The QR algorithm

The most common method for solving small (dense) eigenvalue problems. The basic algorithm:

QR without shifts
1. Until Convergence Do:
2. Compute the QR factorization $A = QR$
3. Set $A := RQ$
4. EndDo

“Until Convergence” means “Until A becomes close enough to an upper triangular matrix”

Note: $A_{new} = RQ = Q^H(QR)Q = Q^H AQ$

A_{new} Unitarily similar to A → Spectrum does not change

Convergence analysis complicated – but insight: we are implicitly doing a QR factorization of A^k:

QR-Factorize: Multiply backward:
Step 1: $A_0 = Q_0R_0$ $A_1 = R_0Q_0$
Step 2: $A_1 = Q_1R_1$ $A_2 = R_1Q_1$
Step 3: $A_2 = Q_2R_2$ $A_3 = R_2Q_2$ Then:

$[Q_0Q_1Q_2][R_2R_1R_0] = Q_0Q_1A_2R_1R_0$
$= Q_0(Q_1R_1)(Q_1R_1)R_0$
$= Q_0A_1A_1R_0$, $A_1 = R_0Q_0 \rightarrow$
$= \begin{pmatrix} Q_0R_0 & Q_0R_0 & Q_0R_0 \end{pmatrix} \begin{pmatrix} Q_0R_0 & Q_0R_0 & Q_0R_0 \end{pmatrix} = A^3$

$[Q_0Q_1Q_2][R_2R_1R_0] = QR$ factorization of A^3

This helps analyze the algorithm (details skipped)

Above basic algorithm is never used as is in practice. Two variations:

(1) Use shift of origin and
(2) Start by transforming A into an Hessenberg matrix
Practical QR algorithms: Shifts of origin

Observation: (from theory): Last row converges fastest. Convergence is dictated by $|\lambda_n|/|\lambda_{n-1}|$

→ We will now consider only the real symmetric case.

- Eigenvalues are real.
- $A^{(k)}$ remains symmetric throughout process.
- As k goes to infinity the last column and row (except $a_{nn}^{(k)}$) converge to zero quickly.,
- and $a_{nn}^{(k)}$ converges to lowest eigenvalue.

QR with shifts

1. Until row a_{in}, $1 \leq i < n$ converges to zero DO:
2. Obtain next shift (e.g. $\mu = a_{nn}$)
3. $A - \mu I = QR$
4. Set $A := RQ + \mu I$
5. EndDo

→ Convergence (of last row) is cubic at the limit! [for symmetric case]

Result of algorithm:

$$A^{(k)} = \begin{pmatrix} \ldots & \ldots & \ldots & \ldots & a \\ \ldots & \ldots & \ldots & \ldots & a \\ \ldots & \ldots & \ldots & \ldots & a \\ \ldots & \ldots & \ldots & \ldots & a \\ a & a & a & a & a & a \end{pmatrix}$$

→ Next step: deflate, i.e., apply above algorithm to $(n - 1) \times (n - 1)$ upper block.
Practical algorithm: Use the Hessenberg Form

Recall: Upper Hessenberg matrix is such that

\[a_{ij} = 0 \quad \text{for} \quad j < i - 1 \]

Observation: The QR algorithm preserves Hessenberg form (tridiagonal form in symmetric case). Results in substantial savings.

Transformation to Hessenberg form

- Want \(H_1 A H_1^T = H_1 A H_1 \) to have the form shown on the right.
- Consider the first step only on a \(6 \times 6 \) matrix.

\[
\begin{bmatrix}
\star & \star & \star & \star & \star & \star \\
\star & \star & \star & \star & \star & \star \\
0 & \star & \star & \star & \star & \star \\
0 & \star & \star & \star & \star & \star \\
0 & \star & \star & \star & \star & \star \\
0 & \star & \star & \star & \star & \star \\
\end{bmatrix}
\]

- Choose a \(w \) in \(H_1 = I - 2ww^T \) to make the first column have zeros from position 3 to \(n \). So \(w_1 = 0 \).
- Apply to left: \(B = H_1 A \)
- Apply to right: \(A_1 = BH_1 \).

Main observation: the Householder matrix \(H_1 \) which transforms the column \(A(2:n, 1) \) into \(e_1 \) works only on rows 2 to \(n \). When applying the transpose \(H_1 \) to the right of \(B = H_1 A \), we observe that only columns 2 to \(n \) will be altered. So the first column will retain the desired pattern (zeros below row 2).
- Algorithm continues the same way for columns 2, ..., \(n - 2 \).
QR for Hessenberg matrices

Need the “Implicit Q theorem”

Suppose that $Q^T A Q$ is an unreduced upper Hessenberg matrix. Then columns 2 to n of Q are determined uniquely (up to signs) by the first column of Q.

In other words if $V^T A V = G$ and $Q^T A Q = H$ are both Hessenberg and $V(:, 1) = Q(:, 1)$ then $V(:, i) = \pm Q(:, i)$ for $i = 2 : n$.

Implication: To compute $A_{i+1} = Q_i^T A Q_i$, we can:

- Compute 1st column of Q_i [== scalar $\times A(:, 1)$]
- Choose other columns so $Q_i = \text{unitary}$, and $A_{i+1} = \text{Hessenberg}$.

W’ll do this with Givens rotations:

Example: With $n = 5$:

\[
A = \begin{pmatrix} * & * & * & * & * \\ * & * & * & * & * \\ 0 & * & * & * & * \\ 0 & 0 & * & * & * \\ 0 & 0 & 0 & * & * \end{pmatrix}
\]

1. Choose $G_1 = G(1, 2, \theta_1)$ so that $(G_1^T A_0)_{21} = 0$

\[
A_1 = G_1^T A G_1 = \begin{pmatrix} * & * & * & * & * \\ * & * & * & * & * \\ + & * & * & * & * \\ 0 & 0 & * & * & * \\ 0 & 0 & 0 & * & * \end{pmatrix}
\]

2. Choose $G_2 = G(2, 3, \theta_2)$ so that $(G_2^T A_1)_{31} = 0$

\[
A_2 = G_2^T A_1 G_2 = \begin{pmatrix} * & * & * & * & * \\ * & * & * & * & * \\ 0 & * & * & * & * \\ 0 & + & * & * & * \\ 0 & 0 & 0 & * & * \end{pmatrix}
\]
3. Choose $G_3 = G(3, 4, \theta_3)$ so that $(G_3^TA_2)_{42} = 0$

$$A_3 = G_3^TA_2G_3 = \begin{pmatrix}
\ast & \ast & \ast & \ast & \ast \\
\ast & \ast & \ast & \ast & \ast \\
0 & \ast & \ast & \ast & \ast \\
0 & 0 & \ast & \ast & \ast \\
0 & 0 & 0 & \ast & \ast
\end{pmatrix}$$

4. Choose $G_4 = G(4, 5, \theta_4)$ so that $(G_4^TA_3)_{53} = 0$

$$A_4 = G_4^TA_3G_4 = \begin{pmatrix}
\ast & \ast & \ast & \ast & \ast \\
\ast & \ast & \ast & \ast & \ast \\
0 & \ast & \ast & \ast & \ast \\
0 & 0 & \ast & \ast & \ast \\
0 & 0 & 0 & \ast & \ast
\end{pmatrix}$$

Process known as “Bulge chasing”

Similar idea for the symmetric (tridiagonal) case

The symmetric eigenvalue problem: Basic facts

Consider the Schur form of a real symmetric matrix A:

$$A = Q R Q^H$$

Since $A^H = A$ then $R = R^H$

Eigenvalues of A are real and there is an orthonormal basis of eigenvectors of A.

In addition, Q can be taken to be real when A is real.

$$(A - \lambda I)(u + iv) = 0 \Rightarrow (A - \lambda I)u = 0 \ & (A - \lambda I)v = 0$$

Can select eigenvector to be either u or v.

The min-max theorem (Courant-Fischer)

Label eigenvalues decreasingly:
\[\lambda_1 \geq \lambda_2 \geq \cdots \geq \lambda_n \]

The eigenvalues of a Hermitian matrix \(A \) are characterized by the relation
\[\lambda_k = \max_{S, \dim(S)=k} \min_{x \in S, x \neq 0} \frac{(Ax, x)}{(x, x)} \]

Proof: Preparation: Since \(A \) is symmetric real (or Hermitian complex) there is an orthonormal basis of eigenvectors \(u_1, u_2, \ldots, u_n \). Express any vector \(x \) in this basis as \(x = \sum_{i=1}^{n} \alpha_i u_i \). Then: \((Ax, x)/(x, x) = [\sum \lambda_i |\alpha_i|^2]/[\sum |\alpha_i|^2] \).

(a) Let \(S \) be any subspace of dimension \(k \) and let \(W = \text{span}\{u_k, u_{k+1}, \ldots, u_n\} \).

A dimension argument (used before) shows that \(S \cap W \neq \{0\} \). So there is a non-zero \(x_w \) in \(S \cap W \). Express this \(x_w \) in the eigenbasis as \(x_w = \sum_{i=k}^{n} \alpha_i u_i \).

Then since \(\lambda_i \leq \lambda_k \) for \(i \leq k \) we have:
\[\frac{(Ax_w, x_w)}{(x_w, x_w)} = \frac{\sum_{i=k}^{n} \lambda_i |\alpha_i|^2}{\sum_{i=k}^{n} |\alpha_i|^2} \leq \lambda_k \]

So for any subspace \(S \) of dim. \(k \) we have \(\min_{x \in S, x \neq 0} (Ax, x)/(x, x) \leq \lambda_k \).

(b) We now take \(S^* = \text{span}\{u_1, u_2, \ldots, u_k\} \). Since \(\lambda_i \geq \lambda_k \) for \(i \leq k \), for this particular subspace we have:
\[\min_{x \in S^*, x \neq 0} (Ax, x)/(x, x) = \min_{x \in S^*, x \neq 0} \frac{\sum_{i=1}^{k} \lambda_i |\alpha_i|^2}{\sum_{i=k}^{n} |\alpha_i|^2} = \lambda_k. \]

(c) The results of (a) and (b) imply that the max over all subspaces \(S \) of dim. \(k \) of \(\min_{x \in S, x \neq 0} (Ax, x)/(x, x) \) is equal to \(\lambda_k \).

Consequences:
\[\lambda_1 = \max_{x \neq 0} \frac{(Ax, x)}{(x, x)} \quad \lambda_n = \min_{x \neq 0} \frac{(Ax, x)}{(x, x)} \]
Actually 4 versions of the same theorem. 2nd version:

\[\lambda_k = \min_{S, \dim(S) = n - k + 1} \max_{x \in S, x \neq 0} \frac{(Ax, x)}{(x, x)} \]

Other 2 versions come from ordering eigenvalues increasingly instead of decreasingly.

- Write down all 4 versions of the theorem
- Use the min-max theorem to show that \(\|A\|_2 = \sigma_1(A) \) - the largest singular value of \(A \).

The Law of Inertia (real symmetric matrices)

- Inertia of a matrix = \([m, z, p]\) with \(m\) = number of \(< 0\) eigenvalues, \(z\) = number of zero eigenvalues, and \(p\) = number of \(> 0\) eigenvalues.

Sylvester's Law of Inertia: If \(X \in \mathbb{R}^{n \times n}\) is nonsingular, then \(A\) and \(X^TAX\) have the same inertia.

- Terminology: \(X^TAX\) is congruent to \(A\)

- Interlacing Theorem: Denote the \(k \times k\) principal submatrix of \(A\) as \(A_k\), with eigenvalues \(\{\lambda_{[k]}^i\}_{i=1}^k\). Then

\[\lambda_{[k]}^1 \geq \lambda_{[k]}^{[k-1]} \geq \lambda_{[k]}^2 \geq \lambda_{[k]}^{[k-1]} \geq \cdots \lambda_{[k]}^{k-1} \geq \lambda_{[k]}^k \]

Example: \(\lambda_i\)'s = eigenvalues of \(A\), \(\mu_i\)'s = eigenvalues of \(A_{n-1}\):

\[\lambda_n \bullet \lambda_{n-1} \bullet \bullet \bullet \bullet \bullet \lambda_3 \lambda_2 \lambda_1 \]

\(\mu_{n-1}\) \(\mu_{n-2}\) \(\mu_2\) \(\mu_1\)

- Many uses.
- For example: interlacing theorem for roots of orthogonal polynomials

- Suppose that \(A = LDL^T\) where \(L\) is unit lower triangular, and \(D\) diagonal. How many negative eigenvalues does \(A\) have?

- Assume that \(A\) is tridiagonal. How many operations are required to determine the number of negative eigenvalues of \(A\)?
Devise an algorithm based on the inertia theorem to compute the i-th eigenvalue of a tridiagonal matrix.

Let $F \in \mathbb{R}^{m \times n}$, with $n < m$, and F of rank n.

What is the inertia of the matrix on the right: $\begin{pmatrix} I & F \\ F^T & 0 \end{pmatrix}$

[Hint: use a block LU factorization]

Note 1: Converse result also true: If A and B have same inertia they are congruent. [This part is easy to show]

Note 2: result also true for (complex) Hermitian matrices (X^HAX has same inertia as A).

Bisection algorithm for tridiagonal matrices:

- Goal: to compute i-th eigenvalue of A (tridiagonal)
- Get interval $[a, b]$ containing spectrum $[Gershgorin]$: $a \leq \lambda_n \leq \cdots \leq \lambda_1 \leq b$
- Let $\sigma = (a + b)/2 = \text{middle of interval}$
- Calculate $p = \text{number of positive eigenvalues of } A - \sigma I$
 - If $p \geq i$ then $\lambda_i \in (\sigma, b) \rightarrow \text{set } a := \sigma$
 - Else then $\lambda_i \in [a, \sigma] \rightarrow \text{set } b := \sigma$
- Repeat until $b - a$ is small enough.

The QR algorithm for symmetric matrices

- Most important method used: reduce to tridiagonal form and apply the QR algorithm with shifts.
- Householder transformation to Hessenberg form yields a tridiagonal matrix because $HAH^T = A_1$
 is symmetric and also of Hessenberg form \Rightarrow it is tridiagonal symmetric.

 Tridiagonal form preserved by QR similarity transformation

Practical method

- How to implement the QR algorithm with shifts?
 - It is best to use Givens rotations – can do a shifted QR step without explicitly shifting the matrix.
- Two most popular shifts:

 $s = a_{nn}$ and $s = \text{smallest e.v. of } A(n-1:n, n-1:n)$
Jacobi iteration - Symmetric matrices

- Main idea: Rotation matrices of the form
 \[J(p, q, \theta) = \begin{pmatrix}
 1 & \cdots & 0 & \cdots & 0 & 0 \\
 \vdots & \ddots & \vdots & \ddots & \vdots & \vdots \\
 0 & \cdots & c & \cdots & s & 0 \\
 \vdots & \ddots & \vdots & \ddots & \vdots & \vdots \\
 0 & \cdots & -s & \cdots & c & 0 \\
 0 & \cdots & 0 & \cdots & 1
 \end{pmatrix} \]

 \[c = \cos \theta \text{ and } s = \sin \theta \]

 are so that \(J(p, q, \theta)^T AJ(p, q, \theta) \) has a zero in position \((p, q)\) (and also \((q, p)\)).

- Frobenius norm of matrix is preserved – but diagonal elements become larger ➤ convergence to a diagonal.

Let \(B = J^T A J \) (where \(J \equiv J_{p,q,\theta} \)).

Look at 2 × 2 matrix \(B([p, q], [p, q]) \) (matlab notation)

Keep in mind that \(a_{pq} = a_{qp} \) and \(b_{pq} = b_{qp} \)

- Let \(B = \begin{pmatrix} b_{pp} & b_{pq} \\ b_{qp} & b_{qq} \end{pmatrix} \)

- \[\begin{pmatrix} c - s \\ s & c \end{pmatrix} \begin{pmatrix} a_{pp} & a_{pq} \\ a_{qp} & a_{qq} \end{pmatrix} \begin{pmatrix} c & s \\ -s & c \end{pmatrix} \]

 \[= \begin{pmatrix} c - s \\ s & c \end{pmatrix} \begin{pmatrix} ca_{pp} - sa_{pq} & sa_{pp} + ca_{pq} \\ ca_{qp} - sa_{qq} & sa_{pq} + ca_{qq} \end{pmatrix} \]

 \[= \begin{pmatrix} c^2a_{pp} + s^2a_{qq} - 2sc a_{pq} \\ c^2a_{qq} + s^2a_{pp} + 2sc a_{pq} \end{pmatrix} \]

Want:

\[(c^2 - s^2)a_{pq} - sc(a_{qq} - a_{pp}) = 0 \]

Letting \(t = s/c \) (\(= \tan \theta \)) ➤ quad. equation

\[t^2 + 2\tau t - 1 = 0 \]

Then:

\[c = \frac{1}{\sqrt{1 + t^2}}; \quad s = c * t \]

Implemented in matlab script \texttt{jacrot(A,p,q)} –
Define: $A_O = A - \text{Diag}(A) \equiv A \text{ 'with its diagonal entries replaced by zeros'}$

Observations: (1) Unitary transformations preserve $\|\cdot\|_F$. (2) Only changes are in rows and columns p and q.

Let $B = J^T A J$ (where $J \equiv J_{p,q,\theta}$). Then,

$$a_{pp}^2 + a_{qq}^2 + 2a_{pq}^2 = b_{pp}^2 + b_{qq}^2 + 2b_{pq}^2 = b_{pp}^2 + b_{qq}^2$$

because $b_{pq} = 0$. Then, a little calculation leads to:

$$\|B_O\|_F^2 = \|B\|_F^2 - \sum b_{ii}^2 = \|A\|_F^2 - \sum b_{ii}^2$$

$$= \|A\|_F^2 - \sum a_{ii}^2 + \sum a_{ii}^2 - \sum b_{ii}^2$$

$$= \|A_O\|_F^2 + (a_{pp}^2 + a_{qq}^2 - b_{pp}^2 - b_{qq}^2)$$

$$= \|A_O\|_F^2 - 2a_{pq}^2$$

$\|A_O\|_F$ will decrease from one step to the next.

Let $\|A_O\|_I = \max_{i \neq j} |a_{ij}|$. Show that

$$\|A_O\|_F \leq \sqrt{n(n-1)} \|A_O\|_I$$

Use this to show convergence in the case when largest entry is zeroed at each step.