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Integration

For f : R → R, definite integral over interval [a, b]

I(f) =
∫ b

a
f(x) dx

is defined by limit of Riemann sums

Rn =
n∑

i=1

(xi+1 − xi) f(ξi)

Riemann integral exists provided integrand f is bounded
and continuous almost everywhere

Absolute condition number of integration with respect to
perturbations in integrand is b− a

Integration is inherently well-conditioned because of its
smoothing effect
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Numerical Quadrature

Quadrature rule is weighted sum of finite number of
sample values of integrand function

To obtain desired level of accuracy at low cost,

How should sample points be chosen?
How should their contributions be weighted?

Computational work is measured by number of evaluations
of integrand function required
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Quadrature Rules

An n-point quadrature rule has form

Qn(f) =
n∑

i=1

wi f(xi)

Points xi are called nodes or abscissas

Multipliers wi are called weights

Quadrature rule is

open if a < x1 and xn < b

closed if a = x1 and xn = b
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Quadrature Rules, continued

Quadrature rules are based on polynomial interpolation

Integrand function f is sampled at finite set of points

Polynomial interpolating those points is determined

Integral of interpolant is taken as estimate for integral of
original function

In practice, interpolating polynomial is not determined
explicitly but used to determine weights corresponding to
nodes

If Lagrange is interpolation used, then weights are given by

wi =
∫ b

a
`i(x), i = 1, . . . , n
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Method of Undetermined Coefficients

Alternative derivation of quadrature rule uses method of
undetermined coefficients

To derive n-point rule on interval [a, b], take nodes
x1, . . . , xn as given and consider weights w1, . . . , wn as
coefficients to be determined

Force quadrature rule to integrate first n polynomial basis
functions exactly, and by linearity, it will then integrate any
polynomial of degree n− 1 exactly

Thus we obtain system of moment equations that
determines weights for quadrature rule
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Example: Undetermined Coefficients

Derive 3-point rule Q3(f) = w1f(x1) + w2f(x2) + w3f(x3)
on interval [a, b] using monomial basis

Take x1 = a, x2 = (a + b)/2, and x3 = b as nodes

First three monomials are 1, x, and x2

Resulting system of moment equations is

w1 · 1 + w2 · 1 + w3 · 1 =
∫ b

a

1 dx = x|ba = b− a

w1 · a + w2 · (a + b)/2 + w3 · b =
∫ b

a

x dx = (x2/2)|ba = (b2 − a2)/2

w1 · a2 + w2 · ((a + b)/2)2 + w3 · b2 =
∫ b

a

x2 dx = (x3/3)|ba = (b3 − a3)/3
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Example, continued

In matrix form, linear system is 1 1 1
a (a + b)/2 b
a2 ((a + b)/2)2 b2

w1

w2

w3

 =

 b− a
(b2 − a2)/2
(b3 − a3)/3



Solving system by Gaussian elimination, we obtain weights

w1 =
b− a

6
, w2 =

2(b− a)
3

, w3 =
b− a

6

which is known as Simpson’s rule
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Method of Undetermined Coefficients

More generally, for any n and choice of nodes x1, . . . , xn,
Vandermonde system

1 1 · · · 1
x1 x2 · · · xn
...

...
. . .

...
xn−1

1 xn−1
2 · · · xn−1

n




w1

w2
...

wn

 =


b− a

(b2 − a2)/2
...

(bn − an)/n


determines weights w1, . . . , wn
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Accuracy of Quadrature Rules

Quadrature rule is of degree d if it is exact for every
polynomial of degree d, but not exact for some polynomial
of degree d + 1

By construction, n-point interpolatory quadrature rule is of
degree at least n− 1

Rough error bound

|I(f)−Qn(f)| ≤ 1
4 hn+1 ‖f (n)‖∞

where h = max{xi+1 − xi : i = 1, . . . , n− 1}, shows that
Qn(f) → I(f) as n →∞, provided f (n) remains well
behaved

Higher accuracy can be obtained by increasing n or by
decreasing h
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Progressive Quadrature Rules

Sequence of quadrature rules is progressive if nodes of
Qn1 are subset of nodes of Qn2 for n2 > n1

For progressive rules, function evaluations used in one rule
can be reused in another, reducing overall cost

To attain higher accuracy, we can increase number of
points n or subdivide interval into smaller subintervals

In either case, efficiency is enhanced if successive rules
are progressive so that fewer new evaluations of integrand
are required
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Stability of Quadrature Rules

Absolute condition number of quadrature rule is sum of
magnitudes of weights,

n∑
i=1

|wi|

If weights are all nonnegative, then absolute condition
number of quadrature rule is b− a, same as that of
underlying integral, so rule is stable

If any weights are negative, then absolute condition
number can be much larger, and rule can be unstable
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Newton-Cotes Quadrature

Newton-Cotes quadrature rules use equally spaced nodes in
interval [a, b]

Midpoint rule

M(f) = (b− a)f
(

a + b

2

)
Trapezoid rule

T (f) =
b− a

2
(f(a) + f(b))

Simpson’s rule

S(f) =
b− a

6

(
f(a) + 4f

(
a + b

2

)
+ f(b)

)
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Example: Newton-Cotes Quadrature

Approximate integral I(f) =
∫ 1
0 exp(−x2) dx ≈ 0.746824

M(f) = (1− 0) exp(−1/4) ≈ 0.778801
T (f) = (1/2)[exp(0) + exp(−1)] ≈ 0.683940
S(f) = (1/6)[exp(0) + 4 exp(−1/4) + exp(−1)] ≈ 0.747180

< interactive example >
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Error Estimation

Expanding integrand f in Taylor series about midpoint
m = (a + b)/2 of interval [a, b],

f(x) = f(m) + f ′(m)(x−m) +
f ′′(m)

2
(x−m)2

+
f ′′′(m)

6
(x−m)3 +

f (4)(m)
24

(x−m)4 + · · ·

Integrating from a to b, odd-order terms drop out, yielding

I(f) = f(m)(b− a) +
f ′′(m)

24
(b− a)3 +

f (4)(m)
1920

(b− a)5 + · · ·

= M(f) + E(f) + F (f) + · · ·

where E(f) and F (f) represent first two terms in error
expansion for midpoint rule
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Error Estimation, continued

If we substitute x = a and x = b into Taylor series, add two
series together, observe once again that odd-order terms
drop out, solve for f(m), and substitute into midpoint rule,
we obtain

I(f) = T (f)− 2E(f)− 4F (f)− · · ·

Thus, provided length of interval is sufficiently small and
f (4) is well behaved, midpoint rule is about twice as
accurate as trapezoid rule

Halving length of interval decreases error in either rule by
factor of about 1/8
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Error Estimation, continued

Difference between midpoint and trapezoid rules provides
estimate for error in either of them

T (f)−M(f) = 3E(f) + 5F (f) + · · ·

so
E(f) ≈ T (f)−M(f)

3
Weighted combination of midpoint and trapezoid rules
eliminates E(f) term from error expansion

I(f) =
2
3
M(f) +

1
3
T (f)− 2

3
F (f) + · · ·

= S(f)− 2
3
F (f) + · · ·

which gives alternate derivation for Simpson’s rule and
estimate for its error
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Example: Error Estimation

We illustrate error estimation by computing approximate
value for integral

∫ 1
0 x2 dx = 1/3

M(f) = (1− 0)(1/2)2 = 1/4

T (f) =
1− 0

2
(02 + 12) = 1/2

E(f) ≈ (T (f)−M(f))/3 = (1/4)/3 = 1/12

Error in M(f) is about 1/12, error in T (f) is about −1/6

Also,

S(f) = (2/3)M(f)+(1/3)T (f) = (2/3)(1/4)+(1/3)(1/2) = 1/3

which is exact for this integral, as expected
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Accuracy of Newton-Cotes Quadrature
Since n-point Newton-Cotes rule is based on polynomial
interpolant of degree n− 1, we expect rule to have degree
n− 1

Thus, we expect midpoint rule to have degree 0, trapezoid
rule degree 1, Simpson’s rule degree 2, etc.

From Taylor series expansion, error for midpoint rule
depends on second and higher derivatives of integrand,
which vanish for linear as well as constant polynomials

So midpoint rule integrates linear polynomials exactly,
hence its degree is 1 rather than 0

Similarly, error for Simpson’s rule depends on fourth and
higher derivatives, which vanish for cubics as well as
quadratic polynomials, so Simpson’s rule is of degree 3
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Accuracy of Newton-Cotes Quadrature

In general, odd-order Newton-Cotes rule gains extra
degree beyond that of polynomial interpolant on which it is
based

n-point Newton-Cotes rule is of degree n− 1 if n is even,
but of degree n if n is odd

This phenomenon is due to cancellation of positive and
negative errors

< interactive example >
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Drawbacks of Newton-Cotes Rules

Newton-Cotes quadrature rules are simple and often
effective, but they have drawbacks

Using large number of equally spaced nodes may incur
erratic behavior associated with high-degree polynomial
interpolation (e.g., weights may be negative)

Indeed, every n-point Newton-Cotes rule with n ≥ 11 has at
least one negative weight, and

∑n
i=1 |wi| → ∞ as n →∞,

so Newton-Cotes rules become arbitrarily ill-conditioned

Newton-Cotes rules are not of highest degree possible for
number of nodes used
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Clenshaw-Curtis Quadrature

As with polynomial interpolation, use of Chebyshev points
produces better results

Improved accuracy results from good approximation
properties of interpolation at Chebyshev points

Weights are always positive and approximate integral
always converges to exact integral as n →∞

Quadrature rules using Chebyshev points are known as
Clenshaw-Curtis quadrature, which can be implemented
very efficiently

Clenshaw-Curtis quadrature has many attractive features,
but still does not have maximum possible degree for
number of nodes used
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Gaussian Quadrature

Gaussian quadrature rules are based on polynomial
interpolation, but nodes as well as weights are chosen to
maximize degree of resulting rule

With 2n parameters, we can attain degree of 2n− 1

Gaussian quadrature rules can be derived by method of
undetermined coefficients, but resulting system of moment
equations that determines nodes and weights is nonlinear

Also, nodes are usually irrational, even if endpoints of
interval are rational

Although inconvenient for hand computation, nodes and
weights are tabulated in advance and stored in subroutine
for use on computer
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Example: Gaussian Quadrature Rule

Derive two-point Gaussian rule on [−1, 1],

G2(f) = w1f(x1) + w2f(x2)

where nodes xi and weights wi are chosen to maximize
degree of resulting rule

We use method of undetermined coefficients, but now
nodes as well as weights are unknown parameters to be
determined

Four parameters are to be determined, so we expect to be
able to integrate cubic polynomials exactly, since cubics
depend on four parameters
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Example, continued

Requiring rule to integrate first four monomials exactly
gives moment equations

w1 + w2 =
∫ 1

−1
1 dx = x|1−1 = 2

w1x1 + w2x2 =
∫ 1

−1
x dx = (x2/2)|1−1 = 0

w1x
2
1 + w2x

2
2 =

∫ 1

−1
x2 dx = (x3/3)|1−1 = 2/3

w1x
3
1 + w2x

3
2 =

∫ 1

−1
x3 dx = (x4/4)|1−1 = 0
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Example, continued

One solution of this system of four nonlinear equations in
four unknowns is given by

x1 = −1/
√

3, x2 = 1/
√

3, w1 = 1, w2 = 1

Another solution reverses signs of x1 and x2

Resulting two-point Gaussian rule has form

G2(f) = f(−1/
√

3) + f(1/
√

3)

and by construction it has degree three

In general, for each n there is unique n-point Gaussian
rule, and it is of degree 2n− 1

Gaussian quadrature rules can also be derived using
orthogonal polynomials
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Change of Interval
Gaussian rules are somewhat more difficult to apply than
Newton-Cotes rules because weights and nodes are
usually derived for some specific interval, such as [−1, 1]

Given interval of integration [a, b] must be transformed into
standard interval for which nodes and weights have been
tabulated

To use quadrature rule tabulated on interval [α, β],∫ β

α
f(x) dx ≈

n∑
i=1

wif(xi)

to approximate integral on interval [a, b],

I(g) =
∫ b

a
g(t) dt

we must change variable from x in [α, β] to t in [a, b]
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Change of Interval, continued

Many transformations are possible, but simple linear
transformation

t =
(b− a)x + aβ − bα

β − α

has advantage of preserving degree of quadrature rule
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Gaussian Quadrature

Gaussian quadrature rules have maximal degree and
optimal accuracy for number of nodes used

Weights are always positive and approximate integral
always converges to exact integral as n →∞

Unfortunately, Gaussian rules of different orders have no
nodes in common (except possibly midpoint), so Gaussian
rules are not progressive

Thus, estimating error using Gaussian rules of different
order requires evaluating integrand function at full set of
nodes of both rules
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Progressive Gaussian Quadrature

Avoiding this additional work is motivation for Kronrod
quadrature rules

Such rules come in pairs, n-point Gaussian rule Gn, and
(2n + 1)-point Kronrod rule K2n+1, whose nodes are
optimally chosen subject to constraint that all nodes of Gn

are reused in K2n+1

(2n + 1)-point Kronrod rule is of degree 3n + 1, whereas
true (2n + 1)-point Gaussian rule would be of degree
4n + 1

In using Gauss-Kronrod pair, value of K2n+1 is taken as
approximation to integral, and error estimate is given by

(200|Gn −K2n+1|)1.5
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Progressive Gaussian Quadrature, continued

Because they efficiently provide high accuracy and reliable
error estimate, Gauss-Kronrod rules are among most
effective methods for numerical quadrature

They form basis for many quadrature routines available in
major software libraries

Pair (G7,K15) is commonly used standard

Patterson quadrature rules further extend this idea by
adding 2n + 2 optimally chosen nodes to 2n + 1 nodes of
Kronrod rule K2n+1, yielding progressive rule of degree
6n + 4

Gauss-Radau and Gauss-Lobatto rules specify one or both
endpoints, respectively, as nodes and then choose
remaining nodes and all weights to maximize degree

Michael T. Heath Scientific Computing 32 / 61



Numerical Integration
Numerical Differentiation
Richardson Extrapolation

Quadrature Rules
Adaptive Quadrature
Other Integration Problems

Composite Quadrature

Alternative to using more nodes and higher degree rule is
to subdivide original interval into subintervals, then apply
simple quadrature rule in each subinterval

Summing partial results then yields approximation to
overall integral

This approach is equivalent to using piecewise
interpolation to derive composite quadrature rule

Composite rule is always stable if underlying simple rule is
stable

Approximate integral converges to exact interval as
number of subintervals goes to infinity provided underlying
simple rule has degree at least zero
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Examples: Composite Quadrature

Subdivide interval [a, b] into k subintervals of length
h = (b− a)/k, letting xj = a + jh, j = 0, . . . , k

Composite midpoint rule

Mk(f) =
k∑

j=1

(xj−xj−1) f

(
xj−1 + xj

2

)
= h

k∑
j=1

f

(
xj−1 + xj

2

)

Composite trapezoid rule

Tk(f) =
k∑

j=1

(xj − xj−1)
2

(f(xj−1) + f(xj))

= h
(

1
2f(a) + f(x1) + · · ·+ f(xk−1) + 1

2f(b)
)
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Composite Quadrature Rules, continued

Composite quadrature offers simple means of estimating
error by using two different levels of subdivision, which is
easily made progressive

For example, halving interval length reduces error in
midpoint or trapezoid rule by factor of about 1/8

Halving width of each subinterval means twice as many
subintervals are required, so overall reduction in error is by
factor of about 1/4

If h denotes subinterval length, then dominant term in error
of composite midpoint or trapezoid rules is O(h2)

Dominant term in error of composite Simpson’s rule is
O(h4), so halving subinterval length reduces error by factor
of about 1/16
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Adaptive Quadrature

Composite quadrature rule with error estimate suggests
simple automatic quadrature procedure

Continue to subdivide all subintervals, say by half, until
overall error estimate falls below desired tolerance

Such uniform subdivision is grossly inefficient for many
integrands, however

More intelligent approach is adaptive quadrature, in which
domain of integration is selectively refined to reflect
behavior of particular integrand function
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Adaptive Quadrature, continued

Start with pair of quadrature rules whose difference gives
error estimate

Apply both rules on initial interval [a, b]

If difference between rules exceeds error tolerance,
subdivide interval and apply rules in each subinterval

Continue subdividing subintervals, as necessary, until
tolerance is met on all subintervals

Integrand is sampled densely in regions where it is difficult
to integrate and sparsely in regions where it is easy

< interactive example >
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Adaptive Quadrature, continued

Adaptive quadrature tends to be effective in practice, but it
can be fooled: both approximate integral and error
estimate can be completely wrong

Integrand function is sampled at only finite number of
points, so significant features of integrand may be missed

For example, interval of integration may be very wide but
“interesting” behavior of integrand may be confined to
narrow range

Sampling by automatic routine may miss interesting part of
integrand behavior, and resulting value for integral may be
completely wrong
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Adaptive Quadrature, continued

Adaptive quadrature routine may be inefficient in handling
discontinuities in integrand

For example, adaptive routine may use many function
evaluations refining region around discontinuity of
integrand

To prevent this, call quadrature routine separately to
compute integral on either side of discontinuity, avoiding
need to resolve discontinuity
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Integrating Tabular Data

If integrand is defined only by table of its values at discrete
points, then reasonable approach is to integrate piecewise
interpolant

For example, integrating piecewise linear interpolant to
tabular data gives composite trapezoid rule

Excellent method for integrating tabular data is to use
Hermite cubic or cubic spline interpolation

In effect, overall integral is computed by integrating each of
cubic pieces that make up interpolant

This facility is provided by many spline interpolation
packages
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Improper Integrals

To compute integral over infinite or semi-infinite interval, several
approaches are possible

Replace infinite limits of integration by carefully chosen
finite values

Transform variable of integration so that new interval is
finite, but care must be taken not to introduce singularities

Use quadrature rule designed for infinite interval
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Double Integrals

Approaches for evaluating double integrals include

Use automatic one-dimensional quadrature routine for
each dimension, one for outer integral and another for
inner integral

Use product quadrature rule resulting from applying
one-dimensional rule to successive dimensions

Use non-product quadrature rule for regions such as
triangles
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Multiple Integrals

To evaluate multiple integrals in higher dimensions, only
generally viable approach is Monte Carlo method

Function is sampled at n points distributed randomly in
domain of integration, and mean of function values is
multiplied by area (or volume, etc.) of domain to obtain
estimate for integral

Error in estimate goes to zero as 1/
√

n, so to gain one
additional decimal digit of accuracy requires increasing n
by factor of 100

For this reason, Monte Carlo calculations of integrals often
require millions of evaluations of integrand

< interactive example >
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Multiple Integrals, continued

Monte Carlo method is not competitive for dimensions one
or two, but strength of method is that its convergence rate
is independent of number of dimensions

For example, one million points in six dimensions amounts
to only ten points per dimension, which is much better than
any type of conventional quadrature rule would require for
same level of accuracy

< interactive example >
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Integral Equations

Typical integral equation has form∫ b

a
K(s, t)u(t) dt = f(s)

where kernel K and right-hand side f are known
functions, and unknown function u is to be determined

Solve numerically by discretizing variables and replacing
integral by quadrature rule

n∑
j=1

wjK(si, tj)u(tj) = f(si), i = 1, . . . n

This system of linear algebraic equations Ax = y, where
aij = wjK(si, tj), yi = f(si), and xj = u(tj), is solved for x
to obtain discrete sample of approximate values of u
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Integral Equations, continued

Though straightforward to solve formally, many integral
equations are extremely sensitive to perturbations in input
data, which are often subject to random experimental or
measurement errors

Resulting linear system is highly ill-conditioned

Techniques for coping with ill-conditioning include

Truncated SVD
Regularization
Constrained optimization
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Numerical Differentiation

Differentiation is inherently sensitive, as small
perturbations in data can cause large changes in result

Differentiation is inverse of integration, which is inherently
stable because of its smoothing effect

For example, two functions shown below have very similar
definite integrals but very different derivatives
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Numerical Differentiation, continued

To approximate derivative of function whose values are
known only at discrete set of points, good approach is to fit
some smooth function to given data and then differentiate
approximating function

If given data are sufficiently smooth, then interpolation may
be appropriate, but if data are noisy, then smoothing
approximating function, such as least squares spline, is
more appropriate

< interactive example >
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Finite Difference Approximations

Given smooth function f : R → R, we wish to approximate
its first and second derivatives at point x

Consider Taylor series expansions

f(x + h) = f(x) + f ′(x)h +
f ′′(x)

2
h2 +

f ′′′(x)
6

h3 + · · ·

f(x− h) = f(x)− f ′(x)h +
f ′′(x)

2
h2 − f ′′′(x)

6
h3 + · · ·

Solving for f ′(x) in first series, obtain forward difference
approximation

f ′(x) =
f(x + h)− f(x)

h
− f ′′(x)

2
h + · · · ≈ f(x + h)− f(x)

h

which is first-order accurate since dominant term in
remainder of series is O(h)
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Finite Difference Approximations, continued

Similarly, from second series derive backward difference
approximation

f ′(x) =
f(x)− f(x− h)

h
+

f ′′(x)
2

h + · · ·

≈ f(x)− f(x− h)
h

which is also first-order accurate

Subtracting second series from first series gives centered
difference approximation

f ′(x) =
f(x + h)− f(x− h)

2h
− f ′′′(x)

6
h2 + · · ·

≈ f(x + h)− f(x− h)
2h

which is second-order accurate
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Finite Difference Approximations, continued

Adding both series together gives centered difference
approximation for second derivative

f ′′(x) =
f(x + h)− 2f(x) + f(x− h)

h2
− f (4)(x)

12
h2 + · · ·

≈ f(x + h)− 2f(x) + f(x− h)
h2

which is also second-order accurate

Finite difference approximations can also be derived by
polynomial interpolation, which is less cumbersome than
Taylor series for higher-order accuracy or higher-order
derivatives, and is more easily generalized to unequally
spaced points
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Automatic Differentiation

Computer program expressing function is composed of
basic arithmetic operations and elementary functions, each
of whose derivatives is easily computed

Derivatives can be propagated through program by
repeated use of chain rule, computing derivative of function
step by step along with function itself

Result is true derivative of original function, subject only to
rounding error but suffering no discretization error

Software packages are available implementing this
automatic differentiation (AD) approach
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Richardson Extrapolation

In many problems, such as numerical integration or
differentiation, approximate value for some quantity is
computed based on some step size

Ideally, we would like to obtain limiting value as step size
approaches zero, but we cannot take step size arbitrarily
small because of excessive cost or rounding error

Based on values for nonzero step sizes, however, we may
be able to estimate value for step size of zero

One way to do this is called Richardson extrapolation
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Richardson Extrapolation, continued

Let F (h) denote value obtained with step size h

If we compute value of F for some nonzero step sizes, and
if we know theoretical behavior of F (h) as h → 0, then we
can extrapolate from known values to obtain approximate
value for F (0)

Suppose that

F (h) = a0 + a1h
p +O(hr)

as h → 0 for some p and r, with r > p

Assume we know values of p and r, but not a0 or a1

(indeed, F (0) = a0 is what we seek)
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Richardson Extrapolation, continued

Suppose we have computed F for two step sizes, say h
and h/q for some positive integer q

Then we have

F (h) = a0 + a1h
p +O(hr)

F (h/q) = a0 + a1(h/q)p +O(hr) = a0 + a1q
−php +O(hr)

This system of two linear equations in two unknowns a0

and a1 is easily solved to obtain

a0 = F (h) +
F (h)− F (h/q)

q−p − 1
+O(hr)

Accuracy of improved value, a0, is O(hr)
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Richardson Extrapolation, continued

Extrapolated value, though improved, is still only
approximate, not exact, and its accuracy is still limited by
step size and arithmetic precision used

If F (h) is known for several values of h, then extrapolation
process can be repeated to produce still more accurate
approximations, up to limitations imposed by
finite-precision arithmetic
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Example: Richardson Extrapolation

Use Richardson extrapolation to improve accuracy of finite
difference approximation to derivative of function sin(x) at
x = 1

Using first-order accurate forward difference
approximation, we have

F (h) = a0 + a1h +O(h2)

so p = 1 and r = 2 in this instance

Using step sizes of h = 0.5 and h/2 = 0.25 (i.e., q = 2), we
obtain

F (h) =
sin(1.5)− sin(1)

0.5
= 0.312048

F (h/2) =
sin(1.25)− sin(1)

0.25
= 0.430055
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Example, continued

Extrapolated value is then given by

F (0) = a0 = F (h)+
F (h)− F (h/2)

(1/2)− 1
= 2F (h/2)−F (h) = 0.548061

For comparison, correctly rounded result is
cos(1) = 0.540302

< interactive example >
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Example: Romberg Integration

As another example, evaluate∫ π/2

0
sin(x) dx

Using composite trapezoid rule, we have

F (h) = a0 + a1h
2 +O(h4)

so p = 2 and r = 4 in this instance

With h = π/2, F (h) = F (π/2) = 0.785398

With q = 2, F (h/2) = F (π/4) = 0.948059
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Example, continued

Extrapolated value is then given by

F (0) = a0 = F (h)+
F (h)− F (h/2)

2−2 − 1
=

4F (h/2)− F (h)
3

= 1.002280

which is substantially more accurate than values previously
computed (exact answer is 1)

< interactive example >
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Romberg Integration

Continued Richardson extrapolations using composite
trapezoid rule with successively halved step sizes is called
Romberg integration

It is capable of producing very high accuracy (up to limit
imposed by arithmetic precision) for very smooth
integrands

It is often implemented in automatic (though nonadaptive)
fashion, with extrapolations continuing until change in
successive values falls below specified error tolerance
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