Malicious software

- Shortened to Mal...ware
- Software whose inherent goal is malicious
 - Not just used for bad purposes
- Strong adversary
- High visibility
- Many types

Trojan (horse)

- Looks benign, has secret malicious functionality
- Key technique: fool users into installing/running
- Concern dates back to 1970s, MLS

(Computer) viruses

- Attaches itself to other software
- Propagates when that program runs
- Once upon a time: floppy disks
- More modern: macro viruses
- Have declined in relative importance

Worms

- Completely automatic self-propagation
- Requires remote security holes
- Classic example: 1988 Morris worm
- "Golden age" in early 2000s
- Internet-level threat seems to have declined

Fast worm propagation

- Initial hit-list
 - Pre-scan list of likely targets
 - Accelerate cold-start phase
- Permutation-based sampling
 - Systematic but not obviously patterned
 - Pseudorandom permutation
- Approximate time: 15 minutes
 - "Warhol worm"
 - Too fast for human-in-the-loop response

Getting underneath

- Lower-level/higher-privilege code can deceive normal code
- Rootkit: hide malware by changing kernel behavior
- MBR virus: take control early in boot
- Blue-pill attack: malware is a VMM running your system
Malware motivation
- Once upon a time: curiosity, fame
- Now predominates: money
 - Modest-size industry
 - Competition and specialization
- Also significant: nation-states
 - Industrial espionage
 - Stuxnet (not officially acknowledged)

User-based monetization
- Adware, mild spyware
- Keyloggers, stealing financial credentials
- Ransomware
 - Application of public-key encryption
 - Malware encrypts user files
 - Only $300 for decryption key

Bots and botnets
- Bot: program under control of remote attacker
- Botnet: large group of bot-infected computers with common "master"
- Command & control network protocol
 - Once upon a time: IRC
 - Now more likely custom and obfuscated
 - Centralized → peer-to-peer
 - Gradually learning crypto and protocol lessons

Bot monetization
- Click (ad) fraud
- Distributed DoS (next section)
- Bitcoin mining
- Pay-per-install (subcontracting)
- Spam sending

Malware/anti-virus arms race
- "Anti-virus" (AV) systems are really general anti-malware
- Clear need, but hard to do well
- No clear distinction between benign and malicious
- Endless possibilities for deception

Signature-based AV
- Similar idea to signature-based IDS
- Would work well if malware were static
- In reality:
 - Large, changing database
 - Frequent updated from analysts
 - Not just software, a subscription
 - Malware stays enough ahead to survive

Emulation and AV
- Simple idea: run sample, see if it does something evil
- Obvious limitation: how long do you wait?
- Simple version can be applied online
- More sophisticated emulators/VMs used in backend analysis

Polymorphism
- Attacker makes many variants of starting malware
- Different code sequences, same behavior
- One estimate: 30 million samples observed in 2012
- But could create more if needed
Packing

- Sounds like compression, but real goal is obfuscation
- Static code creates real code on the fly
- Or, obfuscated bytecode interpreter
- Outsourced to independent “protection” tools

Fake anti-virus

- Major monetization strategy recently
- Your system is infected, pay $19.95 for cleanup tool
- For user, not fundamentally distinguishable from real AV

Outline

Malware and the network
Announcements intermission
Denial of service and the network

Note to early readers

- This is the section of the slides most likely to change in the final version
- If class has already happened, make sure you have the latest slides for announcements

DoS versus other vulnerabilities

- Effect: normal operations merely become impossible
- Software example: crash as opposed to code injection
- Less power that complete compromise, but practical severity can vary widely
 - Airplane control DoS, etc.

When is it DoS?

- Very common for users to affect others’ performance
- Focus is on unexpected and unintended effects
- Unexpected channel or magnitude

Algorithmic complexity attacks

- Can an adversary make your algorithm have worst-case behavior?
- $O(n^2)$ quicksort
- Hash table with all entries in one bucket
- Exponential backtracking in regex matching
XML entity expansion

- XML entities (c.f. HTML <) are like C macros

 #define B (A+A+A+A+A)
 #define C (B+B+B+B+B)
 #define D (C+C+C+C+C)
 #define E (D+D+D+D+D)
 #define F (E+E+E+E+E)

Compression DoS

- Some formats allow very high compression ratios
 - Simple attack: compress very large input
 - More powerful: nested archives
 - Also possible: "zip file quine" decompresses to itself

DoS against network services

- Common example: keep legitimate users from viewing a web site
- Easy case: pre-forked server supports 100 simultaneous connections
- Fill them with very very slow downloads

Tiny bit of queueing theory

- Mathematical theory of waiting in line
- Simple case: random arrival, sequential fixed-time service
 - M/D/1
- If arrival rate \geq service rate, expected queue length grows without bound

SYN flooding

- SYN is first of three packets to set up new connection
- Traditional implementation allocates space for control data
- However much you allow, attacker fills with unfinished connections
- Early limits were very low (10-100)

SYN cookies

- Change server behavior to stateless approach
- Embed small amount of needed information in fields that will be echoed in third packet
 - MAC-like construction
- Other disadvantages, so usual implementations used only under attack

DoS against network links

- Try to use all available bandwidth, crowd out real traffic
- Brute force but still potentially effective
- Baseline attacker power measured by packet sending rate

Traffic multipliers

- Third party networks (not attacker or victim)
- One input packet causes n output packets
- Commonly, victim's address is forged source, multiply replies
- Misuse of debugging features
“Smurf” broadcast ping

- ICMP echo request with forged source
- Sent to a network broadcast address
- Every recipient sends reply
- Now mostly fixed by disabling this feature

Distributed DoS

- Many attacker machines, one victim
- Easy if you own a botnet
- Impractical to stop bots one-by-one
- May prefer legitimate-looking traffic over weird attacks
- Main consideration is difficulty to filter

Next time

- Network anonymity with overlay networks