)

{ raise_js_error(); }

else { void *value = raw_array[index]; /* ... */ }

Branch prediction helps ensure the cost of check is low
Benign JS code will only access indexes in bounds
Branch will be predicted in-bounds
Execution can continue beyond the check

Architecturally, the check is still enforced
Out of bounds access will mean prediction is incorrect, discarded
Okay for buggy JS code to run slower

Dangers of branch speculation

Problem: code executed after the mis-speculated branch could still have a
micro-architectural effect

For instance, leaking information via a cache access

The protection being subverted here is JavaScript’s
For instance, attacker could read data elsewhere in the web browser, like your
banking password in another tab

Real JavaScript engines are just-in-time compilers, which actually makes the
attack easier

Example Spectre JS attack

if (index < simpleByteArray.length) {

index = simpleByteArray[index | 0];

index = (((index * 4096)|0) & (32*1024*1024-1))|0;

localJunk = probeTable[index|0]|0;

} /* Kocher et al. Listing 2, for Chrome 62 */

“|0” is a hint to JavaScript to compile into integers

First do many examples with index in bounds for simpleByteArray, then
one when it is out of bounds

Multiplication by 4096 is similar to multiplication by 16 in earlier examples

The JIT compiler determines it doesn’t need any other bounds checks

Other malicious branch training

Similar attacks are possible even when the attacker doesn’t control earlier
executions of the vulnerable branch (e.g., a branch in another process)
Just need to mis-train the processor to trigger a chosen prediction

Branch prediction uses cache-like structures that are susceptible to collisions

Can even make an indirect jump go to an instruction of attacker’s choosing

Outline

Side and covert channels

Transient execution

Transient execution and kernel isolation: Meltdown

Transient execution and kernel isolation: Spectre

Fixes, lessons learned, and the future

Brief history of Meltdown and Spectre

Attacks were discovered independently in 2017
By both academic and industry researchers
There was also a public blog post about a similar idea that didn’t work

Long “responsible disclosure” period while software and hardware makers
worked on defenses

Including Linux switching to separating kernel address spaces

Announcement date moved up to January 3rd, 2018 as information started to
leak out via media sources

Discovery of variants and developing protections are ongoing today

Classification of known attacks

Software patches

Meltdown: keep kernel address space separate
Made default in Linux and Windows in late 2017

Spectre: various
Chrome puts tabs in separate processes
Special compilation techniques can frustrate branch prediction

Software patches tend to be incomplete
New attack variants have required new defenses
But, important for fast reaction

So far (fingers crossed), these attacks have been blocked before being widely
exploited

Hardware fixes

Best fixes are at the CPU design level, but this is a long process

Common so far: microcode patches
CPU vendors take advantage of existing configurability mechanisms to block
some attacks
Sometimes takes form of optional security checks enabled by the OS, at a
performance cost

Deeper micro-architectural changes will allow protection with less overhead
But transient execution is widespread and critical for performance, so how to
strike the best balance is a complex problem

Takeaways

Computer system design is challenging because what’s below the abstract
barrier can end up mattering a lot

Problems can arise from unusual combinations of existing features

We want to improve performance, but breaking security or correctness is
usually going too far

Hardware architects need better ways to assess the security impacts of
micro-architectural decisions

