Scientific Computing: An Introductory Survey Chapter 3 - Linear Least Squares

Prof. Michael T. Heath

Department of Computer Science
University of Illinois at Urbana-Champaign

Copyright (c) 2002. Reproduction permitted for noncommercial, educational use only.

Outline

(9) Least Squares Data Fitting
(2) Existence, Uniqueness, and Conditioning

3 Solving Linear Least Squares Problems

Method of Least Squares

- Measurement errors are inevitable in observational and experimental sciences
- Errors can be smoothed out by averaging over many cases, i.e., taking more measurements than are strictly necessary to determine parameters of system
- Resulting system is overdetermined, so usually there is no exact solution
- In effect, higher dimensional data are projected into lower dimensional space to suppress irrelevant detail
- Such projection is most conveniently accomplished by method of least squares

Linear Least Squares

- For linear problems, we obtain overdetermined linear system $\boldsymbol{A} \boldsymbol{x}=\boldsymbol{b}$, with $m \times n$ matrix $\boldsymbol{A}, m>n$
- System is better written $\boldsymbol{A x} \cong \boldsymbol{b}$, since equality is usually not exactly satisfiable when $m>n$
- Least squares solution x minimizes squared Euclidean norm of residual vector $\boldsymbol{r}=\boldsymbol{b}-\boldsymbol{A} \boldsymbol{x}$,

$$
\min _{\boldsymbol{x}}\|\boldsymbol{r}\|_{2}^{2}=\min _{\boldsymbol{x}}\|\boldsymbol{b}-\boldsymbol{A} \boldsymbol{x}\|_{2}^{2}
$$

Data Fitting

- Given m data points $\left(t_{i}, y_{i}\right)$, find n-vector x of parameters that gives "best fit" to model function $f(t, \boldsymbol{x})$,

$$
\min _{\boldsymbol{x}} \sum_{i=1}^{m}\left(y_{i}-f\left(t_{i}, \boldsymbol{x}\right)\right)^{2}
$$

- Problem is linear if function f is linear in components of x,

$$
f(t, \boldsymbol{x})=x_{1} \phi_{1}(t)+x_{2} \phi_{2}(t)+\cdots+x_{n} \phi_{n}(t)
$$

where functions ϕ_{j} depend only on t

- Problem can be written in matrix form as $\boldsymbol{A} \boldsymbol{x} \cong \boldsymbol{b}$, with $a_{i j}=\phi_{j}\left(t_{i}\right)$ and $b_{i}=y_{i}$

Data Fitting

- Polynomial fitting

$$
f(t, \boldsymbol{x})=x_{1}+x_{2} t+x_{3} t^{2}+\cdots+x_{n} t^{n-1}
$$

is linear, since polynomial linear in coefficients, though nonlinear in independent variable t

- Fitting sum of exponentials

$$
f(t, \boldsymbol{x})=x_{1} e^{x_{2} t}+\cdots+x_{n-1} e^{x_{n} t}
$$

is example of nonlinear problem

- For now, we will consider only linear least squares problems

Example: Data Fitting

- Fitting quadratic polynomial to five data points gives linear least squares problem

$$
\boldsymbol{A} \boldsymbol{x}=\left[\begin{array}{ccc}
1 & t_{1} & t_{1}^{2} \\
1 & t_{2} & t_{2}^{2} \\
1 & t_{3} & t_{3}^{2} \\
1 & t_{4} & t_{4}^{2} \\
1 & t_{5} & t_{5}^{2}
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right] \cong\left[\begin{array}{l}
y_{1} \\
y_{2} \\
y_{3} \\
y_{4} \\
y_{5}
\end{array}\right]=\boldsymbol{b}
$$

- Matrix whose columns (or rows) are successive powers of independent variable is called Vandermonde matrix

Example, continued

- For data

$$
\begin{array}{c|rrrrr}
t & -1.0 & -0.5 & 0.0 & 0.5 & 1.0 \\
y & 1.0 & 0.5 & 0.0 & 0.5 & 2.0
\end{array}
$$

overdetermined 5×3 linear system is

$$
\boldsymbol{A} \boldsymbol{x}=\left[\begin{array}{rrl}
1 & -1.0 & 1.0 \\
1 & -0.5 & 0.25 \\
1 & 0.0 & 0.0 \\
1 & 0.5 & 0.25 \\
1 & 1.0 & 1.0
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right] \cong\left[\begin{array}{l}
1.0 \\
0.5 \\
0.0 \\
0.5 \\
2.0
\end{array}\right]=\boldsymbol{b}
$$

- Solution, which we will see later how to compute, is

$$
\boldsymbol{x}=\left[\begin{array}{lll}
0.086 & 0.40 & 1.4
\end{array}\right]^{T}
$$

so approximating polynomial is

$$
p(t)=0.086+0.4 t+1.4 t^{2}
$$

Example, continued

- Resulting curve and original data points are shown in graph

Existence and Uniqueness

- Linear least squares problem $\boldsymbol{A x} \cong \boldsymbol{b}$ always has solution
- Solution is unique if, and only if, columns of \boldsymbol{A} are linearly independent, i.e., $\operatorname{rank}(\boldsymbol{A})=n$, where \boldsymbol{A} is $m \times n$
- If $\operatorname{rank}(\boldsymbol{A})<n$, then \boldsymbol{A} is rank-deficient, and solution of linear least squares problem is not unique
- For now, we assume \boldsymbol{A} has full column rank n

Normal Equations

- To minimize squared Euclidean norm of residual vector

$$
\begin{aligned}
\|\boldsymbol{r}\|_{2}^{2} & =\boldsymbol{r}^{T} \boldsymbol{r}=(\boldsymbol{b}-\boldsymbol{A} \boldsymbol{x})^{T}(\boldsymbol{b}-\boldsymbol{A} \boldsymbol{x}) \\
& =\boldsymbol{b}^{T} \boldsymbol{b}-2 \boldsymbol{x}^{T} \boldsymbol{A}^{T} \boldsymbol{b}+\boldsymbol{x}^{T} \boldsymbol{A}^{T} \boldsymbol{A} \boldsymbol{x}
\end{aligned}
$$

take derivative with respect to x and set it to 0 ,

$$
2 \boldsymbol{A}^{T} \boldsymbol{A} \boldsymbol{x}-2 \boldsymbol{A}^{T} \boldsymbol{b}=\mathbf{0}
$$

which reduces to $n \times n$ linear system of normal equations

$$
\boldsymbol{A}^{T} \boldsymbol{A} \boldsymbol{x}=\boldsymbol{A}^{T} \boldsymbol{b}
$$

Orthogonality

- Vectors \boldsymbol{v}_{1} and \boldsymbol{v}_{2} are orthogonal if their inner product is zero, $\boldsymbol{v}_{1}^{T} \boldsymbol{v}_{2}=0$
- Space spanned by columns of $m \times n$ matrix \boldsymbol{A}, $\operatorname{span}(\boldsymbol{A})=\left\{\boldsymbol{A x}: \boldsymbol{x} \in \mathbb{R}^{n}\right\}$, is of dimension at most n
- If $m>n, \boldsymbol{b}$ generally does not lie in $\operatorname{span}(\boldsymbol{A})$, so there is no exact solution to $\boldsymbol{A x}=\boldsymbol{b}$
- Vector $\boldsymbol{y}=\boldsymbol{A} \boldsymbol{x}$ in $\operatorname{span}(\boldsymbol{A})$ closest to \boldsymbol{b} in 2 -norm occurs when residual $\boldsymbol{r}=\boldsymbol{b}-\boldsymbol{A} \boldsymbol{x}$ is orthogonal to $\operatorname{span}(\boldsymbol{A})$,

$$
\mathbf{0}=\boldsymbol{A}^{T} \boldsymbol{r}=\boldsymbol{A}^{T}(\boldsymbol{b}-\boldsymbol{A} \boldsymbol{x})
$$

again giving system of normal equations

$$
\boldsymbol{A}^{T} \boldsymbol{A} \boldsymbol{x}=\boldsymbol{A}^{T} \boldsymbol{b}
$$

Orthogonality, continued

- Geometric relationships among $\boldsymbol{b}, \boldsymbol{r}$, and $\operatorname{span}(\boldsymbol{A})$ are shown in diagram

Orthogonal Projectors

- Matrix \boldsymbol{P} is orthogonal projector if it is idempotent $\left(\boldsymbol{P}^{2}=\boldsymbol{P}\right)$ and symmetric $\left(\boldsymbol{P}^{T}=\boldsymbol{P}\right)$
- Orthogonal projector onto orthogonal complement $\operatorname{span}(\boldsymbol{P})^{\perp}$ is given by $\boldsymbol{P}_{\perp}=\boldsymbol{I}-\boldsymbol{P}$
- For any vector \boldsymbol{v},

$$
\boldsymbol{v}=(\boldsymbol{P}+(\boldsymbol{I}-\boldsymbol{P})) \boldsymbol{v}=\boldsymbol{P} \boldsymbol{v}+\boldsymbol{P}_{\perp} \boldsymbol{v}
$$

- For least squares problem $\boldsymbol{A} \boldsymbol{x} \cong \boldsymbol{b}$, if $\operatorname{rank}(\boldsymbol{A})=n$, then

$$
\boldsymbol{P}=\boldsymbol{A}\left(\boldsymbol{A}^{T} \boldsymbol{A}\right)^{-1} \boldsymbol{A}^{T}
$$

is orthogonal projector onto $\operatorname{span}(\boldsymbol{A})$, and

$$
\boldsymbol{b}=\boldsymbol{P b}+\boldsymbol{P}_{\perp} \boldsymbol{b}=\boldsymbol{A x}+(\boldsymbol{b}-\boldsymbol{A x})=\boldsymbol{y}+\boldsymbol{r}
$$

Pseudoinverse and Condition Number

- Nonsquare $m \times n$ matrix \boldsymbol{A} has no inverse in usual sense
- If $\operatorname{rank}(\boldsymbol{A})=n$, pseudoinverse is defined by

$$
\boldsymbol{A}^{+}=\left(\boldsymbol{A}^{T} \boldsymbol{A}\right)^{-1} \boldsymbol{A}^{T}
$$

and condition number by

$$
\operatorname{cond}(\boldsymbol{A})=\|\boldsymbol{A}\|_{2} \cdot\left\|\boldsymbol{A}^{+}\right\|_{2}
$$

- By convention, $\operatorname{cond}(\boldsymbol{A})=\infty$ if $\operatorname{rank}(\boldsymbol{A})<n$
- Just as condition number of square matrix measures closeness to singularity, condition number of rectangular matrix measures closeness to rank deficiency
- Least squares solution of $\boldsymbol{A} \boldsymbol{x} \cong \boldsymbol{b}$ is given by $\boldsymbol{x}=\boldsymbol{A}^{+} \boldsymbol{b}$

Sensitivity and Conditioning

- Sensitivity of least squares solution to $\boldsymbol{A} \boldsymbol{x} \cong \boldsymbol{b}$ depends on b as well as A
- Define angle θ between \boldsymbol{b} and $\boldsymbol{y}=\boldsymbol{A} \boldsymbol{x}$ by

$$
\cos (\theta)=\frac{\|\boldsymbol{y}\|_{2}}{\|\boldsymbol{b}\|_{2}}=\frac{\|\boldsymbol{A} \boldsymbol{x}\|_{2}}{\|\boldsymbol{b}\|_{2}}
$$

- Bound on perturbation Δx in solution x due to perturbation Δb in b is given by

$$
\frac{\|\Delta \boldsymbol{x}\|_{2}}{\|\boldsymbol{x}\|_{2}} \leq \operatorname{cond}(\boldsymbol{A}) \frac{1}{\cos (\theta)} \frac{\|\Delta \boldsymbol{b}\|_{2}}{\|\boldsymbol{b}\|_{2}}
$$

Sensitivity and Conditioning, contnued

- Similarly, for perturbation \boldsymbol{E} in matrix \boldsymbol{A},

$$
\frac{\|\Delta \boldsymbol{x}\|_{2}}{\|\boldsymbol{x}\|_{2}} \lesssim\left([\operatorname{cond}(\boldsymbol{A})]^{2} \tan (\theta)+\operatorname{cond}(\boldsymbol{A})\right) \frac{\|\boldsymbol{E}\|_{2}}{\|\boldsymbol{A}\|_{2}}
$$

- Condition number of least squares solution is about $\operatorname{cond}(\boldsymbol{A})$ if residual is small, but can be squared or arbitrarily worse for large residual

Normal Equations Method

- If $m \times n$ matrix \boldsymbol{A} has rank n, then symmetric $n \times n$ matrix $\boldsymbol{A}^{T} \boldsymbol{A}$ is positive definite, so its Cholesky factorization

$$
\boldsymbol{A}^{T} \boldsymbol{A}=\boldsymbol{L} \boldsymbol{L}^{T}
$$

can be used to obtain solution x to system of normal equations

$$
\boldsymbol{A}^{T} \boldsymbol{A} \boldsymbol{x}=\boldsymbol{A}^{T} \boldsymbol{b}
$$

which has same solution as linear least squares problem $\boldsymbol{A} \boldsymbol{x} \cong \boldsymbol{b}$

- Normal equations method involves transformations rectangular \longrightarrow square \longrightarrow triangular

Example: Normal Equations Method

- For polynomial data-fitting example given previously, normal equations method gives

$$
\begin{aligned}
\boldsymbol{A}^{T} \boldsymbol{A} & =\left[\begin{array}{ccccc}
1 & 1 & 1 & 1 & 1 \\
-1.0 & -0.5 & 0.0 & 0.5 & 1.0 \\
1.0 & 0.25 & 0.0 & 0.25 & 1.0
\end{array}\right]\left[\begin{array}{rrl}
1 & -1.0 & 1.0 \\
1 & -0.5 & 0.25 \\
1 & 0.0 & 0.0 \\
1 & 0.5 & 0.25 \\
1 & 1.0 & 1.0
\end{array}\right] \\
& =\left[\begin{array}{lll}
5.0 & 0.0 & 2.5 \\
0.0 & 2.5 & 0.0 \\
2.5 & 0.0 & 2.125
\end{array}\right], \\
\boldsymbol{A}^{T} \boldsymbol{b} & =\left[\begin{array}{ccccc}
1 & 1 & 1 & 1 & 1 \\
-1.0 & -0.5 & 0.0 & 0.5 & 1.0 \\
1.0 & 0.25 & 0.0 & 0.25 & 1.0
\end{array}\right]\left[\begin{array}{l}
1.0 \\
0.5 \\
0.0 \\
0.5 \\
2.0
\end{array}\right]=\left[\begin{array}{l}
4.0 \\
1.0 \\
3.25
\end{array}\right]
\end{aligned}
$$

Example, continued

- Cholesky factorization of symmetric positive definite matrix $\boldsymbol{A}^{T} \boldsymbol{A}$ gives

$$
\begin{aligned}
\boldsymbol{A}^{T} \boldsymbol{A} & =\left[\begin{array}{lll}
5.0 & 0.0 & 2.5 \\
0.0 & 2.5 & 0.0 \\
2.5 & 0.0 & 2.125
\end{array}\right] \\
& =\left[\begin{array}{ccc}
2.236 & 0 & 0 \\
0 & 1.581 & 0 \\
1.118 & 0 & 0.935
\end{array}\right]\left[\begin{array}{ccc}
2.236 & 0 & 1.118 \\
0 & 1.581 & 0 \\
0 & 0 & 0.935
\end{array}\right]=\boldsymbol{L} \boldsymbol{L}^{T}
\end{aligned}
$$

- Solving lower triangular system $\boldsymbol{L} \boldsymbol{z}=\boldsymbol{A}^{T} \boldsymbol{b}$ by forward-substitution gives $\boldsymbol{z}=\left[\begin{array}{lll}1.789 & 0.632 & 1.336\end{array}\right]^{T}$
- Solving upper triangular system $\boldsymbol{L}^{T} \boldsymbol{x}=\boldsymbol{z}$ by back-substitution gives $\boldsymbol{x}=\left[\begin{array}{lll}0.086 & 0.400 & 1.429\end{array}\right]^{T}$

Shortcomings of Normal Equations

- Information can be lost in forming $\boldsymbol{A}^{T} \boldsymbol{A}$ and $\boldsymbol{A}^{T} \boldsymbol{b}$
- For example, take

$$
\boldsymbol{A}=\left[\begin{array}{ll}
1 & 1 \\
\epsilon & 0 \\
0 & \epsilon
\end{array}\right]
$$

where ϵ is positive number smaller than $\sqrt{\epsilon_{\text {mach }}}$

- Then in floating-point arithmetic

$$
\boldsymbol{A}^{T} \boldsymbol{A}=\left[\begin{array}{cc}
1+\epsilon^{2} & 1 \\
1 & 1+\epsilon^{2}
\end{array}\right]=\left[\begin{array}{ll}
1 & 1 \\
1 & 1
\end{array}\right]
$$

which is singular

- Sensitivity of solution is also worsened, since

$$
\operatorname{cond}\left(\boldsymbol{A}^{T} \boldsymbol{A}\right)=[\operatorname{cond}(\boldsymbol{A})]^{2}
$$

Augmented System Method

- Definition of residual together with orthogonality requirement give $(m+n) \times(m+n)$ augmented system

$$
\left[\begin{array}{cc}
\boldsymbol{I} & \boldsymbol{A} \\
\boldsymbol{A}^{T} & O
\end{array}\right]\left[\begin{array}{c}
r \\
\boldsymbol{x}
\end{array}\right]=\left[\begin{array}{l}
\boldsymbol{b} \\
\mathbf{0}
\end{array}\right]
$$

- Augmented system is not positive definite, is larger than original system, and requires storing two copies of \boldsymbol{A}
- But it allows greater freedom in choosing pivots in computing $\boldsymbol{L} \boldsymbol{D} \boldsymbol{L}^{T}$ or $\boldsymbol{L} \boldsymbol{U}$ factorization

Augmented System Method, continued

- Introducing scaling parameter α gives system

$$
\left[\begin{array}{cc}
\alpha \boldsymbol{I} & \boldsymbol{A} \\
\boldsymbol{A}^{T} & \boldsymbol{O}
\end{array}\right]\left[\begin{array}{c}
\boldsymbol{r} / \alpha \\
\boldsymbol{x}
\end{array}\right]=\left[\begin{array}{l}
\boldsymbol{b} \\
\mathbf{0}
\end{array}\right]
$$

which allows control over relative weights of two subsystems in choosing pivots

- Reasonable rule of thumb is to take

$$
\alpha=\max _{i, j}\left|a_{i j}\right| / 1000
$$

- Augmented system is sometimes useful, but is far from ideal in work and storage required

Orthogonal Transformations

- We seek alternative method that avoids numerical difficulties of normal equations
- We need numerically robust transformation that produces easier problem without changing solution
- What kind of transformation leaves least squares solution unchanged?
- Square matrix \boldsymbol{Q} is orthogonal if $\boldsymbol{Q}^{T} \boldsymbol{Q}=\boldsymbol{I}$
- Multiplication of vector by orthogonal matrix preserves Euclidean norm

$$
\|\boldsymbol{Q} \boldsymbol{v}\|_{2}^{2}=(\boldsymbol{Q} \boldsymbol{v})^{T} \boldsymbol{Q} \boldsymbol{v}=\boldsymbol{v}^{T} \boldsymbol{Q}^{T} \boldsymbol{Q} \boldsymbol{v}=\boldsymbol{v}^{T} \boldsymbol{v}=\|\boldsymbol{v}\|_{2}^{2}
$$

- Thus, multiplying both sides of least squares problem by orthogonal matrix does not change its solution

Triangular Least Squares Problems

- As with square linear systems, suitable target in simplifying least squares problems is triangular form
- Upper triangular overdetermined $(m>n)$ least squares problem has form

$$
\left[\begin{array}{l}
\boldsymbol{R} \\
\boldsymbol{O}
\end{array}\right] \boldsymbol{x} \cong\left[\begin{array}{l}
\boldsymbol{b}_{1} \\
\boldsymbol{b}_{2}
\end{array}\right]
$$

where \boldsymbol{R} is $n \times n$ upper triangular and \boldsymbol{b} is partitioned similarly

- Residual is

$$
\|\boldsymbol{r}\|_{2}^{2}=\left\|\boldsymbol{b}_{1}-\boldsymbol{R} \boldsymbol{x}\right\|_{2}^{2}+\left\|\boldsymbol{b}_{2}\right\|_{2}^{2}
$$

Triangular Least Squares Problems, continued

- We have no control over second term, $\left\|\boldsymbol{b}_{2}\right\|_{2}^{2}$, but first term becomes zero if \boldsymbol{x} satisfies $n \times n$ triangular system

$$
\boldsymbol{R} \boldsymbol{x}=\boldsymbol{b}_{1}
$$

which can be solved by back-substitution

- Resulting x is least squares solution, and minimum sum of squares is

$$
\|\boldsymbol{r}\|_{2}^{2}=\left\|\boldsymbol{b}_{2}\right\|_{2}^{2}
$$

- So our strategy is to transform general least squares problem to triangular form using orthogonal transformation so that least squares solution is preserved

QR Factorization

- Given $m \times n$ matrix \boldsymbol{A}, with $m>n$, we seek $m \times m$ orthogonal matrix \boldsymbol{Q} such that

$$
A=Q\left[\begin{array}{l}
R \\
O
\end{array}\right]
$$

where \boldsymbol{R} is $n \times n$ and upper triangular

- Linear least squares problem $\boldsymbol{A x} \cong \boldsymbol{b}$ is then transformed into triangular least squares problem

$$
\boldsymbol{Q}^{T} \boldsymbol{A} \boldsymbol{x}=\left[\begin{array}{l}
\boldsymbol{R} \\
\boldsymbol{O}
\end{array}\right] \boldsymbol{x} \cong\left[\begin{array}{l}
\boldsymbol{c}_{1} \\
\boldsymbol{c}_{2}
\end{array}\right]=\boldsymbol{Q}^{T} \boldsymbol{b}
$$

which has same solution, since

$$
\|\boldsymbol{r}\|_{2}^{2}=\|\boldsymbol{b}-\boldsymbol{A} \boldsymbol{x}\|_{2}^{2}=\left\|\boldsymbol{b}-\boldsymbol{Q}\left[\begin{array}{l}
\boldsymbol{R} \\
\boldsymbol{O}
\end{array}\right] \boldsymbol{x}\right\|_{2}^{2}=\left\|\boldsymbol{Q}^{T} \boldsymbol{b}-\left[\begin{array}{c}
\boldsymbol{R} \\
\boldsymbol{O}
\end{array}\right] \boldsymbol{x}\right\|_{2}^{2}
$$

Orthogonal Bases

- If we partition $m \times m$ orthogonal matrix $\boldsymbol{Q}=\left[\boldsymbol{Q}_{1} \boldsymbol{Q}_{2}\right]$, where \boldsymbol{Q}_{1} is $m \times n$, then

$$
\boldsymbol{A}=\boldsymbol{Q}\left[\begin{array}{l}
\boldsymbol{R} \\
\boldsymbol{O}
\end{array}\right]=\left[\begin{array}{ll}
\boldsymbol{Q}_{1} & \boldsymbol{Q}_{2}
\end{array}\right]\left[\begin{array}{l}
\boldsymbol{R} \\
\boldsymbol{O}
\end{array}\right]=\boldsymbol{Q}_{1} \boldsymbol{R}
$$

is called reduced QR factorization of \boldsymbol{A}

- Columns of Q_{1} are orthonormal basis for $\operatorname{span}(\boldsymbol{A})$, and columns of Q_{2} are orthonormal basis for $\operatorname{span}(A)^{\perp}$
- $\boldsymbol{Q}_{1} \boldsymbol{Q}_{1}^{T}$ is orthogonal projector onto $\operatorname{span}(\boldsymbol{A})$
- Solution to least squares problem $\boldsymbol{A} \boldsymbol{x} \cong \boldsymbol{b}$ is given by solution to square system

$$
\boldsymbol{Q}_{1}^{T} \boldsymbol{A} \boldsymbol{x}=\boldsymbol{R} \boldsymbol{x}=\boldsymbol{c}_{1}=\boldsymbol{Q}_{1}^{T} \boldsymbol{b}
$$

Computing QR Factorization

- To compute QR factorization of $m \times n$ matrix \boldsymbol{A}, with $m>n$, we annihilate subdiagonal entries of successive columns of A, eventually reaching upper triangular form
- Similar to LU factorization by Gaussian elimination, but use orthogonal transformations instead of elementary elimination matrices
- Possible methods include
- Householder transformations
- Givens rotations
- Gram-Schmidt orthogonalization

Householder Transformations

- Householder transformation has form

$$
\boldsymbol{H}=\boldsymbol{I}-2 \frac{\boldsymbol{v} \boldsymbol{v}^{T}}{\boldsymbol{v}^{T} \boldsymbol{v}}
$$

for nonzero vector \boldsymbol{v}

- \boldsymbol{H} is orthogonal and symmetric: $\boldsymbol{H}=\boldsymbol{H}^{T}=\boldsymbol{H}^{-1}$
- Given vector \boldsymbol{a}, we want to choose \boldsymbol{v} so that

$$
\boldsymbol{H a}=\left[\begin{array}{c}
\alpha \\
0 \\
\vdots \\
0
\end{array}\right]=\alpha\left[\begin{array}{c}
1 \\
0 \\
\vdots \\
0
\end{array}\right]=\alpha \boldsymbol{e}_{1}
$$

- Substituting into formula for \boldsymbol{H}, we can take

$$
\boldsymbol{v}=\boldsymbol{a}-\alpha \boldsymbol{e}_{1}
$$

and $\alpha= \pm\|\boldsymbol{a}\|_{2}$, with sign chosen to avoid cancellation

Example: Householder Transformation

- If $\boldsymbol{a}=\left[\begin{array}{lll}2 & 1 & 2\end{array}\right]^{T}$, then we take

$$
\boldsymbol{v}=\boldsymbol{a}-\alpha \boldsymbol{e}_{1}=\left[\begin{array}{l}
2 \\
1 \\
2
\end{array}\right]-\alpha\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right]=\left[\begin{array}{l}
2 \\
1 \\
2
\end{array}\right]-\left[\begin{array}{l}
\alpha \\
0 \\
0
\end{array}\right]
$$

where $\alpha= \pm\|\boldsymbol{a}\|_{2}= \pm 3$

- Since a_{1} is positive, we choose negative sign for α to avoid
cancellation, so $\boldsymbol{v}=\left[\begin{array}{l}2 \\ 1 \\ 2\end{array}\right]-\left[\begin{array}{r}-3 \\ 0 \\ 0\end{array}\right]=\left[\begin{array}{l}5 \\ 1 \\ 2\end{array}\right]$
- To confirm that transformation works,

$$
\boldsymbol{H a}=\boldsymbol{a}-2 \frac{\boldsymbol{v}^{T} \boldsymbol{a}}{\boldsymbol{v}^{T} \boldsymbol{v}} \boldsymbol{v}=\left[\begin{array}{l}
2 \\
1 \\
2
\end{array}\right]-2 \frac{15}{30}\left[\begin{array}{l}
5 \\
1 \\
2
\end{array}\right]=\left[\begin{array}{r}
-3 \\
0 \\
0
\end{array}\right]
$$

< interactive example >

Householder QR Factorization

- To compute QR factorization of \boldsymbol{A}, use Householder transformations to annihilate subdiagonal entries of each successive column
- Each Householder transformation is applied to entire matrix, but does not affect prior columns, so zeros are preserved
- In applying Householder transformation \boldsymbol{H} to arbitrary vector u,

$$
\boldsymbol{H} \boldsymbol{u}=\left(\boldsymbol{I}-2 \frac{\boldsymbol{v} \boldsymbol{v}^{T}}{\boldsymbol{v}^{T} \boldsymbol{v}}\right) \boldsymbol{u}=\boldsymbol{u}-\left(2 \frac{\boldsymbol{v}^{T} \boldsymbol{u}}{\boldsymbol{v}^{T} \boldsymbol{v}}\right) \boldsymbol{v}
$$

which is much cheaper than general matrix-vector multiplication and requires only vector \boldsymbol{v}, not full matrix \boldsymbol{H}

Householder QR Factorization, continued

- Process just described produces factorization

$$
\boldsymbol{H}_{n} \cdots \boldsymbol{H}_{1} A=\left[\begin{array}{l}
\boldsymbol{R} \\
\boldsymbol{O}
\end{array}\right]
$$

where \boldsymbol{R} is $n \times n$ and upper triangular

- If $\boldsymbol{Q}=\boldsymbol{H}_{1} \cdots \boldsymbol{H}_{n}$, then $\boldsymbol{A}=\boldsymbol{Q}\left[\begin{array}{l}\boldsymbol{R} \\ \boldsymbol{O}\end{array}\right]$
- To preserve solution of linear least squares problem, right-hand side b is transformed by same sequence of Householder transformations
- Then solve triangular least squares problem $\left[\begin{array}{l}\boldsymbol{R} \\ \boldsymbol{O}\end{array}\right] \boldsymbol{x} \cong \boldsymbol{Q}^{T} \boldsymbol{b}$

Householder QR Factorization, continued

- For solving linear least squares problem, product Q of Householder transformations need not be formed explicitly
- \boldsymbol{R} can be stored in upper triangle of array initially containing A
- Householder vectors v can be stored in (now zero) lower triangular portion of \boldsymbol{A} (almost)
- Householder transformations most easily applied in this form anyway

Example: Householder QR Factorization

- For polynomial data-fitting example given previously, with

$$
\boldsymbol{A}=\left[\begin{array}{rrl}
1 & -1.0 & 1.0 \\
1 & -0.5 & 0.25 \\
1 & 0.0 & 0.0 \\
1 & 0.5 & 0.25 \\
1 & 1.0 & 1.0
\end{array}\right], \quad \boldsymbol{b}=\left[\begin{array}{l}
1.0 \\
0.5 \\
0.0 \\
0.5 \\
2.0
\end{array}\right]
$$

- Householder vector \boldsymbol{v}_{1} for annihilating subdiagonal entries of first column of \boldsymbol{A} is

$$
\boldsymbol{v}_{1}=\left[\begin{array}{c}
1 \\
1 \\
1 \\
1 \\
1
\end{array}\right]-\left[\begin{array}{c}
-2.236 \\
0 \\
0 \\
0 \\
0
\end{array}\right]=\left[\begin{array}{c}
3.236 \\
1 \\
1 \\
1 \\
1
\end{array}\right]
$$

Example, continued

- Applying resulting Householder transformation \boldsymbol{H}_{1} yields transformed matrix and right-hand side

$$
\boldsymbol{H}_{1} \boldsymbol{A}=\left[\begin{array}{crr}
-2.236 & 0 & -1.118 \\
0 & -0.191 & -0.405 \\
0 & 0.309 & -0.655 \\
0 & 0.809 & -0.405 \\
0 & 1.309 & 0.345
\end{array}\right], \quad \boldsymbol{H}_{1} \boldsymbol{b}=\left[\begin{array}{r}
-1.789 \\
-0.362 \\
-0.862 \\
-0.362 \\
1.138
\end{array}\right]
$$

- Householder vector \boldsymbol{v}_{2} for annihilating subdiagonal entries of second column of $H_{1} \boldsymbol{A}$ is

$$
\boldsymbol{v}_{2}=\left[\begin{array}{c}
0 \\
-0.191 \\
0.309 \\
0.809 \\
1.309
\end{array}\right]-\left[\begin{array}{c}
0 \\
1.581 \\
0 \\
0 \\
0
\end{array}\right]=\left[\begin{array}{c}
0 \\
-1.772 \\
0.309 \\
0.809 \\
1.309
\end{array}\right]
$$

Example, continued

- Applying resulting Householder transformation \boldsymbol{H}_{2} yields
$\boldsymbol{H}_{2} \boldsymbol{H}_{1} \boldsymbol{A}=\left[\begin{array}{ccc}-2.236 & 0 & -1.118 \\ 0 & 1.581 & 0 \\ 0 & 0 & -0.725 \\ 0 & 0 & -0.589 \\ 0 & 0 & 0.047\end{array}\right], \quad \boldsymbol{H}_{2} \boldsymbol{H}_{1} \boldsymbol{b}=\left[\begin{array}{r}-1.789 \\ 0.632 \\ -1.035 \\ -0.816 \\ 0.404\end{array}\right]$
- Householder vector \boldsymbol{v}_{3} for annihilating subdiagonal entries of third column of $\boldsymbol{H}_{2} \boldsymbol{H}_{1} \boldsymbol{A}$ is

$$
\boldsymbol{v}_{3}=\left[\begin{array}{c}
0 \\
0 \\
-0.725 \\
-0.589 \\
0.047
\end{array}\right]-\left[\begin{array}{c}
0 \\
0 \\
0.935 \\
0 \\
0
\end{array}\right]=\left[\begin{array}{c}
0 \\
0 \\
-1.660 \\
-0.589 \\
0.047
\end{array}\right]
$$

Example, continued

- Applying resulting Householder transformation \boldsymbol{H}_{3} yields

$$
\boldsymbol{H}_{3} \boldsymbol{H}_{2} \boldsymbol{H}_{1} \boldsymbol{A}=\left[\begin{array}{ccc}
-2.236 & 0 & -1.118 \\
0 & 1.581 & 0 \\
0 & 0 & 0.935 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right], \quad \boldsymbol{H}_{3} \boldsymbol{H}_{2} \boldsymbol{H}_{1} \boldsymbol{b}=\left[\begin{array}{c}
-1.789 \\
0.632 \\
1.336 \\
0.026 \\
0.337
\end{array}\right]
$$

- Now solve upper triangular system $R x=c_{1}$ by back-substitution to obtain $\boldsymbol{x}=\left[\begin{array}{lll}0.086 & 0.400 & 1.429\end{array}\right]^{T}$
< interactive example >

Givens Rotations

- Givens rotations introduce zeros one at a time
- Given vector $\left[\begin{array}{ll}a_{1} & a_{2}\end{array}\right]^{T}$, choose scalars c and s so that

$$
\left[\begin{array}{rr}
c & s \\
-s & c
\end{array}\right]\left[\begin{array}{l}
a_{1} \\
a_{2}
\end{array}\right]=\left[\begin{array}{l}
\alpha \\
0
\end{array}\right]
$$

with $c^{2}+s^{2}=1$, or equivalently, $\alpha=\sqrt{a_{1}^{2}+a_{2}^{2}}$

- Previous equation can be rewritten

$$
\left[\begin{array}{rr}
a_{1} & a_{2} \\
a_{2} & -a_{1}
\end{array}\right]\left[\begin{array}{l}
c \\
s
\end{array}\right]=\left[\begin{array}{l}
\alpha \\
0
\end{array}\right]
$$

- Gaussian elimination yields triangular system

$$
\left[\begin{array}{cc}
a_{1} & a_{2} \\
0 & -a_{1}-a_{2}^{2} / a_{1}
\end{array}\right]\left[\begin{array}{l}
c \\
s
\end{array}\right]=\left[\begin{array}{c}
\alpha \\
-\alpha a_{2} / a_{1}
\end{array}\right]
$$

Givens Rotations, continued

- Back-substitution then gives

$$
s=\frac{\alpha a_{2}}{a_{1}^{2}+a_{2}^{2}} \quad \text { and } \quad c=\frac{\alpha a_{1}}{a_{1}^{2}+a_{2}^{2}}
$$

- Finally, $c^{2}+s^{2}=1$, or $\alpha=\sqrt{a_{1}^{2}+a_{2}^{2}}$, implies

$$
c=\frac{a_{1}}{\sqrt{a_{1}^{2}+a_{2}^{2}}} \quad \text { and } \quad s=\frac{a_{2}}{\sqrt{a_{1}^{2}+a_{2}^{2}}}
$$

Example: Givens Rotation

- Let $\boldsymbol{a}=\left[\begin{array}{ll}4 & 3\end{array}\right]^{T}$
- To annihilate second entry we compute cosine and sine

$$
c=\frac{a_{1}}{\sqrt{a_{1}^{2}+a_{2}^{2}}}=\frac{4}{5}=0.8 \quad \text { and } \quad s=\frac{a_{2}}{\sqrt{a_{1}^{2}+a_{2}^{2}}}=\frac{3}{5}=0.6
$$

- Rotation is then given by

$$
\boldsymbol{G}=\left[\begin{array}{rr}
c & s \\
-s & c
\end{array}\right]=\left[\begin{array}{rr}
0.8 & 0.6 \\
-0.6 & 0.8
\end{array}\right]
$$

- To confirm that rotation works,

$$
\boldsymbol{G} \boldsymbol{a}=\left[\begin{array}{rr}
0.8 & 0.6 \\
-0.6 & 0.8
\end{array}\right]\left[\begin{array}{l}
4 \\
3
\end{array}\right]=\left[\begin{array}{l}
5 \\
0
\end{array}\right]
$$

Givens QR Factorization

- More generally, to annihilate selected component of vector in n dimensions, rotate target component with another component

$$
\left[\begin{array}{rrrrr}
1 & 0 & 0 & 0 & 0 \\
0 & c & 0 & s & 0 \\
0 & 0 & 1 & 0 & 0 \\
0 & -s & 0 & c & 0 \\
0 & 0 & 0 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
a_{1} \\
a_{2} \\
a_{3} \\
a_{4} \\
a_{5}
\end{array}\right]=\left[\begin{array}{c}
a_{1} \\
\alpha \\
a_{3} \\
0 \\
a_{5}
\end{array}\right]
$$

- By systematically annihilating successive entries, we can reduce matrix to upper triangular form using sequence of Givens rotations
- Each rotation is orthogonal, so their product is orthogonal, producing QR factorization

Givens QR Factorization

- Straightforward implementation of Givens method requires about 50\% more work than Householder method, and also requires more storage, since each rotation requires two numbers, c and s, to define it
- These disadvantages can be overcome, but requires more complicated implementation
- Givens can be advantageous for computing QR factorization when many entries of matrix are already zero, since those annihilations can then be skipped
< interactive example >

Gram-Schmidt Orthogonalization

- Given vectors a_{1} and a_{2}, we seek orthonormal vectors \boldsymbol{q}_{1} and q_{2} having same span
- This can be accomplished by subtracting from second vector its projection onto first vector and normalizing both resulting vectors, as shown in diagram

< interactive example >

Gram-Schmidt Orthogonalization

- Process can be extended to any number of vectors a_{1}, \ldots, a_{k}, orthogonalizing each successive vector against all preceding ones, giving classical Gram-Schmidt procedure

$$
\begin{aligned}
& \text { for } k=1 \text { to } n \\
& \quad \boldsymbol{q}_{k}=\boldsymbol{a}_{k} \\
& \text { for } j=1 \text { to } k-1 \\
& \quad r_{j k}=\boldsymbol{q}_{j}^{T} \boldsymbol{a}_{k} \\
& \quad \boldsymbol{q}_{k}=\boldsymbol{q}_{k}-r_{j k} \boldsymbol{q}_{j} \\
& \text { end } \\
& r_{k k}=\left\|\boldsymbol{q}_{k}\right\|_{2} \\
& \boldsymbol{q}_{k}=\boldsymbol{q}_{k} / r_{k k} \\
& \text { end }
\end{aligned}
$$

- Resulting \boldsymbol{q}_{k} and $r_{j k}$ form reduced QR factorization of \boldsymbol{A}

Modified Gram-Schmidt

- Classical Gram-Schmidt procedure often suffers loss of orthogonality in finite-precision
- Also, separate storage is required for A, Q, and R, since original \boldsymbol{a}_{k} are needed in inner loop, so \boldsymbol{q}_{k} cannot overwrite columns of \boldsymbol{A}
- Both deficiencies are improved by modified Gram-Schmidt procedure, with each vector orthogonalized in turn against all subsequent vectors, so \boldsymbol{q}_{k} can overwrite \boldsymbol{a}_{k}

Modified Gram-Schmidt QR Factorization

- Modified Gram-Schmidt algorithm
for $k=1$ to n

$$
r_{k k}=\left\|\boldsymbol{a}_{k}\right\|_{2}
$$

$$
\boldsymbol{q}_{k}=\boldsymbol{a}_{k} / r_{k k}
$$

$$
\text { for } j=k+1 \text { to } n
$$

$$
r_{k j}=\boldsymbol{q}_{k}^{T} \boldsymbol{a}_{j}
$$

$$
\boldsymbol{a}_{j}=\boldsymbol{a}_{j}-r_{k j} \boldsymbol{q}_{k}
$$

end
end
< interactive example >

Rank Deficiency

- If $\operatorname{rank}(\boldsymbol{A})<n$, then QR factorization still exists, but yields singular upper triangular factor \boldsymbol{R}, and multiple vectors \boldsymbol{x} give minimum residual norm
- Common practice selects minimum residual solution \boldsymbol{x} having smallest norm
- Can be computed by QR factorization with column pivoting or by singular value decomposition (SVD)
- Rank of matrix is often not clear cut in practice, so relative tolerance is used to determine rank

Example: Near Rank Deficiency

- Consider 3×2 matrix

$$
\boldsymbol{A}=\left[\begin{array}{ll}
0.641 & 0.242 \\
0.321 & 0.121 \\
0.962 & 0.363
\end{array}\right]
$$

- Computing QR factorization,

$$
\boldsymbol{R}=\left[\begin{array}{cc}
1.1997 & 0.4527 \\
0 & 0.0002
\end{array}\right]
$$

- \boldsymbol{R} is extremely close to singular (exactly singular to 3-digit accuracy of problem statement)
- If \boldsymbol{R} is used to solve linear least squares problem, result is highly sensitive to perturbations in right-hand side
- For practical purposes, $\operatorname{rank}(\boldsymbol{A})=1$ rather than 2 , because columns are nearly linearly dependent

QR with Column Pivoting

- Instead of processing columns in natural order, select for reduction at each stage column of remaining unreduced submatrix having maximum Euclidean norm
- If $\operatorname{rank}(\boldsymbol{A})=k<n$, then after k steps, norms of remaining unreduced columns will be zero (or "negligible" in finite-precision arithmetic) below row k
- Yields orthogonal factorization of form

$$
\boldsymbol{Q}^{T} \boldsymbol{A} \boldsymbol{P}=\left[\begin{array}{ll}
\boldsymbol{R} & \boldsymbol{S} \\
\boldsymbol{O} & \boldsymbol{O}
\end{array}\right]
$$

where \boldsymbol{R} is $k \times k$, upper triangular, and nonsingular, and permutation matrix \boldsymbol{P} performs column interchanges

QR with Column Pivoting, continued

- Basic solution to least squares problem $\boldsymbol{A} \boldsymbol{x} \cong \boldsymbol{b}$ can now be computed by solving triangular system $\boldsymbol{R} \boldsymbol{z}=\boldsymbol{c}_{1}$, where \boldsymbol{c}_{1} contains first k components of $\boldsymbol{Q}^{T} \boldsymbol{b}$, and then taking

$$
x=P\left[\begin{array}{l}
z \\
0
\end{array}\right]
$$

- Minimum-norm solution can be computed, if desired, at expense of additional processing to annihilate S
- $\operatorname{rank}(\boldsymbol{A})$ is usually unknown, so rank is determined by monitoring norms of remaining unreduced columns and terminating factorization when maximum value falls below chosen tolerance
< interactive example >

Singular Value Decomposition

- Singular value decomposition (SVD) of $m \times n$ matrix \boldsymbol{A} has form

$$
\boldsymbol{A}=\boldsymbol{U} \boldsymbol{\Sigma} \boldsymbol{V}^{T}
$$

where \boldsymbol{U} is $m \times m$ orthogonal matrix, \boldsymbol{V} is $n \times n$ orthogonal matrix, and $\boldsymbol{\Sigma}$ is $m \times n$ diagonal matrix, with

$$
\sigma_{i j}= \begin{cases}0 & \text { for } i \neq j \\ \sigma_{i} \geq 0 & \text { for } i=j\end{cases}
$$

- Diagonal entries σ_{i}, called singular values of \boldsymbol{A}, are usually ordered so that $\sigma_{1} \geq \sigma_{2} \geq \cdots \geq \sigma_{n}$
- Columns \boldsymbol{u}_{i} of \boldsymbol{U} and \boldsymbol{v}_{i} of \boldsymbol{V} are called left and right singular vectors

Example: SVD

- SVD of $\boldsymbol{A}=\left[\begin{array}{ccc}1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \\ 10 & 11 & 12\end{array}\right]$ is given by $\boldsymbol{U} \boldsymbol{\Sigma} \boldsymbol{V}^{T}=$

$$
\left[\begin{array}{rrrr}
.141 & .825 & -.420 & -.351 \\
.344 & .426 & .298 & .782 \\
.547 & .0278 & .664 & -.509 \\
.750 & -.371 & -.542 & .0790
\end{array}\right]\left[\begin{array}{ccc}
25.5 & 0 & 0 \\
0 & 1.29 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right]\left[\begin{array}{rrr}
.504 & .574 & .644 \\
-.761 & -.057 & .646 \\
.408 & -.816 & .408
\end{array}\right]
$$

Applications of SVD

- Minimum norm solution to $\boldsymbol{A} \boldsymbol{x} \cong \boldsymbol{b}$ is given by

$$
\boldsymbol{x}=\sum_{\sigma_{i} \neq 0} \frac{\boldsymbol{u}_{i}^{T} \boldsymbol{b}}{\sigma_{i}} \boldsymbol{v}_{i}
$$

For ill-conditioned or rank deficient problems, "small" singular values can be omitted from summation to stabilize solution

- Euclidean matrix norm: $\|\boldsymbol{A}\|_{2}=\sigma_{\max }$
- Euclidean condition number of matrix: $\operatorname{cond}(\boldsymbol{A})=\frac{\sigma_{\max }}{\sigma_{\min }}$
- Rank of matrix: number of nonzero singular values

Pseudoinverse

- Define pseudoinverse of scalar σ to be $1 / \sigma$ if $\sigma \neq 0$, zero otherwise
- Define pseudoinverse of (possibly rectangular) diagonal matrix by transposing and taking scalar pseudoinverse of each entry
- Then pseudoinverse of general real $m \times n$ matrix \boldsymbol{A} is given by

$$
\boldsymbol{A}^{+}=\boldsymbol{V} \boldsymbol{\Sigma}^{+} \boldsymbol{U}^{T}
$$

- Pseudoinverse always exists whether or not matrix is square or has full rank
- If \boldsymbol{A} is square and nonsingular, then $\boldsymbol{A}^{+}=\boldsymbol{A}^{-1}$
- In all cases, minimum-norm solution to $\boldsymbol{A x} \cong \boldsymbol{b}$ is given by $\boldsymbol{x}=\boldsymbol{A}^{+} \boldsymbol{b}$

Orthogonal Bases

- SVD of matrix, $\boldsymbol{A}=\boldsymbol{U} \boldsymbol{\Sigma} \boldsymbol{V}^{T}$, provides orthogonal bases for subspaces relevant to \boldsymbol{A}
- Columns of \boldsymbol{U} corresponding to nonzero singular values form orthonormal basis for $\operatorname{span}(\boldsymbol{A})$
- Remaining columns of \boldsymbol{U} form orthonormal basis for orthogonal complement $\operatorname{span}(A)^{\perp}$
- Columns of V corresponding to zero singular values form orthonormal basis for null space of \boldsymbol{A}
- Remaining columns of V form orthonormal basis for orthogonal complement of null space of \boldsymbol{A}

Lower-Rank Matrix Approximation

- Another way to write SVD is

$$
\boldsymbol{A}=\boldsymbol{U} \boldsymbol{\Sigma} \boldsymbol{V}^{T}=\sigma_{1} \boldsymbol{E}_{1}+\sigma_{2} \boldsymbol{E}_{2}+\cdots+\sigma_{n} \boldsymbol{E}_{n}
$$

with $\boldsymbol{E}_{i}=\boldsymbol{u}_{i} \boldsymbol{v}_{i}^{T}$

- \boldsymbol{E}_{i} has rank 1 and can be stored using only $m+n$ storage locations
- Product $\boldsymbol{E}_{i} \boldsymbol{x}$ can be computed using only $m+n$ multiplications
- Condensed approximation to \boldsymbol{A} is obtained by omitting from summation terms corresponding to small singular values
- Approximation using k largest singular values is closest matrix of rank k to A
- Approximation is useful in image processing, data compression, information retrieval, cryptography, etc. < interactive example >

Total Least Squares

- Ordinary least squares is applicable when right-hand side \boldsymbol{b} is subject to random error but matrix \boldsymbol{A} is known accurately
- When all data, including \boldsymbol{A}, are subject to error, then total least squares is more appropriate
- Total least squares minimizes orthogonal distances, rather than vertical distances, between model and data
- Total least squares solution can be computed from SVD of $[\boldsymbol{A}, \boldsymbol{b}]$

Comparison of Methods

- Forming normal equations matrix $\boldsymbol{A}^{T} \boldsymbol{A}$ requires about $n^{2} m / 2$ multiplications, and solving resulting symmetric linear system requires about $n^{3} / 6$ multiplications
- Solving least squares problem using Householder QR factorization requires about $m n^{2}-n^{3} / 3$ multiplications
- If $m \approx n$, both methods require about same amount of work
- If $m \gg n$, Householder QR requires about twice as much work as normal equations
- Cost of SVD is proportional to $m n^{2}+n^{3}$, with proportionality constant ranging from 4 to 10 , depending on algorithm used

Comparison of Methods, continued

- Normal equations method produces solution whose relative error is proportional to $[\operatorname{cond}(\boldsymbol{A})]^{2}$
- Required Cholesky factorization can be expected to break down if $\operatorname{cond}(\boldsymbol{A}) \approx 1 / \sqrt{\epsilon_{\text {mach }}}$ or worse
- Householder method produces solution whose relative error is proportional to

$$
\operatorname{cond}(\boldsymbol{A})+\|\boldsymbol{r}\|_{2}[\operatorname{cond}(\boldsymbol{A})]^{2}
$$

which is best possible, since this is inherent sensitivity of solution to least squares problem

- Householder method can be expected to break down (in back-substitution phase) only if $\operatorname{cond}(\boldsymbol{A}) \approx 1 / \epsilon_{\text {mach }}$ or worse

Comparison of Methods, continued

- Householder is more accurate and more broadly applicable than normal equations
- These advantages may not be worth additional cost, however, when problem is sufficiently well conditioned that normal equations provide sufficient accuracy
- For rank-deficient or nearly rank-deficient problems, Householder with column pivoting can produce useful solution when normal equations method fails outright
- SVD is even more robust and reliable than Householder, but substantially more expensive

