Scientific Computing: An Introductory Survey
 Chapter 10 - Boundary Value Problems for Ordinary Differential Equations

Prof. Michael T. Heath

Department of Computer Science
University of Illinois at Urbana-Champaign

Copyright (C) 2002. Reproduction permitted for noncommercial, educational use only.

Outline

(1) Boundary Value Problems
(2) Numerical Methods for BVPs

Boundary Value Problems

- Side conditions prescribing solution or derivative values at specified points are required to make solution of ODE unique
- For initial value problem, all side conditions are specified at single point, say t_{0}
- For boundary value problem (BVP), side conditions are specified at more than one point
- k th order ODE, or equivalent first-order system, requires k side conditions
- For ODEs, side conditions are typically specified at endpoints of interval $[a, b]$, so we have two-point boundary value problem with boundary conditions (BC) at a and b.

Boundary Value Problems, continued

- General first-order two-point BVP has form

$$
\boldsymbol{y}^{\prime}=\boldsymbol{f}(t, \boldsymbol{y}), \quad a<t<b
$$

with $B C$

$$
\boldsymbol{g}(\boldsymbol{y}(a), \boldsymbol{y}(b))=\mathbf{0}
$$

where $\boldsymbol{f}: \mathbb{R}^{n+1} \rightarrow \mathbb{R}^{n}$ and $\boldsymbol{g}: \mathbb{R}^{2 n} \rightarrow \mathbb{R}^{n}$

- Boundary conditions are separated if any given component of g involves solution values only at a or at b, but not both
- Boundary conditions are linear if they are of form

$$
\boldsymbol{B}_{a} \boldsymbol{y}(a)+\boldsymbol{B}_{b} \boldsymbol{y}(b)=\boldsymbol{c}
$$

where $\boldsymbol{B}_{a}, \boldsymbol{B}_{b} \in \mathbb{R}^{n \times n}$ and $c \in \mathbb{R}^{n}$

- BVP is linear if ODE and BC are both linear

Example: Separated Linear Boundary Conditions

- Two-point BVP for second-order scalar ODE

$$
u^{\prime \prime}=f\left(t, u, u^{\prime}\right), \quad a<t<b
$$

with $B C$

$$
u(a)=\alpha, \quad u(b)=\beta
$$

is equivalent to first-order system of ODEs

$$
\left[\begin{array}{l}
y_{1}^{\prime} \\
y_{2}^{\prime}
\end{array}\right]=\left[\begin{array}{c}
y_{2} \\
f\left(t, y_{1}, y_{2}\right)
\end{array}\right], \quad a<t<b
$$

with separated linear BC

$$
\left[\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right]\left[\begin{array}{l}
y_{1}(a) \\
y_{2}(a)
\end{array}\right]+\left[\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right]\left[\begin{array}{l}
y_{1}(b) \\
y_{2}(b)
\end{array}\right]=\left[\begin{array}{l}
\alpha \\
\beta
\end{array}\right]
$$

Existence and Uniqueness

- Unlike IVP, with BVP we cannot begin at initial point and continue solution step by step to nearby points
- Instead, solution is determined everywhere simultaneously, so existence and/or uniqueness may not hold
- For example,

$$
u^{\prime \prime}=-u, \quad 0<t<b
$$

with BC

$$
u(0)=0, \quad u(b)=\beta
$$

with b integer multiple of π, has infinitely many solutions if $\beta=0$, but no solution if $\beta \neq 0$

Existence and Uniqueness, continued

- In general, solvability of BVP

$$
\boldsymbol{y}^{\prime}=\boldsymbol{f}(t, \boldsymbol{y}), \quad a<t<b
$$

with BC

$$
\boldsymbol{g}(\boldsymbol{y}(a), \boldsymbol{y}(b))=\mathbf{0}
$$

depends on solvability of algebraic equation

$$
\boldsymbol{g}(\boldsymbol{x}, \boldsymbol{y}(b ; \boldsymbol{x}))=\mathbf{0}
$$

where $\boldsymbol{y}(t ; \boldsymbol{x})$ denotes solution to ODE with initial condition $\boldsymbol{y}(a)=\boldsymbol{x}$ for $\boldsymbol{x} \in \mathbb{R}^{n}$

- Solvability of latter system is difficult to establish if \boldsymbol{g} is nonlinear

Existence and Uniqueness, continued

- For linear BVP, existence and uniqueness are more tractable
- Consider linear BVP

$$
\boldsymbol{y}^{\prime}=\boldsymbol{A}(t) \boldsymbol{y}+\boldsymbol{b}(t), \quad a<t<b
$$

where $\boldsymbol{A}(t)$ and $\boldsymbol{b}(t)$ are continuous, with BC

$$
\boldsymbol{B}_{a} \boldsymbol{y}(a)+\boldsymbol{B}_{b} \boldsymbol{y}(b)=\boldsymbol{c}
$$

- Let $\boldsymbol{Y}(t)$ denote matrix whose i th column, $\boldsymbol{y}_{i}(t)$, called i th mode, is solution to $\boldsymbol{y}^{\prime}=\boldsymbol{A}(t) \boldsymbol{y}$ with initial condition $\boldsymbol{y}(a)=\boldsymbol{e}_{i}$, ith column of identity matrix
- Then BVP has unique solution if, and only if, matrix

$$
\boldsymbol{Q} \equiv \boldsymbol{B}_{a} \boldsymbol{Y}(a)+\boldsymbol{B}_{b} \boldsymbol{Y}(b)
$$

is nonsingular

Existence and Uniqueness, continued

- Assuming Q is nonsingular, define

$$
\boldsymbol{\Phi}(t)=\boldsymbol{Y}(t) \boldsymbol{Q}^{-1}
$$

and Green's function

$$
\boldsymbol{G}(t, s)=\left\{\begin{array}{rr}
\boldsymbol{\Phi}(t) \boldsymbol{B}_{a} \boldsymbol{\Phi}(a) \boldsymbol{\Phi}^{-1}(s), & a \leq s \leq t \\
-\boldsymbol{\Phi}(t) \boldsymbol{B}_{b} \boldsymbol{\Phi}(b) \boldsymbol{\Phi}^{-1}(s), & t<s \leq b
\end{array}\right.
$$

- Then solution to BVP given by

$$
\boldsymbol{y}(t)=\boldsymbol{\Phi}(t) \boldsymbol{c}+\int_{a}^{b} \boldsymbol{G}(t, s) \boldsymbol{b}(s) d s
$$

- This result also gives absolute condition number for BVP

$$
\kappa=\max \left\{\|\boldsymbol{\Phi}\|_{\infty},\|\boldsymbol{G}\|_{\infty}\right\}
$$

Conditioning and Stability

- Conditioning or stability of BVP depends on interplay between growth of solution modes and boundary conditions
- For IVP, instability is associated with modes that grow exponentially as time increases
- For BVP, solution is determined everywhere simultaneously, so there is no notion of "direction" of integration in interval $[a, b]$
- Growth of modes increasing with time is limited by boundary conditions at b, and "growth" (in reverse) of decaying modes is limited by boundary conditions at a
- For BVP to be well-conditioned, growing and decaying modes must be controlled appropriately by boundary conditions imposed

Numerical Methods for BVPs

- For IVP, initial data supply all information necessary to begin numerical solution method at initial point and step forward from there
- For BVP, we have insufficient information to begin step-by-step numerical method, so numerical methods for solving BVPs are more complicated than those for solving IVPs
- We will consider four types of numerical methods for two-point BVPs
- Shooting
- Finite difference
- Collocation
- Galerkin

Shooting Method

- In statement of two-point BVP, we are given value of $u(a)$
- If we also knew value of $u^{\prime}(a)$, then we would have IVP that we could solve by methods discussed previously
- Lacking that information, we try sequence of increasingly accurate guesses until we find value for $u^{\prime}(a)$ such that when we solve resulting IVP, approximate solution value at $t=b$ matches desired boundary value, $u(b)=\beta$

Shooting Method, continued

- For given γ, value at b of solution $u(b)$ to IVP

$$
u^{\prime \prime}=f\left(t, u, u^{\prime}\right)
$$

with initial conditions

$$
u(a)=\alpha, \quad u^{\prime}(a)=\gamma
$$

can be considered as function of γ, say $g(\gamma)$

- Then BVP becomes problem of solving equation $g(\gamma)=\beta$
- One-dimensional zero finder can be used to solve this scalar equation

Example: Shooting Method

- Consider two-point BVP for second-order ODE

$$
u^{\prime \prime}=6 t, \quad 0<t<1
$$

with $B C$

$$
u(0)=0, \quad u(1)=1
$$

- For each guess for $u^{\prime}(0)$, we will integrate resulting IVP using classical fourth-order Runge-Kutta method to determine how close we come to hitting desired solution value at $t=1$
- For simplicity of illustration, we will use step size $h=0.5$ to integrate IVP from $t=0$ to $t=1$ in only two steps
- First, we transform second-order ODE into system of two first-order ODEs

$$
\boldsymbol{y}^{\prime}(t)=\left[\begin{array}{l}
y_{1}^{\prime}(t) \\
y_{2}^{\prime}(t)
\end{array}\right]=\left[\begin{array}{l}
y_{2} \\
6 t
\end{array}\right]
$$

Example, continued

- We first try guess for initial slope of $y_{2}(0)=1$

$$
\begin{aligned}
\boldsymbol{y}^{(1)} & =\boldsymbol{y}^{(0)}+\frac{h}{6}\left(k_{1}+2 k_{2}+2 k_{3}+k_{4}\right) \\
& =\left[\begin{array}{l}
0 \\
1
\end{array}\right]+\frac{0.5}{6}\left(\left[\begin{array}{l}
1 \\
0
\end{array}\right]+2\left[\begin{array}{l}
1.0 \\
1.5
\end{array}\right]+2\left[\begin{array}{l}
1.375 \\
1.500
\end{array}\right]+\left[\begin{array}{l}
1.75 \\
3.00
\end{array}\right]\right)=\left[\begin{array}{l}
0.625 \\
1.750
\end{array}\right] \\
\boldsymbol{y}^{(2)} & =\left[\begin{array}{l}
0.625 \\
1.750
\end{array}\right]+\frac{0.5}{6}\left(\left[\begin{array}{l}
1.75 \\
3.00
\end{array}\right]+2\left[\begin{array}{l}
2.5 \\
4.5
\end{array}\right]+2\left[\begin{array}{l}
2.875 \\
4.500
\end{array}\right]+\left[\begin{array}{l}
4 \\
6
\end{array}\right]\right)=\left[\begin{array}{l}
2 \\
4
\end{array}\right]
\end{aligned}
$$

- So we have hit $y_{1}(1)=2$ instead of desired value $y_{1}(1)=1$

Example, continued

- We try again, this time with initial slope $y_{2}(0)=-1$

$$
\begin{aligned}
\boldsymbol{y}^{(1)} & =\left[\begin{array}{r}
0 \\
-1
\end{array}\right]+\frac{0.5}{6}\left(\left[\begin{array}{r}
-1 \\
0
\end{array}\right]+2\left[\begin{array}{r}
-1.0 \\
1.5
\end{array}\right]+2\left[\begin{array}{r}
-0.625 \\
1.500
\end{array}\right]+\left[\begin{array}{r}
-0.25 \\
3.00
\end{array}\right]\right) \\
& =\left[\begin{array}{l}
-0.375 \\
-0.250
\end{array}\right] \\
\boldsymbol{y}^{(2)} & =\left[\begin{array}{l}
-0.375 \\
-0.250
\end{array}\right]+\frac{0.5}{6}\left(\left[\begin{array}{r}
-0.25 \\
3.00
\end{array}\right]+2\left[\begin{array}{l}
0.5 \\
4.5
\end{array}\right]+2\left[\begin{array}{l}
0.875 \\
4.500
\end{array}\right]+\left[\begin{array}{l}
2 \\
6
\end{array}\right]\right) \\
& =\left[\begin{array}{l}
0 \\
2
\end{array}\right]
\end{aligned}
$$

- So we have hit $y_{1}(1)=0$ instead of desired value $y_{1}(1)=1$, but we now have initial slope bracketed between -1 and 1

Example, continued

- We omit further iterations necessary to identify correct initial slope, which turns out to be $y_{2}(0)=0$

$$
\begin{aligned}
\boldsymbol{y}^{(1)} & =\left[\begin{array}{l}
0 \\
0
\end{array}\right]+\frac{0.5}{6}\left(\left[\begin{array}{l}
0 \\
0
\end{array}\right]+2\left[\begin{array}{l}
0.0 \\
1.5
\end{array}\right]+2\left[\begin{array}{l}
0.375 \\
1.500
\end{array}\right]+\left[\begin{array}{l}
0.75 \\
3.00
\end{array}\right]\right) \\
& =\left[\begin{array}{l}
0.125 \\
0.750
\end{array}\right] \\
\boldsymbol{y}^{(2)} & =\left[\begin{array}{l}
0.125 \\
0.750
\end{array}\right]+\frac{0.5}{6}\left(\left[\begin{array}{l}
0.75 \\
3.00
\end{array}\right]+2\left[\begin{array}{l}
1.5 \\
4.5
\end{array}\right]+2\left[\begin{array}{l}
1.875 \\
4.500
\end{array}\right]+\left[\begin{array}{l}
3 \\
6
\end{array}\right]\right) \\
& =\left[\begin{array}{l}
1 \\
3
\end{array}\right]
\end{aligned}
$$

- So we have indeed hit target solution value $y_{1}(1)=1$

Example, continued

Multiple Shooting

- Simple shooting method inherits stability (or instability) of associated IVP, which may be unstable even when BVP is stable
- Such ill-conditioning may make it difficult to achieve convergence of iterative method for solving nonlinear equation
- Potential remedy is multiple shooting, in which interval $[a, b]$ is divided into subintervals, and shooting is carried out on each
- Requiring continuity at internal mesh points provides BC for individual subproblems
- Multiple shooting results in larger system of nonlinear equations to solve

Finite Difference Method

- Finite difference method converts BVP into system of algebraic equations by replacing all derivatives with finite difference approximations
- For example, to solve two-point BVP

$$
u^{\prime \prime}=f\left(t, u, u^{\prime}\right), \quad a<t<b
$$

with $B C$

$$
u(a)=\alpha, \quad u(b)=\beta
$$

we introduce mesh points $t_{i}=a+i h, i=0,1, \ldots, n+1$, where $h=(b-a) /(n+1)$

- We already have $y_{0}=u(a)=\alpha$ and $y_{n+1}=u(b)=\beta$ from BC, and we seek approximate solution value $y_{i} \approx u\left(t_{i}\right)$ at each interior mesh point $t_{i}, i=1, \ldots, n$

Finite Difference Method, continued

- We replace derivatives by finite difference approximations such as

$$
\begin{aligned}
u^{\prime}\left(t_{i}\right) & \approx \frac{y_{i+1}-y_{i-1}}{2 h} \\
u^{\prime \prime}\left(t_{i}\right) & \approx \frac{y_{i+1}-2 y_{i}+y_{i-1}}{h^{2}}
\end{aligned}
$$

- This yields system of equations

$$
\frac{y_{i+1}-2 y_{i}+y_{i-1}}{h^{2}}=f\left(t_{i}, y_{i}, \frac{y_{i+1}-y_{i-1}}{2 h}\right)
$$

to be solved for unknowns $y_{i}, i=1, \ldots, n$

- System of equations may be linear or nonlinear, depending on whether f is linear or nonlinear

Finite Difference Method, continued

- For these particular finite difference formulas, system to be solved is tridiagonal, which saves on both work and storage compared to general system of equations
- This is generally true of finite difference methods: they yield sparse systems because each equation involves few variables

Example: Finite Difference Method

- Consider again two-point BVP

$$
u^{\prime \prime}=6 t, \quad 0<t<1
$$

with $B C$

$$
u(0)=0, \quad u(1)=1
$$

- To keep computation to minimum, we compute approximate solution at one interior mesh point, $t=0.5$, in interval $[0,1]$
- Including boundary points, we have three mesh points, $t_{0}=0, t_{1}=0.5$, and $t_{2}=1$
- From BC, we know that $y_{0}=u\left(t_{0}\right)=0$ and $y_{2}=u\left(t_{2}\right)=1$, and we seek approximate solution $y_{1} \approx u\left(t_{1}\right)$

Example, continued

- Replacing derivatives by standard finite difference approximations at t_{1} gives equation

$$
\frac{y_{2}-2 y_{1}+y_{0}}{h^{2}}=f\left(t_{1}, y_{1}, \frac{y_{2}-y_{0}}{2 h}\right)
$$

- Substituting boundary data, mesh size, and right hand side for this example we obtain

$$
\frac{1-2 y_{1}+0}{(0.5)^{2}}=6 t_{1}
$$

or

$$
4-8 y_{1}=6(0.5)=3
$$

so that

$$
y(0.5) \approx y_{1}=1 / 8=0.125
$$

Example, continued

- In a practical problem, much smaller step size and many more mesh points would be required to achieve acceptable accuracy
- We would therefore obtain system of equations to solve for approximate solution values at mesh points, rather than single equation as in this example
< interactive example >

Collocation Method

- Collocation method approximates solution to BVP by finite linear combination of basis functions
- For two-point BVP

$$
u^{\prime \prime}=f\left(t, u, u^{\prime}\right), \quad a<t<b
$$

with $B C$

$$
u(a)=\alpha, \quad u(b)=\beta
$$

we seek approximate solution of form

$$
u(t) \approx v(t, \boldsymbol{x})=\sum_{i=1}^{n} x_{i} \phi_{i}(t)
$$

where ϕ_{i} are basis functions defined on $[a, b]$ and \boldsymbol{x} is n-vector of parameters to be determined

Collocation Method

- Popular choices of basis functions include polynomials, B-splines, and trigonometric functions
- Basis functions with global support, such as polynomials or trigonometric functions, yield spectral method
- Basis functions with highly localized support, such as B-splines, yield finite element method

Collocation Method, continued

- To determine vector of parameters \boldsymbol{x}, define set of n collocation points, $a=t_{1}<\cdots<t_{n}=b$, at which approximate solution $v(t, \boldsymbol{x})$ is forced to satisfy ODE and boundary conditions
- Common choices of collocation points include equally-spaced points or Chebyshev points
- Suitably smooth basis functions can be differentiated analytically, so that approximate solution and its derivatives can be substituted into ODE and BC to obtain system of algebraic equations for unknown parameters \boldsymbol{x}

Example: Collocation Method

- Consider again two-point BVP

$$
u^{\prime \prime}=6 t, \quad 0<t<1
$$

with $B C$

$$
u(0)=0, \quad u(1)=1
$$

- To keep computation to minimum, we use one interior collocation point, $t=0.5$
- Including boundary points, we have three collocation points, $t_{0}=0, t_{1}=0.5$, and $t_{2}=1$, so we will be able to determine three parameters
- As basis functions we use first three monomials, so approximate solution has form

$$
v(t, \boldsymbol{x})=x_{1}+x_{2} t+x_{3} t^{2}
$$

Example, continued

- Derivatives of approximate solution function with respect to t are given by

$$
v^{\prime}(t, \boldsymbol{x})=x_{2}+2 x_{3} t, \quad v^{\prime \prime}(t, \boldsymbol{x})=2 x_{3}
$$

- Requiring ODE to be satisfied at interior collocation point $t_{2}=0.5$ gives equation

$$
v^{\prime \prime}\left(t_{2}, \boldsymbol{x}\right)=f\left(t_{2}, v\left(t_{2}, \boldsymbol{x}\right), v^{\prime}\left(t_{2}, \boldsymbol{x}\right)\right)
$$

or

$$
2 x_{3}=6 t_{2}=6(0.5)=3
$$

- Boundary condition at $t_{1}=0$ gives equation

$$
x_{1}+x_{2} t_{1}+x_{3} t_{1}^{2}=x_{1}=0
$$

- Boundary condition at $t_{3}=1$ gives equation

$$
x_{1}+x_{2} t_{3}+x_{3} t_{3}^{2}=x_{1}+x_{2}+x_{3}=1
$$

Example, continued

- Solving this system of three equations in three unknowns gives

$$
x_{1}=0, \quad x_{2}=-0.5, \quad x_{3}=1.5
$$

so approximate solution function is quadratic polynomial

$$
u(t) \approx v(t, \boldsymbol{x})=-0.5 t+1.5 t^{2}
$$

- At interior collocation point, $t_{2}=0.5$, we have approximate solution value

$$
u(0.5) \approx v(0.5, \boldsymbol{x})=0.125
$$

Example, continued

< interactive example >

Galerkin Method

- Rather than forcing residual to be zero at finite number of points, as in collocation, we could instead minimize residual over entire interval of integration
- For example, for scalar Poisson equation in one dimension,

$$
u^{\prime \prime}=f(t), \quad a<t<b
$$

with homogeneous BC

$$
u(a)=0, \quad u(b)=0
$$

subsitute approximate solution

$$
u(t) \approx v(t, \boldsymbol{x})=\sum_{i=1}^{n} x_{i} \phi_{i}(t)
$$

into ODE and define residual

Galerkin Method, continued

- Using least squares method, we can minimize

$$
F(\boldsymbol{x})=\frac{1}{2} \int_{a}^{b} r(t, \boldsymbol{x})^{2} d t
$$

by setting each component of its gradient to zero

- This yields symmetric system of linear algebraic equations $\boldsymbol{A x}=\boldsymbol{b}$, where

$$
a_{i j}=\int_{a}^{b} \phi_{j}^{\prime \prime}(t) \phi_{i}^{\prime \prime}(t) d t, \quad b_{i}=\int_{a}^{b} f(t) \phi_{i}^{\prime \prime}(t) d t
$$

whose solution gives vector of parameters \boldsymbol{x}

Galerkin Method, continued

- More generally, weighted residual method forces residual to be orthogonal to each of set of weight functions or test functions w_{i},

$$
\int_{a}^{b} r(t, \boldsymbol{x}) w_{i}(t) d t=0, \quad i=1, \ldots, n
$$

- This yields linear system $\boldsymbol{A x}=\boldsymbol{b}$, where now

$$
a_{i j}=\int_{a}^{b} \phi_{j}^{\prime \prime}(t) w_{i}(t) d t, \quad b_{i}=\int_{a}^{b} f(t) w_{i}(t) d t
$$

whose solution gives vector of parameters \boldsymbol{x}

Galerkin Method, continued

- Matrix resulting from weighted residual method is generally not symmetric, and its entries involve second derivatives of basis functions
- Both drawbacks are overcome by Galerkin method, in which weight functions are chosen to be same as basis functions, i.e., $w_{i}=\phi_{i}, i=1, \ldots, n$
- Orthogonality condition then becomes

$$
\int_{a}^{b} r(t, \boldsymbol{x}) \phi_{i}(t) d t=0, \quad i=1, \ldots, n
$$

or

$$
\int_{a}^{b} v^{\prime \prime}(t, \boldsymbol{x}) \phi_{i}(t) d t=\int_{a}^{b} f(t) \phi_{i}(t) d t, \quad i=1, \ldots, n
$$

Galerkin Method, continued

- Degree of differentiability required can be reduced using integration by parts, which gives

$$
\begin{aligned}
\int_{a}^{b} v^{\prime \prime}(t, \boldsymbol{x}) \phi_{i}(t) d t & =\left.v^{\prime}(t) \phi_{i}(t)\right|_{a} ^{b}-\int_{a}^{b} v^{\prime}(t) \phi_{i}^{\prime}(t) d t \\
& =v^{\prime}(b) \phi_{i}(b)-v^{\prime}(a) \phi_{i}(a)-\int_{a}^{b} v^{\prime}(t) \phi_{i}^{\prime}(t) d t
\end{aligned}
$$

- Assuming basis functions ϕ_{i} satisfy homogeneous boundary conditions, so $\phi_{i}(0)=\phi_{i}(1)=0$, orthogonality condition then becomes

$$
-\int_{a}^{b} v^{\prime}(t) \phi_{i}^{\prime}(t) d t=\int_{a}^{b} f(t) \phi_{i}(t) d t, \quad i=1, \ldots, n
$$

Galerkin Method, continued

- This yields system of linear equations $\boldsymbol{A x}=\boldsymbol{b}$, with

$$
a_{i j}=-\int_{a}^{b} \phi_{j}^{\prime}(t) \phi_{i}^{\prime}(t) d t, \quad b_{i}=\int_{a}^{b} f(t) \phi_{i}(t) d t
$$

whose solution gives vector of parameters \boldsymbol{x}

- \boldsymbol{A} is symmetric and involves only first derivatives of basis functions

Example: Galerkin Method

- Consider again two-point BVP

$$
u^{\prime \prime}=6 t, \quad 0<t<1
$$

with BC

$$
u(0)=0, \quad u(1)=1
$$

- We will approximate solution by piecewise linear polynomial, for which B-splines of degree 1 ("hat" functions) form suitable set of basis functions

- To keep computation to minimum, we again use same three mesh points, but now they become knots in

Example, continued

- Thus, we seek approximate solution of form

$$
u(t) \approx v(t, \boldsymbol{x})=x_{1} \phi_{1}(t)+x_{2} \phi_{2}(t)+x_{3} \phi_{3}(t)
$$

- From BC, we must have $x_{1}=0$ and $x_{3}=1$
- To determine remaining parameter x_{2}, we impose Galerkin orthogonality condition on interior basis function ϕ_{2} and obtain equation

$$
-\sum_{j=1}^{3}\left(\int_{0}^{1} \phi_{j}^{\prime}(t) \phi_{2}^{\prime}(t) d t\right) x_{j}=\int_{0}^{1} 6 t \phi_{2}(t) d t
$$

or, upon evaluating these simple integrals analytically

$$
2 x_{1}-4 x_{2}+2 x_{3}=3 / 2
$$

Example, continued

- Substituting known values for x_{1} and x_{3} then gives $x_{2}=1 / 8$ for remaining unknown parameter, so piecewise linear approximate solution is

$$
\begin{aligned}
& u(t) \approx v(t, \boldsymbol{x})=0.125 \phi_{2}(t)+\phi_{3}(t) \\
& 0.0
\end{aligned}
$$

- We note that $v(0.5, \boldsymbol{x})=0.125$

Example, continued

- More realistic problem would have many more interior mesh points and basis functions, and correspondingly many parameters to be determined
- Resulting system of equations would be much larger but still sparse, and therefore relatively easy to solve, provided local basis functions, such as "hat" functions, are used
- Resulting approximate solution function is less smooth than true solution, but nevertheless becomes more accurate as more mesh points are used
< interactive example >

Eigenvalue Problems

- Standard eigenvalue problem for second-order ODE has form

$$
u^{\prime \prime}=\lambda f\left(t, u, u^{\prime}\right), \quad a<t<b
$$

with $B C$

$$
u(a)=\alpha, \quad u(b)=\beta
$$

where we seek not only solution u but also parameter λ

- Scalar λ (possibly complex) is eigenvalue and solution u is corresponding eigenfunction for this two-point BVP
- Discretization of eigenvalue problem for ODE results in algebraic eigenvalue problem whose solution approximates that of original problem

Example: Eigenvalue Problem

- Consider linear two-point BVP

$$
u^{\prime \prime}=\lambda g(t) u, \quad a<t<b
$$

with $B C$

$$
u(a)=0, \quad u(b)=0
$$

- Introduce discrete mesh points t_{i} in interval $[a, b]$, with mesh spacing h and use standard finite difference approximation for second derivative to obtain algebraic system

$$
\frac{y_{i+1}-2 y_{i}+y_{i-1}}{h^{2}}=\lambda g_{i} y_{i}, \quad i=1, \ldots, n
$$

where $y_{i}=u\left(t_{i}\right)$ and $g_{i}=g\left(t_{i}\right)$, and from BC $y_{0}=u(a)=0$ and $y_{n+1}=u(b)=0$

Example, continued

- Assuming $g_{i} \neq 0$, divide equation i by g_{i} for $i=1, \ldots, n$, to obtain linear system

$$
\boldsymbol{A} \boldsymbol{y}=\lambda \boldsymbol{y}
$$

where $n \times n$ matrix \boldsymbol{A} has tridiagonal form

$$
\boldsymbol{A}=\frac{1}{h^{2}}\left[\begin{array}{ccccc}
-2 / g_{1} & 1 / g_{1} & 0 & \cdots & 0 \\
1 / g_{2} & -2 / g_{2} & 1 / g_{2} & \ddots & \vdots \\
0 & \ddots & \ddots & \ddots & 0 \\
\vdots & \ddots & 1 / g_{n-1} & -2 / g_{n-1} & 1 / g_{n-1} \\
0 & \cdots & 0 & 1 / g_{n} & -2 / g_{n}
\end{array}\right]
$$

- This standard algebraic eigenvalue problem can be solved by methods discussed previously

