
CSci 5271
Introduction to Computer Security

Malware and Denial of Service
Stephen McCamant

University of Minnesota, Computer Science & Engineering

Outline

Intrusion detection systems, cont’d

Malware and the network

Announcements intermission

Denial of service and the network

Signature matching

Signature is a pattern that matches known bad
behavior

Typically human-curated to ensure specificity

See also: anti-virus scanners

Anomaly detection

Learn pattern of normal behavior

“Not normal” is a sign of a potential attack

Has possibility of finding novel attacks

Performance depends on normal behavior too

Recall: FPs and FNs

False positive: detector goes off without real attack

False negative: attack happens without detection

Any detector design is a tradeoff between these
(ROC curve)

Signature and anomaly weaknesses

Signatures
Won’t exist for novel attacks
Often easy to attack around

Anomaly detection
Hard to avoid false positives
Adversary can train over time

Base rate problems

If the true incidence is small (low base rate), most
positives will be false

Example: screening test for rare disease

Easy for false positives to overwhelm admins

E.g., 100 attacks out of 10 million packets, 0.01% FP
rate

How many false alarms?

Adversarial challenges

FP/FN statistics based on a fixed set of attacks

But attackers won’t keep using techniques that are
detected
Instead, will look for:

Existing attacks that are not detected
Minimal changes to attacks
Truly novel attacks

Wagner and Soto mimicry attack

Host-based IDS based on sequence of syscalls

Compute A \M, where:
A models allowed sequences
M models sequences achieving attacker’s goals

Further techniques required:
Many syscalls made into NOPs
Replacement subsequences with similar effect

Outline

Intrusion detection systems, cont’d

Malware and the network

Announcements intermission

Denial of service and the network

Malicious software

Shortened to Mal. . . ware

Software whose inherent goal is malicious
Not just used for bad purposes

Strong adversary

High visibility

Many types

Trojan (horse)

Looks benign, has secret malicious functionality

Key technique: fool users into installing/running

Concern dates back to 1970s, MLS

(Computer) viruses

Attaches itself to other software

Propagates when that program runs

Once upon a time: floppy disks

More modern: macro viruses

Have declined in relative importance

Worms

Completely automatic self-propagation

Requires remote security holes

Classic example: 1988 Morris worm

“Golden age” in early 2000s

Internet-level threat seems to have declined

Fast worm propagation

Initial hit-list
Pre-scan list of likely targets
Accelerate cold-start phase

Permutation-based sampling
Systematic but not obviously patterned
Pseudorandom permutation

Approximate time: 15 minutes
“Warhol worm”
Too fast for human-in-the-loop response

Getting underneath

Lower-level/higher-privilege code can deceive
normal code

Rootkit: hide malware by changing kernel behavior

MBR virus: take control early in boot

Blue-pill attack: malware is a VMM running your
system

Malware motivation

Once upon a time: curiosity, fame

Now predominates: money
Modest-size industry
Competition and specialization

Also significant: nation-states
Industrial espionage
Stuxnet (not officially acknowledged)

User-based monetization

Adware, mild spyware

Keyloggers, stealing financial credentials

Ransomware
Application of public-key encryption
Malware encrypts user files
Only $300 for decryption key

Bots and botnets

Bot: program under control of remote attacker

Botnet: large group of bot-infected computers with
common “master”
Command & control network protocol

Once upon a time: IRC
Now more likely custom and obfuscated
Centralized ! peer-to-peer
Gradually learning crypto and protocol lessons

Bot monetization

Click (ad) fraud

Distributed DoS (next section)

Bitcoin mining

Pay-per-install (subcontracting)

Spam sending

Malware/anti-virus arms race

“Anti-virus” (AV) systems are really general
anti-malware

Clear need, but hard to do well

No clear distinction between benign and malicious

Endless possibilities for deception

Signature-based AV

Similar idea to signature-based IDS

Would work well if malware were static

In reality:
Large, changing database
Frequent updated from analysts
Not just software, a subscription
Malware stays enough ahead to survive

Emulation and AV

Simple idea: run sample, see if it does something evil

Obvious limitation: how long do you wait?

Simple version can be applied online

More sophisticated emulators/VMs used in backend
analysis

Polymorphism

Attacker makes many variants of starting malware

Different code sequences, same behavior

One estimate: 30 million samples observed in 2012

But could create more if needed

Packing

Sounds like compression, but real goal is obfuscation

Static code creates real code on the fly

Or, obfuscated bytecode interpreter

Outsourced to independent “protection” tools

Fake anti-virus

Major monentization strategy recently

Your system is infected, pay $19.95 for cleanup tool

For user, not fundamentally distinguishable from real
AV

Outline

Intrusion detection systems, cont’d

Malware and the network

Announcements intermission

Denial of service and the network

Brief announcements

Exercise set 3 due this Wednesday

Third project progress reports next Wednesday

Project presentations start 12/8

We haven’t forgotten about a hands-on assignment

Outline

Intrusion detection systems, cont’d

Malware and the network

Announcements intermission

Denial of service and the network

DoS versus other vulnerabilities

Effect: normal operations merely become impossible

Software example: crash as opposed to code
injection
Less power that complete compromise, but practical
severity can vary widely

Airplane control DoS, etc.

When is it DoS?

Very common for users to affect others’
performance

Focus is on unexpected and unintended effects

Unexpected channel or magnitude

Algorithmic complexity attacks

Can an adversary make your algorithm have
worst-case behavior?

O(n2) quicksort

Hash table with all entries in one bucket

Exponential backtracking in regex matching

XML entity expansion

XML entities (c.f. HTML <) are like C macros

#define B (A+A+A+A+A)

#define C (B+B+B+B+B)

#define D (C+C+C+C+C)

#define E (D+D+D+D+D)

#define F (E+E+E+E+E)

Compression DoS

Some formats allow very high compression ratios
Simple attack: compress very large input

More powerful: nested archives

Also possible: “zip file quine” decompresses to itself

DoS against network services

Common example: keep legitimate users from
viewing a web site

Easy case: pre-forked server supports 100
simultaneous connections

Fill them with very very slow downloads

Tiny bit of queueing theory

Mathematical theory of waiting in line

Simple case: random arrival, sequential fixed-time
service

M/D/1

If arrival rate � service rate, expected queue length
grows without bound

SYN flooding

SYN is first of three packets to set up new
connection

Traditional implementation allocates space for
control data

However much you allow, attacker fills with
unfinished connections

Early limits were very low (10-100)

SYN cookies

Change server behavior to stateless approach

Embed small amount of needed information in fields
that will be echoed in third packet

MAC-like construction

Other disadvantages, so usual implementations used
only under attack

DoS against network links

Try to use all available bandwidth, crowd out real
traffic

Brute force but still potentially effective

Baseline attacker power measured by packet
sending rate

Traffic multipliers

Third party networks (not attacker or victim)

One input packet causes n output packets

Commonly, victim’s address is forged source,
multiply replies

Misuse of debugging features

“Smurf” broadcast ping

ICMP echo request with forged source

Sent to a network broadcast address

Every recipient sends reply

Now mostly fixed by disabling this feature

Distributed DoS

Many attacker machines, one victim

Easy if you own a botnet

Impractical to stop bots one-by-one

May prefer legitimate-looking traffic over weird
attacks

Main consideration is difficulty to filter

Next time

Network anonymity with overlay networks

Anonymizing exposure notification

