
Existence, Uniqueness, and Conditioning
Solving Linear Systems

Special Types of Linear Systems
Software for Linear Systems

Scientific Computing: An Introductory Survey
Chapter 2 – Systems of Linear Equations

Prof. Michael T. Heath

Department of Computer Science
University of Illinois at Urbana-Champaign

Copyright c© 2002. Reproduction permitted
for noncommercial, educational use only.

Michael T. Heath Scientific Computing 1 / 87

Existence, Uniqueness, and Conditioning
Solving Linear Systems

Special Types of Linear Systems
Software for Linear Systems

Outline

1 Existence, Uniqueness, and Conditioning

2 Solving Linear Systems

3 Special Types of Linear Systems

4 Software for Linear Systems

Michael T. Heath Scientific Computing 2 / 87

Existence, Uniqueness, and Conditioning
Solving Linear Systems

Special Types of Linear Systems
Software for Linear Systems

Singularity and Nonsingularity
Norms
Condition Number
Error Bounds

Systems of Linear Equations

Given m× n matrix A and m-vector b, find unknown
n-vector x satisfying Ax = b

System of equations asks “Can b be expressed as linear
combination of columns of A?”

If so, coefficients of linear combination are given by
components of solution vector x

Solution may or may not exist, and may or may not be
unique

For now, we consider only square case, m = n

Michael T. Heath Scientific Computing 3 / 87

Existence, Uniqueness, and Conditioning
Solving Linear Systems

Special Types of Linear Systems
Software for Linear Systems

Singularity and Nonsingularity
Norms
Condition Number
Error Bounds

Singularity and Nonsingularity

n× n matrix A is nonsingular if it has any of following
equivalent properties

1 Inverse of A, denoted by A−1, exists

2 det(A) 6= 0

3 rank(A) = n

4 For any vector z 6= 0, Az 6= 0

Michael T. Heath Scientific Computing 4 / 87

Existence, Uniqueness, and Conditioning
Solving Linear Systems

Special Types of Linear Systems
Software for Linear Systems

Singularity and Nonsingularity
Norms
Condition Number
Error Bounds

Existence and Uniqueness

Existence and uniqueness of solution to Ax = b depend
on whether A is singular or nonsingular

Can also depend on b, but only in singular case

If b ∈ span(A), system is consistent

A b # solutions
nonsingular arbitrary one (unique)

singular b ∈ span(A) infinitely many
singular b /∈ span(A) none

Michael T. Heath Scientific Computing 5 / 87

Existence, Uniqueness, and Conditioning
Solving Linear Systems

Special Types of Linear Systems
Software for Linear Systems

Singularity and Nonsingularity
Norms
Condition Number
Error Bounds

Geometric Interpretation

In two dimensions, each equation determines straight line
in plane

Solution is intersection point of two lines

If two straight lines are not parallel (nonsingular), then
intersection point is unique

If two straight lines are parallel (singular), then lines either
do not intersect (no solution) or else coincide (any point
along line is solution)

In higher dimensions, each equation determines
hyperplane; if matrix is nonsingular, intersection of
hyperplanes is unique solution

Michael T. Heath Scientific Computing 6 / 87

Existence, Uniqueness, and Conditioning
Solving Linear Systems

Special Types of Linear Systems
Software for Linear Systems

Singularity and Nonsingularity
Norms
Condition Number
Error Bounds

Example: Nonsingularity

2× 2 system

2x1 + 3x2 = b1

5x1 + 4x2 = b2

or in matrix-vector notation

Ax =
[
2 3
5 4

] [
x1

x2

]
=
[
b1

b2

]
= b

is nonsingular regardless of value of b

For example, if b =
[
8 13

]T , then x =
[
1 2

]T is unique
solution

Michael T. Heath Scientific Computing 7 / 87

Existence, Uniqueness, and Conditioning
Solving Linear Systems

Special Types of Linear Systems
Software for Linear Systems

Singularity and Nonsingularity
Norms
Condition Number
Error Bounds

Example: Singularity

2× 2 system

Ax =
[
2 3
4 6

] [
x1

x2

]
=
[
b1

b2

]
= b

is singular regardless of value of b

With b =
[
4 7

]T , there is no solution

With b =
[
4 8

]T , x =
[
γ (4− 2γ)/3

]T is solution for any
real number γ, so there are infinitely many solutions

Michael T. Heath Scientific Computing 8 / 87

Existence, Uniqueness, and Conditioning
Solving Linear Systems

Special Types of Linear Systems
Software for Linear Systems

Singularity and Nonsingularity
Norms
Condition Number
Error Bounds

Vector Norms

Magnitude, modulus, or absolute value for scalars
generalizes to norm for vectors

We will use only p-norms, defined by

‖x‖p =

(
n∑

i=1

|xi|p
)1/p

for integer p > 0 and n-vector x

Important special cases
1-norm: ‖x‖1 =

∑n
i=1|xi|

2-norm: ‖x‖2 =
(∑n

i=1 |xi|2
)1/2

∞-norm: ‖x‖∞ = maxi |xi|

Michael T. Heath Scientific Computing 9 / 87

Existence, Uniqueness, and Conditioning
Solving Linear Systems

Special Types of Linear Systems
Software for Linear Systems

Singularity and Nonsingularity
Norms
Condition Number
Error Bounds

Example: Vector Norms
Drawing shows unit sphere in two dimensions for each
norm

Norms have following values for vector shown

‖x‖1 = 2.8 ‖x‖2 = 2.0 ‖x‖∞ = 1.6

In general, for any vector x in Rn, ‖x‖1 ≥ ‖x‖2 ≥ ‖x‖∞
Michael T. Heath Scientific Computing 10 / 87

Existence, Uniqueness, and Conditioning
Solving Linear Systems

Special Types of Linear Systems
Software for Linear Systems

Singularity and Nonsingularity
Norms
Condition Number
Error Bounds

Properties of Vector Norms

For any vector norm

‖x‖ > 0 if x 6= 0

‖γx‖ = |γ| · ‖x‖ for any scalar γ

‖x + y‖ ≤ ‖x‖+ ‖y‖ (triangle inequality)

In more general treatment, these properties taken as
definition of vector norm

Useful variation on triangle inequality

| ‖x‖ − ‖y‖ | ≤ ‖x− y‖

Michael T. Heath Scientific Computing 11 / 87

Existence, Uniqueness, and Conditioning
Solving Linear Systems

Special Types of Linear Systems
Software for Linear Systems

Singularity and Nonsingularity
Norms
Condition Number
Error Bounds

Matrix Norms

Matrix norm corresponding to given vector norm is defined
by

‖A‖ = maxx6=0
‖Ax‖
‖x‖

Norm of matrix measures maximum stretching matrix does
to any vector in given vector norm

Michael T. Heath Scientific Computing 12 / 87

Existence, Uniqueness, and Conditioning
Solving Linear Systems

Special Types of Linear Systems
Software for Linear Systems

Singularity and Nonsingularity
Norms
Condition Number
Error Bounds

Matrix Norms

Matrix norm corresponding to vector 1-norm is maximum
absolute column sum

‖A‖1 = max
j

n∑
i=1

|aij |

Matrix norm corresponding to vector ∞-norm is maximum
absolute row sum

‖A‖∞ = max
i

n∑
j=1

|aij |

Handy way to remember these is that matrix norms agree
with corresponding vector norms for n× 1 matrix

Michael T. Heath Scientific Computing 13 / 87

Existence, Uniqueness, and Conditioning
Solving Linear Systems

Special Types of Linear Systems
Software for Linear Systems

Singularity and Nonsingularity
Norms
Condition Number
Error Bounds

Properties of Matrix Norms

Any matrix norm satisfies

‖A‖ > 0 if A 6= 0

‖γA‖ = |γ| · ‖A‖ for any scalar γ

‖A + B‖ ≤ ‖A‖+ ‖B‖

Matrix norms we have defined also satisfy

‖AB‖ ≤ ‖A‖ · ‖B‖
‖Ax‖ ≤ ‖A‖ · ‖x‖ for any vector x

Michael T. Heath Scientific Computing 14 / 87

Existence, Uniqueness, and Conditioning
Solving Linear Systems

Special Types of Linear Systems
Software for Linear Systems

Singularity and Nonsingularity
Norms
Condition Number
Error Bounds

Condition Number

Condition number of square nonsingular matrix A is
defined by

cond(A) = ‖A‖ · ‖A−1‖

By convention, cond(A) = ∞ if A is singular

Since

‖A‖ · ‖A−1‖ =
(

max
x6=0

‖Ax‖
‖x‖

)
·
(

min
x6=0

‖Ax‖
‖x‖

)−1

condition number measures ratio of maximum stretching to
maximum shrinking matrix does to any nonzero vectors

Large cond(A) means A is nearly singular

Michael T. Heath Scientific Computing 15 / 87

Existence, Uniqueness, and Conditioning
Solving Linear Systems

Special Types of Linear Systems
Software for Linear Systems

Singularity and Nonsingularity
Norms
Condition Number
Error Bounds

Properties of Condition Number

For any matrix A, cond(A) ≥ 1

For identity matrix, cond(I) = 1

For any matrix A and scalar γ, cond(γA) = cond(A)

For any diagonal matrix D = diag(di), cond(D) =
max |di|
min |di|

< interactive example >

Michael T. Heath Scientific Computing 16 / 87

http://www.cse.uiuc.edu/iem/linear_equations/condition_number/

Existence, Uniqueness, and Conditioning
Solving Linear Systems

Special Types of Linear Systems
Software for Linear Systems

Singularity and Nonsingularity
Norms
Condition Number
Error Bounds

Computing Condition Number

Definition of condition number involves matrix inverse, so it
is nontrivial to compute

Computing condition number from definition would require
much more work than computing solution whose accuracy
is to be assessed

In practice, condition number is estimated inexpensively as
byproduct of solution process

Matrix norm ‖A‖ is easily computed as maximum absolute
column sum (or row sum, depending on norm used)

Estimating ‖A−1‖ at low cost is more challenging

Michael T. Heath Scientific Computing 17 / 87

Existence, Uniqueness, and Conditioning
Solving Linear Systems

Special Types of Linear Systems
Software for Linear Systems

Singularity and Nonsingularity
Norms
Condition Number
Error Bounds

Computing Condition Number, continued

From properties of norms, if Az = y, then

‖z‖
‖y‖

≤ ‖A−1‖

and bound is achieved for optimally chosen y

Efficient condition estimators heuristically pick y with large
ratio ‖z‖/‖y‖, yielding good estimate for ‖A−1‖

Good software packages for linear systems provide
efficient and reliable condition estimator

Michael T. Heath Scientific Computing 18 / 87

Existence, Uniqueness, and Conditioning
Solving Linear Systems

Special Types of Linear Systems
Software for Linear Systems

Singularity and Nonsingularity
Norms
Condition Number
Error Bounds

Error Bounds

Condition number yields error bound for computed solution
to linear system

Let x be solution to Ax = b, and let x̂ be solution to
Ax̂ = b + ∆b

If ∆x = x̂− x, then

b + ∆b = A(x̂) = A(x + ∆x) = Ax + A∆x

which leads to bound

‖∆x‖
‖x‖

≤ cond(A)
‖∆b‖
‖b‖

for possible relative change in solution x due to relative
change in right-hand side b

Michael T. Heath Scientific Computing 19 / 87

Existence, Uniqueness, and Conditioning
Solving Linear Systems

Special Types of Linear Systems
Software for Linear Systems

Singularity and Nonsingularity
Norms
Condition Number
Error Bounds

Error Bounds, continued

Similar result holds for relative change in matrix: if
(A + E)x̂ = b, then

‖∆x‖
‖x̂‖

≤ cond(A)
‖E‖
‖A‖

If input data are accurate to machine precision, then bound
for relative error in solution x becomes

‖x̂− x‖
‖x‖

≤ cond(A) εmach

Computed solution loses about log10(cond(A)) decimal
digits of accuracy relative to accuracy of input

Michael T. Heath Scientific Computing 20 / 87

Existence, Uniqueness, and Conditioning
Solving Linear Systems

Special Types of Linear Systems
Software for Linear Systems

Singularity and Nonsingularity
Norms
Condition Number
Error Bounds

Error Bounds – Illustration

In two dimensions, uncertainty in intersection point of two
lines depends on whether lines are nearly parallel

< interactive example >

Michael T. Heath Scientific Computing 21 / 87

http://www.cse.uiuc.edu/iem/linear_equations/graphical_solution/

Existence, Uniqueness, and Conditioning
Solving Linear Systems

Special Types of Linear Systems
Software for Linear Systems

Singularity and Nonsingularity
Norms
Condition Number
Error Bounds

Error Bounds – Caveats

Normwise analysis bounds relative error in largest
components of solution; relative error in smaller
components can be much larger

Componentwise error bounds can be obtained, but
somewhat more complicated

Conditioning of system is affected by relative scaling of
rows or columns

Ill-conditioning can result from poor scaling as well as near
singularity
Rescaling can help the former, but not the latter

Michael T. Heath Scientific Computing 22 / 87

Existence, Uniqueness, and Conditioning
Solving Linear Systems

Special Types of Linear Systems
Software for Linear Systems

Singularity and Nonsingularity
Norms
Condition Number
Error Bounds

Residual

Residual vector of approximate solution x̂ to linear system
Ax = b is defined by

r = b−Ax̂

In theory, if A is nonsingular, then ‖x̂− x‖ = 0 if, and only
if, ‖r‖ = 0, but they are not necessarily small
simultaneously

Since
‖∆x‖
‖x̂‖

≤ cond(A)
‖r‖

‖A‖ · ‖x̂‖
small relative residual implies small relative error in
approximate solution only if A is well-conditioned

Michael T. Heath Scientific Computing 23 / 87

Existence, Uniqueness, and Conditioning
Solving Linear Systems

Special Types of Linear Systems
Software for Linear Systems

Singularity and Nonsingularity
Norms
Condition Number
Error Bounds

Residual, continued

If computed solution x̂ exactly satisfies

(A + E)x̂ = b

then
‖r‖

‖A‖ ‖x̂‖
≤ ‖E‖
‖A‖

so large relative residual implies large backward error in
matrix, and algorithm used to compute solution is unstable

Stable algorithm yields small relative residual regardless of
conditioning of nonsingular system

Small residual is easy to obtain, but does not necessarily
imply computed solution is accurate

Michael T. Heath Scientific Computing 24 / 87

Existence, Uniqueness, and Conditioning
Solving Linear Systems

Special Types of Linear Systems
Software for Linear Systems

Triangular Systems
Gaussian Elimination
Updating Solutions
Improving Accuracy

Solving Linear Systems

To solve linear system, transform it into one whose solution
is same but easier to compute

What type of transformation of linear system leaves
solution unchanged?

We can premultiply (from left) both sides of linear system
Ax = b by any nonsingular matrix M without affecting
solution

Solution to MAx = Mb is given by

x = (MA)−1Mb = A−1M−1Mb = A−1b

Michael T. Heath Scientific Computing 25 / 87

Existence, Uniqueness, and Conditioning
Solving Linear Systems

Special Types of Linear Systems
Software for Linear Systems

Triangular Systems
Gaussian Elimination
Updating Solutions
Improving Accuracy

Example: Permutations

Permutation matrix P has one 1 in each row and column
and zeros elsewhere, i.e., identity matrix with rows or
columns permuted

Note that P−1 = P T

Premultiplying both sides of system by permutation matrix,
PAx = Pb, reorders rows, but solution x is unchanged

Postmultiplying A by permutation matrix, APx = b,
reorders columns, which permutes components of original
solution

x = (AP)−1b = P−1A−1b = P T (A−1b)

Michael T. Heath Scientific Computing 26 / 87

Existence, Uniqueness, and Conditioning
Solving Linear Systems

Special Types of Linear Systems
Software for Linear Systems

Triangular Systems
Gaussian Elimination
Updating Solutions
Improving Accuracy

Example: Diagonal Scaling

Row scaling: premultiplying both sides of system by
nonsingular diagonal matrix D, DAx = Db, multiplies
each row of matrix and right-hand side by corresponding
diagonal entry of D, but solution x is unchanged

Column scaling: postmultiplying A by D, ADx = b,
multiplies each column of matrix by corresponding
diagonal entry of D, which rescales original solution

x = (AD)−1b = D−1A−1b

Michael T. Heath Scientific Computing 27 / 87

Existence, Uniqueness, and Conditioning
Solving Linear Systems

Special Types of Linear Systems
Software for Linear Systems

Triangular Systems
Gaussian Elimination
Updating Solutions
Improving Accuracy

Triangular Linear Systems

What type of linear system is easy to solve?

If one equation in system involves only one component of
solution (i.e., only one entry in that row of matrix is
nonzero), then that component can be computed by
division

If another equation in system involves only one additional
solution component, then by substituting one known
component into it, we can solve for other component

If this pattern continues, with only one new solution
component per equation, then all components of solution
can be computed in succession.

System with this property is called triangular

Michael T. Heath Scientific Computing 28 / 87

Existence, Uniqueness, and Conditioning
Solving Linear Systems

Special Types of Linear Systems
Software for Linear Systems

Triangular Systems
Gaussian Elimination
Updating Solutions
Improving Accuracy

Triangular Matrices

Two specific triangular forms are of particular interest

lower triangular : all entries above main diagonal are zero,
aij = 0 for i < j

upper triangular : all entries below main diagonal are zero,
aij = 0 for i > j

Successive substitution process described earlier is
especially easy to formulate for lower or upper triangular
systems

Any triangular matrix can be permuted into upper or lower
triangular form by suitable row permutation

Michael T. Heath Scientific Computing 29 / 87

Existence, Uniqueness, and Conditioning
Solving Linear Systems

Special Types of Linear Systems
Software for Linear Systems

Triangular Systems
Gaussian Elimination
Updating Solutions
Improving Accuracy

Forward-Substitution

Forward-substitution for lower triangular system Lx = b

x1 = b1/`11, xi =

bi −
i−1∑
j=1

`ijxj

 / `ii, i = 2, . . . , n

for j = 1 to n
if `jj = 0 then stop
xj = bj/`jj

for i = j + 1 to n
bi = bi − `ijxj

end
end

{ loop over columns }
{ stop if matrix is singular }
{ compute solution component }

{ update right-hand side }

Michael T. Heath Scientific Computing 30 / 87

Existence, Uniqueness, and Conditioning
Solving Linear Systems

Special Types of Linear Systems
Software for Linear Systems

Triangular Systems
Gaussian Elimination
Updating Solutions
Improving Accuracy

Back-Substitution

Back-substitution for upper triangular system Ux = b

xn = bn/unn, xi =

bi −
n∑

j=i+1

uijxj

 / uii, i = n− 1, . . . , 1

for j = n to 1
if ujj = 0 then stop
xj = bj/ujj

for i = 1 to j − 1
bi = bi − uijxj

end
end

{ loop backwards over columns }
{ stop if matrix is singular }
{ compute solution component }

{ update right-hand side }

Michael T. Heath Scientific Computing 31 / 87

Existence, Uniqueness, and Conditioning
Solving Linear Systems

Special Types of Linear Systems
Software for Linear Systems

Triangular Systems
Gaussian Elimination
Updating Solutions
Improving Accuracy

Example: Triangular Linear System

2 4 −2
0 1 1
0 0 4

x1

x2

x3

 =

2
4
8

Using back-substitution for this upper triangular system,
last equation, 4x3 = 8, is solved directly to obtain x3 = 2

Next, x3 is substituted into second equation to obtain
x2 = 2

Finally, both x3 and x2 are substituted into first equation to
obtain x1 = −1

Michael T. Heath Scientific Computing 32 / 87

Existence, Uniqueness, and Conditioning
Solving Linear Systems

Special Types of Linear Systems
Software for Linear Systems

Triangular Systems
Gaussian Elimination
Updating Solutions
Improving Accuracy

Elimination

To transform general linear system into triangular form, we
need to replace selected nonzero entries of matrix by
zeros

This can be accomplished by taking linear combinations of
rows

Consider 2-vector a =
[
a1

a2

]
If a1 6= 0, then [

1 0
−a2/a1 1

] [
a1

a2

]
=
[
a1

0

]

Michael T. Heath Scientific Computing 33 / 87

Existence, Uniqueness, and Conditioning
Solving Linear Systems

Special Types of Linear Systems
Software for Linear Systems

Triangular Systems
Gaussian Elimination
Updating Solutions
Improving Accuracy

Elementary Elimination Matrices

More generally, we can annihilate all entries below kth
position in n-vector a by transformation

Mka =

1 · · · 0 0 · · · 0
...

. . .
...

...
. . .

...
0 · · · 1 0 · · · 0
0 · · · −mk+1 1 · · · 0
...

. . .
...

...
. . .

...
0 · · · −mn 0 · · · 1

a1
...

ak

ak+1
...

an

=

a1
...

ak

0
...
0

where mi = ai/ak, i = k + 1, . . . , n

Divisor ak, called pivot, must be nonzero

Michael T. Heath Scientific Computing 34 / 87

Existence, Uniqueness, and Conditioning
Solving Linear Systems

Special Types of Linear Systems
Software for Linear Systems

Triangular Systems
Gaussian Elimination
Updating Solutions
Improving Accuracy

Elementary Elimination Matrices, continued

Matrix Mk, called elementary elimination matrix, adds
multiple of row k to each subsequent row, with multipliers
mi chosen so that result is zero

Mk is unit lower triangular and nonsingular

Mk = I −mke
T
k , where mk = [0, . . . , 0,mk+1, . . . ,mn]T

and ek is kth column of identity matrix

M−1
k = I + mke

T
k , which means M−1

k = Lk is same as
Mk except signs of multipliers are reversed

Michael T. Heath Scientific Computing 35 / 87

Existence, Uniqueness, and Conditioning
Solving Linear Systems

Special Types of Linear Systems
Software for Linear Systems

Triangular Systems
Gaussian Elimination
Updating Solutions
Improving Accuracy

Elementary Elimination Matrices, continued

If Mj , j > k, is another elementary elimination matrix, with
vector of multipliers mj , then

MkMj = I −mke
T
k −mje

T
j + mke

T
k mje

T
j

= I −mke
T
k −mje

T
j

which means product is essentially “union,” and similarly
for product of inverses, LkLj

Michael T. Heath Scientific Computing 36 / 87

Existence, Uniqueness, and Conditioning
Solving Linear Systems

Special Types of Linear Systems
Software for Linear Systems

Triangular Systems
Gaussian Elimination
Updating Solutions
Improving Accuracy

Example: Elementary Elimination Matrices

For a =

 2
4

−2

,

M1a =

 1 0 0
−2 1 0

1 0 1

 2
4

−2

 =

2
0
0

and

M2a =

1 0 0
0 1 0
0 1/2 1

 2
4

−2

 =

2
4
0

Michael T. Heath Scientific Computing 37 / 87

Existence, Uniqueness, and Conditioning
Solving Linear Systems

Special Types of Linear Systems
Software for Linear Systems

Triangular Systems
Gaussian Elimination
Updating Solutions
Improving Accuracy

Example, continued

Note that

L1 = M−1
1 =

 1 0 0
2 1 0

−1 0 1

 , L2 = M−1
2 =

1 0 0
0 1 0
0 −1/2 1

and

M1M2 =

 1 0 0
−2 1 0

1 1/2 1

 , L1L2 =

 1 0 0
2 1 0

−1 −1/2 1

Michael T. Heath Scientific Computing 38 / 87

Existence, Uniqueness, and Conditioning
Solving Linear Systems

Special Types of Linear Systems
Software for Linear Systems

Triangular Systems
Gaussian Elimination
Updating Solutions
Improving Accuracy

Gaussian Elimination

To reduce general linear system Ax = b to upper
triangular form, first choose M1, with a11 as pivot, to
annihilate first column of A below first row

System becomes M1Ax = M1b, but solution is unchanged

Next choose M2, using a22 as pivot, to annihilate second
column of M1A below second row

System becomes M2M1Ax = M2M1b, but solution is still
unchanged

Process continues for each successive column until all
subdiagonal entries have been zeroed

Michael T. Heath Scientific Computing 39 / 87

Existence, Uniqueness, and Conditioning
Solving Linear Systems

Special Types of Linear Systems
Software for Linear Systems

Triangular Systems
Gaussian Elimination
Updating Solutions
Improving Accuracy

Gaussian Elimination, continued

Resulting upper triangular linear system

Mn−1 · · ·M1Ax = Mn−1 · · ·M1b

MAx = Mb

can be solved by back-substitution to obtain solution to
original linear system Ax = b

Process just described is called Gaussian elimination

Michael T. Heath Scientific Computing 40 / 87

Existence, Uniqueness, and Conditioning
Solving Linear Systems

Special Types of Linear Systems
Software for Linear Systems

Triangular Systems
Gaussian Elimination
Updating Solutions
Improving Accuracy

LU Factorization

Product LkLj is unit lower triangular if k < j, so

L = M−1 = M−1
1 · · ·M−1

n−1 = L1 · · ·Ln−1

is unit lower triangular

By design, U = MA is upper triangular

So we have
A = LU

with L unit lower triangular and U upper triangular

Thus, Gaussian elimination produces LU factorization of
matrix into triangular factors

Michael T. Heath Scientific Computing 41 / 87

Existence, Uniqueness, and Conditioning
Solving Linear Systems

Special Types of Linear Systems
Software for Linear Systems

Triangular Systems
Gaussian Elimination
Updating Solutions
Improving Accuracy

LU Factorization, continued

Having obtained LU factorization, Ax = b becomes
LUx = b, and can be solved by forward-substitution in
lower triangular system Ly = b, followed by
back-substitution in upper triangular system Ux = y

Note that y = Mb is same as transformed right-hand side
in Gaussian elimination

Gaussian elimination and LU factorization are two ways of
expressing same solution process

Michael T. Heath Scientific Computing 42 / 87

Existence, Uniqueness, and Conditioning
Solving Linear Systems

Special Types of Linear Systems
Software for Linear Systems

Triangular Systems
Gaussian Elimination
Updating Solutions
Improving Accuracy

Example: Gaussian Elimination

Use Gaussian elimination to solve linear system

Ax =

 2 4 −2
4 9 −3

−2 −3 7

x1

x2

x3

 =

 2
8

10

 = b

To annihilate subdiagonal entries of first column of A,

M1A =

 1 0 0
−2 1 0

1 0 1

 2 4 −2
4 9 −3

−2 −3 7

 =

2 4 −2
0 1 1
0 1 5

 ,

M1b =

 1 0 0
−2 1 0

1 0 1

 2
8

10

 =

 2
4

12

Michael T. Heath Scientific Computing 43 / 87

Existence, Uniqueness, and Conditioning
Solving Linear Systems

Special Types of Linear Systems
Software for Linear Systems

Triangular Systems
Gaussian Elimination
Updating Solutions
Improving Accuracy

Example, continued

To annihilate subdiagonal entry of second column of M1A,

M2M1A =

1 0 0
0 1 0
0 −1 1

2 4 −2
0 1 1
0 1 5

 =

2 4 −2
0 1 1
0 0 4

 = U ,

M2M1b =

1 0 0
0 1 0
0 −1 1

 2
4

12

 =

2
4
8

 = Mb

Michael T. Heath Scientific Computing 44 / 87

Existence, Uniqueness, and Conditioning
Solving Linear Systems

Special Types of Linear Systems
Software for Linear Systems

Triangular Systems
Gaussian Elimination
Updating Solutions
Improving Accuracy

Example, continued

We have reduced original system to equivalent upper
triangular system

Ux =

2 4 −2
0 1 1
0 0 4

x1

x2

x3

 =

2
4
8

 = Mb

which can now be solved by back-substitution to obtain

x =

−1
2
2

Michael T. Heath Scientific Computing 45 / 87

Existence, Uniqueness, and Conditioning
Solving Linear Systems

Special Types of Linear Systems
Software for Linear Systems

Triangular Systems
Gaussian Elimination
Updating Solutions
Improving Accuracy

Example, continued

To write out LU factorization explicitly,

L1L2 =

 1 0 0
2 1 0

−1 0 1

1 0 0
0 1 0
0 1 1

 =

 1 0 0
2 1 0

−1 1 1

 = L

so that

A =

 2 4 −2
4 9 −3

−2 −3 7

 =

 1 0 0
2 1 0

−1 1 1

2 4 −2
0 1 1
0 0 4

 = LU

Michael T. Heath Scientific Computing 46 / 87

Existence, Uniqueness, and Conditioning
Solving Linear Systems

Special Types of Linear Systems
Software for Linear Systems

Triangular Systems
Gaussian Elimination
Updating Solutions
Improving Accuracy

Row Interchanges

Gaussian elimination breaks down if leading diagonal entry
of remaining unreduced matrix is zero at any stage
Easy fix: if diagonal entry in column k is zero, then
interchange row k with some subsequent row having
nonzero entry in column k and then proceed as usual
If there is no nonzero on or below diagonal in column k,
then there is nothing to do at this stage, so skip to next
column
Zero on diagonal causes resulting upper triangular matrix
U to be singular, but LU factorization can still be completed
Subsequent back-substitution will fail, however, as it should
for singular matrix

Michael T. Heath Scientific Computing 47 / 87

Existence, Uniqueness, and Conditioning
Solving Linear Systems

Special Types of Linear Systems
Software for Linear Systems

Triangular Systems
Gaussian Elimination
Updating Solutions
Improving Accuracy

Partial Pivoting

In principle, any nonzero value will do as pivot, but in
practice pivot should be chosen to minimize error
propagation

To avoid amplifying previous rounding errors when
multiplying remaining portion of matrix by elementary
elimination matrix, multipliers should not exceed 1 in
magnitude

This can be accomplished by choosing entry of largest
magnitude on or below diagonal as pivot at each stage

Such partial pivoting is essential in practice for numerically
stable implementation of Gaussian elimination for general
linear systems < interactive example >

Michael T. Heath Scientific Computing 48 / 87

http://www.cse.uiuc.edu/iem/linear_equations/gaussian_elimination/

Existence, Uniqueness, and Conditioning
Solving Linear Systems

Special Types of Linear Systems
Software for Linear Systems

Triangular Systems
Gaussian Elimination
Updating Solutions
Improving Accuracy

LU Factorization with Partial Pivoting

With partial pivoting, each Mk is preceded by permutation
Pk to interchange rows to bring entry of largest magnitude
into diagonal pivot position
Still obtain MA = U , with U upper triangular, but now

M = Mn−1Pn−1 · · ·M1P1

L = M−1 is still triangular in general sense, but not
necessarily lower triangular
Alternatively, we can write

PA = LU

where P = Pn−1 · · ·P1 permutes rows of A into order
determined by partial pivoting, and now L is lower
triangular

Michael T. Heath Scientific Computing 49 / 87

Existence, Uniqueness, and Conditioning
Solving Linear Systems

Special Types of Linear Systems
Software for Linear Systems

Triangular Systems
Gaussian Elimination
Updating Solutions
Improving Accuracy

Complete Pivoting

Complete pivoting is more exhaustive strategy in which
largest entry in entire remaining unreduced submatrix is
permuted into diagonal pivot position
Requires interchanging columns as well as rows, leading
to factorization

PAQ = LU

with L unit lower triangular, U upper triangular, and P and
Q permutations
Numerical stability of complete pivoting is theoretically
superior, but pivot search is more expensive than for partial
pivoting
Numerical stability of partial pivoting is more than
adequate in practice, so it is almost always used in solving
linear systems by Gaussian elimination

Michael T. Heath Scientific Computing 50 / 87

Existence, Uniqueness, and Conditioning
Solving Linear Systems

Special Types of Linear Systems
Software for Linear Systems

Triangular Systems
Gaussian Elimination
Updating Solutions
Improving Accuracy

Example: Pivoting

Need for pivoting has nothing to do with whether matrix is
singular or nearly singular
For example,

A =
[
0 1
1 0

]
is nonsingular yet has no LU factorization unless rows are
interchanged, whereas

A =
[
1 1
1 1

]
is singular yet has LU factorization

Michael T. Heath Scientific Computing 51 / 87

Existence, Uniqueness, and Conditioning
Solving Linear Systems

Special Types of Linear Systems
Software for Linear Systems

Triangular Systems
Gaussian Elimination
Updating Solutions
Improving Accuracy

Example: Small Pivots
To illustrate effect of small pivots, consider

A =
[
ε 1
1 1

]
where ε is positive number smaller than εmach
If rows are not interchanged, then pivot is ε and multiplier is
−1/ε, so

M =
[

1 0
−1/ε 1

]
, L =

[
1 0

1/ε 1

]
,

U =
[
ε 1
0 1− 1/ε

]
=
[
ε 1
0 −1/ε

]
in floating-point arithmetic, but then

LU =
[

1 0
1/ε 1

] [
ε 1
0 −1/ε

]
=
[
ε 1
1 0

]
6= A

Michael T. Heath Scientific Computing 52 / 87

Existence, Uniqueness, and Conditioning
Solving Linear Systems

Special Types of Linear Systems
Software for Linear Systems

Triangular Systems
Gaussian Elimination
Updating Solutions
Improving Accuracy

Example, continued

Using small pivot, and correspondingly large multiplier, has
caused loss of information in transformed matrix
If rows interchanged, then pivot is 1 and multiplier is −ε, so

M =
[

1 0
−ε 1

]
, L =

[
1 0
ε 1

]
,

U =
[
1 1
0 1− ε

]
=
[
1 1
0 1

]
in floating-point arithmetic
Thus,

LU =
[
1 0
ε 1

] [
1 1
0 1

]
=
[
1 1
ε 1

]
which is correct after permutation

Michael T. Heath Scientific Computing 53 / 87

Existence, Uniqueness, and Conditioning
Solving Linear Systems

Special Types of Linear Systems
Software for Linear Systems

Triangular Systems
Gaussian Elimination
Updating Solutions
Improving Accuracy

Pivoting, continued

Although pivoting is generally required for stability of
Gaussian elimination, pivoting is not required for some
important classes of matrices

Diagonally dominant

n∑
i=1, i 6=j

|aij | < |ajj |, j = 1, . . . , n

Symmetric positive definite

A = AT and xT Ax > 0 for all x 6= 0

Michael T. Heath Scientific Computing 54 / 87

Existence, Uniqueness, and Conditioning
Solving Linear Systems

Special Types of Linear Systems
Software for Linear Systems

Triangular Systems
Gaussian Elimination
Updating Solutions
Improving Accuracy

Residual

Residual r = b−Ax̂ for solution x̂ computed using
Gaussian elimination satisfies

‖r‖
‖A‖ ‖x̂‖

≤ ‖E‖
‖A‖

≤ ρ n2 εmach

where E is backward error in matrix A and growth factor ρ
is ratio of largest entry of U to largest entry of A

Without pivoting, ρ can be arbitrarily large, so Gaussian
elimination without pivoting is unstable

With partial pivoting, ρ can still be as large as 2n−1, but
such behavior is extremely rare

Michael T. Heath Scientific Computing 55 / 87

Existence, Uniqueness, and Conditioning
Solving Linear Systems

Special Types of Linear Systems
Software for Linear Systems

Triangular Systems
Gaussian Elimination
Updating Solutions
Improving Accuracy

Residual, continued

There is little or no growth in practice, so

‖r‖
‖A‖ ‖x̂‖

≤ ‖E‖
‖A‖

≈ n εmach

which means Gaussian elimination with partial pivoting
yields small relative residual regardless of conditioning of
system

Thus, small relative residual does not necessarily imply
computed solution is close to “true” solution unless system
is well-conditioned

Complete pivoting yields even smaller growth factor, but
additional margin of stability usually is not worth extra cost

Michael T. Heath Scientific Computing 56 / 87

Existence, Uniqueness, and Conditioning
Solving Linear Systems

Special Types of Linear Systems
Software for Linear Systems

Triangular Systems
Gaussian Elimination
Updating Solutions
Improving Accuracy

Example: Small Residual

Use 3-digit decimal arithmetic to solve[
0.641 0.242
0.321 0.121

] [
x1

x2

]
=
[
0.883
0.442

]
Gaussian elimination with partial pivoting yields triangular
system [

0.641 0.242
0 0.000242

] [
x1

x2

]
=
[

0.883
−0.000383

]
Back-substitution then gives solution

x̂ =
[
0.782 1.58

]T
Exact residual for this solution is

r = b−Ax̂ =
[
−0.000622
−0.000202

]
Michael T. Heath Scientific Computing 57 / 87

Existence, Uniqueness, and Conditioning
Solving Linear Systems

Special Types of Linear Systems
Software for Linear Systems

Triangular Systems
Gaussian Elimination
Updating Solutions
Improving Accuracy

Example, continued

Residual is as small as we can expect using 3-digit
arithmetic, but exact solution is

x =
[
1.00 1.00

]T
so error is almost as large as solution
Cause of this phenomenon is that matrix is nearly singular
(cond(A) > 4000)
Division that determines x2 is between two quantities that
are both on order of rounding error, and hence result is
essentially arbitrary
When arbitrary value for x2 is substituted into first
equation, value for x1 is computed so that first equation is
satisfied, yielding small residual, but poor solution

Michael T. Heath Scientific Computing 58 / 87

Existence, Uniqueness, and Conditioning
Solving Linear Systems

Special Types of Linear Systems
Software for Linear Systems

Triangular Systems
Gaussian Elimination
Updating Solutions
Improving Accuracy

Implementation of Gaussian Elimination

Gaussian elimination has general form of triple-nested loop

for
for

for
aij = aij − (aik/akk)akj

end
end

end

Indices i, j, and k of for loops can be taken in any order,
for total of 3! = 6 different arrangements
These variations have different memory access patterns,
which may cause their performance to vary widely on
different computers

Michael T. Heath Scientific Computing 59 / 87

Existence, Uniqueness, and Conditioning
Solving Linear Systems

Special Types of Linear Systems
Software for Linear Systems

Triangular Systems
Gaussian Elimination
Updating Solutions
Improving Accuracy

Uniqueness of LU Factorization

Despite variations in computing it, LU factorization is
unique up to diagonal scaling of factors

Provided row pivot sequence is same, if we have two LU
factorizations PA = LU = L̂Û , then L̂−1L = ÛU−1 = D
is both lower and upper triangular, hence diagonal

If both L and L̂ are unit lower triangular, then D must be
identity matrix, so L = L̂ and U = Û

Uniqueness is made explicit in LDU factorization
PA = LDU , with L unit lower triangular, U unit upper
triangular, and D diagonal

Michael T. Heath Scientific Computing 60 / 87

Existence, Uniqueness, and Conditioning
Solving Linear Systems

Special Types of Linear Systems
Software for Linear Systems

Triangular Systems
Gaussian Elimination
Updating Solutions
Improving Accuracy

Storage Management

Elementary elimination matrices Mk, their inverses Lk,
and permutation matrices Pk used in formal description of
LU factorization process are not formed explicitly in actual
implementation

U overwrites upper triangle of A, multipliers in L overwrite
strict lower triangle of A, and unit diagonal of L need not
be stored

Row interchanges usually are not done explicitly; auxiliary
integer vector keeps track of row order in original locations

Michael T. Heath Scientific Computing 61 / 87

Existence, Uniqueness, and Conditioning
Solving Linear Systems

Special Types of Linear Systems
Software for Linear Systems

Triangular Systems
Gaussian Elimination
Updating Solutions
Improving Accuracy

Complexity of Solving Linear Systems

LU factorization requires about n3/3 floating-point
multiplications and similar number of additions

Forward- and back-substitution for single right-hand-side
vector together require about n2 multiplications and similar
number of additions

Can also solve linear system by matrix inversion:
x = A−1b

Computing A−1 is tantamount to solving n linear systems,
requiring LU factorization of A followed by n forward- and
back-substitutions, one for each column of identity matrix

Operation count for inversion is about n3, three times as
expensive as LU factorization

Michael T. Heath Scientific Computing 62 / 87

Existence, Uniqueness, and Conditioning
Solving Linear Systems

Special Types of Linear Systems
Software for Linear Systems

Triangular Systems
Gaussian Elimination
Updating Solutions
Improving Accuracy

Inversion vs. Factorization

Even with many right-hand sides b, inversion never
overcomes higher initial cost, since each matrix-vector
multiplication A−1b requires n2 operations, similar to cost
of forward- and back-substitution
Inversion gives less accurate answer; for example, solving
3x = 18 by division gives x = 18/3 = 6, but inversion gives
x = 3−1 × 18 = 0.333× 18 = 5.99 using 3-digit arithmetic
Matrix inverses often occur as convenient notation in
formulas, but explicit inverse is rarely required to
implement such formulas
For example, product A−1B should be computed by LU
factorization of A, followed by forward- and
back-substitutions using each column of B

Michael T. Heath Scientific Computing 63 / 87

Existence, Uniqueness, and Conditioning
Solving Linear Systems

Special Types of Linear Systems
Software for Linear Systems

Triangular Systems
Gaussian Elimination
Updating Solutions
Improving Accuracy

Gauss-Jordan Elimination

In Gauss-Jordan elimination, matrix is reduced to diagonal
rather than triangular form
Row combinations are used to annihilate entries above as
well as below diagonal
Elimination matrix used for given column vector a is of form

1 · · · 0 −m1 0 · · · 0
...

. . .
...

...
...

. . .
...

0 · · · 1 −mk−1 0 · · · 0
0 · · · 0 1 0 · · · 0
0 · · · 0 −mk+1 1 · · · 0
...

. . .
...

...
...

. . .
...

0 · · · 0 −mn 0 · · · 1

a1

...
ak−1

ak

ak+1

...
an

=

0
...
0
ak

0
...
0

where mi = ai/ak, i = 1, . . . , n

Michael T. Heath Scientific Computing 64 / 87

Existence, Uniqueness, and Conditioning
Solving Linear Systems

Special Types of Linear Systems
Software for Linear Systems

Triangular Systems
Gaussian Elimination
Updating Solutions
Improving Accuracy

Gauss-Jordan Elimination, continued

Gauss-Jordan elimination requires about n3/2
multiplications and similar number of additions, 50% more
expensive than LU factorization

During elimination phase, same row operations are also
applied to right-hand-side vector (or vectors) of system of
linear equations

Once matrix is in diagonal form, components of solution
are computed by dividing each entry of transformed
right-hand side by corresponding diagonal entry of matrix

Latter requires only n divisions, but this is not enough
cheaper to offset more costly elimination phase

< interactive example >

Michael T. Heath Scientific Computing 65 / 87

http://www.cse.uiuc.edu/iem/linear_equations/gauss_jordan/

Existence, Uniqueness, and Conditioning
Solving Linear Systems

Special Types of Linear Systems
Software for Linear Systems

Triangular Systems
Gaussian Elimination
Updating Solutions
Improving Accuracy

Solving Modified Problems

If right-hand side of linear system changes but matrix does
not, then LU factorization need not be repeated to solve
new system

Only forward- and back-substitution need be repeated for
new right-hand side

This is substantial savings in work, since additional
triangular solutions cost only O(n2) work, in contrast to
O(n3) cost of factorization

Michael T. Heath Scientific Computing 66 / 87

Existence, Uniqueness, and Conditioning
Solving Linear Systems

Special Types of Linear Systems
Software for Linear Systems

Triangular Systems
Gaussian Elimination
Updating Solutions
Improving Accuracy

Sherman-Morrison Formula

Sometimes refactorization can be avoided even when
matrix does change

Sherman-Morrison formula gives inverse of matrix
resulting from rank-one change to matrix whose inverse is
already known

(A− uvT)−1 = A−1 + A−1u(1− vT A−1u)−1vT A−1

where u and v are n-vectors

Evaluation of formula requires O(n2) work (for
matrix-vector multiplications) rather than O(n3) work
required for inversion

Michael T. Heath Scientific Computing 67 / 87

Existence, Uniqueness, and Conditioning
Solving Linear Systems

Special Types of Linear Systems
Software for Linear Systems

Triangular Systems
Gaussian Elimination
Updating Solutions
Improving Accuracy

Rank-One Updating of Solution

To solve linear system (A− uvT)x = b with new matrix,
use Sherman-Morrison formula to obtain

x = (A− uvT)−1b

= A−1b + A−1u(1− vT A−1u)−1vT A−1b

which can be implemented by following steps
Solve Az = u for z, so z = A−1u

Solve Ay = b for y, so y = A−1b

Compute x = y + ((vT y)/(1− vT z))z

If A is already factored, procedure requires only triangular
solutions and inner products, so only O(n2) work and no
explicit inverses

Michael T. Heath Scientific Computing 68 / 87

Existence, Uniqueness, and Conditioning
Solving Linear Systems

Special Types of Linear Systems
Software for Linear Systems

Triangular Systems
Gaussian Elimination
Updating Solutions
Improving Accuracy

Example: Rank-One Updating of Solution

Consider rank-one modification 2 4 −2
4 9 −3

−2 −1 7

x1

x2

x3

 =

 2
8

10

(with 3, 2 entry changed) of system whose LU factorization
was computed in earlier example
One way to choose update vectors is

u =

 0
0

−2

 and v =

0
1
0

so matrix of modified system is A− uvT

Michael T. Heath Scientific Computing 69 / 87

Existence, Uniqueness, and Conditioning
Solving Linear Systems

Special Types of Linear Systems
Software for Linear Systems

Triangular Systems
Gaussian Elimination
Updating Solutions
Improving Accuracy

Example, continued

Using LU factorization of A to solve Az = u and Ay = b,

z =

−3/2
1/2

−1/2

 and y =

−1
2
2

Final step computes updated solution

x = y +
vT y

1− vT z
z =

−1
2
2

+
2

1− 1/2

−3/2
1/2

−1/2

 =

−7
4
0

We have thus computed solution to modified system
without factoring modified matrix

Michael T. Heath Scientific Computing 70 / 87

Existence, Uniqueness, and Conditioning
Solving Linear Systems

Special Types of Linear Systems
Software for Linear Systems

Triangular Systems
Gaussian Elimination
Updating Solutions
Improving Accuracy

Scaling Linear Systems

In principle, solution to linear system is unaffected by
diagonal scaling of matrix and right-hand-side vector

In practice, scaling affects both conditioning of matrix and
selection of pivots in Gaussian elimination, which in turn
affect numerical accuracy in finite-precision arithmetic

It is usually best if all entries (or uncertainties in entries) of
matrix have about same size

Sometimes it may be obvious how to accomplish this by
choice of measurement units for variables, but there is no
foolproof method for doing so in general

Scaling can introduce rounding errors if not done carefully

Michael T. Heath Scientific Computing 71 / 87

Existence, Uniqueness, and Conditioning
Solving Linear Systems

Special Types of Linear Systems
Software for Linear Systems

Triangular Systems
Gaussian Elimination
Updating Solutions
Improving Accuracy

Example: Scaling

Linear system [
1 0
0 ε

] [
x1

x2

]
=
[
1
ε

]
has condition number 1/ε, so is ill-conditioned if ε is small

If second row is multiplied by 1/ε, then system becomes
perfectly well-conditioned

Apparent ill-conditioning was due purely to poor scaling

In general, it is usually much less obvious how to correct
poor scaling

Michael T. Heath Scientific Computing 72 / 87

Existence, Uniqueness, and Conditioning
Solving Linear Systems

Special Types of Linear Systems
Software for Linear Systems

Triangular Systems
Gaussian Elimination
Updating Solutions
Improving Accuracy

Iterative Refinement

Given approximate solution x0 to linear system Ax = b,
compute residual

r0 = b−Ax0

Now solve linear system Az0 = r0 and take

x1 = x0 + z0

as new and “better” approximate solution, since

Ax1 = A(x0 + z0) = Ax0 + Az0

= (b− r0) + r0 = b

Process can be repeated to refine solution successively
until convergence, potentially producing solution accurate
to full machine precision

Michael T. Heath Scientific Computing 73 / 87

Existence, Uniqueness, and Conditioning
Solving Linear Systems

Special Types of Linear Systems
Software for Linear Systems

Triangular Systems
Gaussian Elimination
Updating Solutions
Improving Accuracy

Iterative Refinement, continued

Iterative refinement requires double storage, since both
original matrix and its LU factorization are required

Due to cancellation, residual usually must be computed
with higher precision for iterative refinement to produce
meaningful improvement

For these reasons, iterative improvement is often
impractical to use routinely, but it can still be useful in some
circumstances

For example, iterative refinement can sometimes stabilize
otherwise unstable algorithm

Michael T. Heath Scientific Computing 74 / 87

Existence, Uniqueness, and Conditioning
Solving Linear Systems

Special Types of Linear Systems
Software for Linear Systems

Symmetric Systems
Banded Systems
Iterative Methods

Special Types of Linear Systems

Work and storage can often be saved in solving linear
system if matrix has special properties

Examples include

Symmetric : A = AT , aij = aji for all i, j

Positive definite : xT Ax > 0 for all x 6= 0

Band : aij = 0 for all |i− j| > β, where β is bandwidth of A

Sparse : most entries of A are zero

Michael T. Heath Scientific Computing 75 / 87

Existence, Uniqueness, and Conditioning
Solving Linear Systems

Special Types of Linear Systems
Software for Linear Systems

Symmetric Systems
Banded Systems
Iterative Methods

Symmetric Positive Definite Matrices

If A is symmetric and positive definite, then LU
factorization can be arranged so that U = LT , which gives
Cholesky factorization

A = LLT

where L is lower triangular with positive diagonal entries
Algorithm for computing it can be derived by equating
corresponding entries of A and LLT

In 2× 2 case, for example,[
a11 a21

a21 a22

]
=
[
l11 0
l21 l22

] [
l11 l21
0 l22

]
implies

l11 =
√

a11, l21 = a21/l11, l22 =
√

a22 − l221
Michael T. Heath Scientific Computing 76 / 87

Existence, Uniqueness, and Conditioning
Solving Linear Systems

Special Types of Linear Systems
Software for Linear Systems

Symmetric Systems
Banded Systems
Iterative Methods

Cholesky Factorization

One way to write resulting general algorithm, in which
Cholesky factor L overwrites original matrix A, is

for j = 1 to n
for k = 1 to j − 1

for i = j to n
aij = aij − aik · ajk

end
end
ajj = √

ajj

for k = j + 1 to n
akj = akj/ajj

end
end

Michael T. Heath Scientific Computing 77 / 87

Existence, Uniqueness, and Conditioning
Solving Linear Systems

Special Types of Linear Systems
Software for Linear Systems

Symmetric Systems
Banded Systems
Iterative Methods

Cholesky Factorization, continued

Features of Cholesky algorithm for symmetric positive
definite matrices

All n square roots are of positive numbers, so algorithm is
well defined
No pivoting is required to maintain numerical stability
Only lower triangle of A is accessed, and hence upper
triangular portion need not be stored
Only n3/6 multiplications and similar number of additions
are required

Thus, Cholesky factorization requires only about half work
and half storage compared with LU factorization of general
matrix by Gaussian elimination, and also avoids need for
pivoting

< interactive example >
Michael T. Heath Scientific Computing 78 / 87

http://www.cse.uiuc.edu/iem/linear_equations/cholesky/

Existence, Uniqueness, and Conditioning
Solving Linear Systems

Special Types of Linear Systems
Software for Linear Systems

Symmetric Systems
Banded Systems
Iterative Methods

Symmetric Indefinite Systems

For symmetric indefinite A, Cholesky factorization is not
applicable, and some form of pivoting is generally required
for numerical stability

Factorization of form

PAP T = LDLT

with L unit lower triangular and D either tridiagonal or
block diagonal with 1× 1 and 2× 2 diagonal blocks, can be
computed stably using symmetric pivoting strategy

In either case, cost is comparable to that of Cholesky
factorization

Michael T. Heath Scientific Computing 79 / 87

Existence, Uniqueness, and Conditioning
Solving Linear Systems

Special Types of Linear Systems
Software for Linear Systems

Symmetric Systems
Banded Systems
Iterative Methods

Band Matrices

Gaussian elimination for band matrices differs little from
general case — only ranges of loops change

Typically matrix is stored in array by diagonals to avoid
storing zero entries

If pivoting is required for numerical stability, bandwidth can
grow (but no more than double)

General purpose solver for arbitrary bandwidth is similar to
code for Gaussian elimination for general matrices

For fixed small bandwidth, band solver can be extremely
simple, especially if pivoting is not required for stability

Michael T. Heath Scientific Computing 80 / 87

Existence, Uniqueness, and Conditioning
Solving Linear Systems

Special Types of Linear Systems
Software for Linear Systems

Symmetric Systems
Banded Systems
Iterative Methods

Tridiagonal Matrices

Consider tridiagonal matrix

A =

b1 c1 0 · · · 0

a2 b2 c2
. . .

...

0
. 0

...
. . . an−1 bn−1 cn−1

0 · · · 0 an bn

Gaussian elimination without pivoting reduces to

d1 = b1

for i = 2 to n
mi = ai/di−1

di = bi −mici−1

end
Michael T. Heath Scientific Computing 81 / 87

Existence, Uniqueness, and Conditioning
Solving Linear Systems

Special Types of Linear Systems
Software for Linear Systems

Symmetric Systems
Banded Systems
Iterative Methods

Tridiagonal Matrices, continued

LU factorization of A is then given by

L =

1 0 · · · · · · 0

m2 1
. . .

...

0
.

...
...

. . . mn−1 1 0
0 · · · 0 mn 1

, U =

d1 c1 0 · · · 0

0 d2 c2
. . .

...
...

. 0
...

. . . dn−1 cn−1

0 · · · · · · 0 dn

Michael T. Heath Scientific Computing 82 / 87

Existence, Uniqueness, and Conditioning
Solving Linear Systems

Special Types of Linear Systems
Software for Linear Systems

Symmetric Systems
Banded Systems
Iterative Methods

General Band Matrices

In general, band system of bandwidth β requires O(βn)
storage, and its factorization requires O(β2n) work

Compared with full system, savings is substantial if β � n

Michael T. Heath Scientific Computing 83 / 87

Existence, Uniqueness, and Conditioning
Solving Linear Systems

Special Types of Linear Systems
Software for Linear Systems

Symmetric Systems
Banded Systems
Iterative Methods

Iterative Methods for Linear Systems

Gaussian elimination is direct method for solving linear
system, producing exact solution in finite number of steps
(in exact arithmetic)

Iterative methods begin with initial guess for solution and
successively improve it until desired accuracy attained

In theory, it might take infinite number of iterations to
converge to exact solution, but in practice iterations are
terminated when residual is as small as desired

For some types of problems, iterative methods have
significant advantages over direct methods

We will study specific iterative methods later when we
consider solution of partial differential equations

Michael T. Heath Scientific Computing 84 / 87

Existence, Uniqueness, and Conditioning
Solving Linear Systems

Special Types of Linear Systems
Software for Linear Systems

LINPACK and LAPACK
BLAS

LINPACK and LAPACK

LINPACK is software package for solving wide variety of
systems of linear equations, both general dense systems
and special systems, such as symmetric or banded

Solving linear systems of such fundamental importance in
scientific computing that LINPACK has become standard
benchmark for comparing performance of computers

LAPACK is more recent replacement for LINPACK featuring
higher performance on modern computer architectures,
including some parallel computers

Both LINPACK and LAPACK are available from Netlib

Michael T. Heath Scientific Computing 85 / 87

Existence, Uniqueness, and Conditioning
Solving Linear Systems

Special Types of Linear Systems
Software for Linear Systems

LINPACK and LAPACK
BLAS

Basic Linear Algebra Subprograms

High-level routines in LINPACK and LAPACK are based on
lower-level Basic Linear Algebra Subprograms (BLAS)
BLAS encapsulate basic operations on vectors and
matrices so they can be optimized for given computer
architecture while high-level routines that call them remain
portable
Higher-level BLAS encapsulate matrix-vector and
matrix-matrix operations for better utilization of memory
hierarchies such as cache and virtual memory with paging
Generic Fortran versions of BLAS are available from
Netlib, and many computer vendors provide custom
versions optimized for their particular systems

Michael T. Heath Scientific Computing 86 / 87

Existence, Uniqueness, and Conditioning
Solving Linear Systems

Special Types of Linear Systems
Software for Linear Systems

LINPACK and LAPACK
BLAS

Examples of BLAS

Level Work Examples Function
1 O(n) saxpy Scalar × vector + vector

sdot Inner product
snrm2 Euclidean vector norm

2 O(n2) sgemv Matrix-vector product
strsv Triangular solution
sger Rank-one update

3 O(n3) sgemm Matrix-matrix product
strsm Multiple triang. solutions
ssyrk Rank-k update

Level-3 BLAS have more opportunity for data reuse, and
hence higher performance, because they perform more
operations per data item than lower-level BLAS

Michael T. Heath Scientific Computing 87 / 87

	Existence, Uniqueness, and Conditioning
	
	
	
	

	Solving Linear Systems
	
	
	
	

	Special Types of Linear Systems
	
	
	

	Software for Linear Systems
	
	

