CSCI 5304 Fall 2021

COMPUTATIONAL ASPECTS OF MATRIX THEORY

Class time: MW 4:00 – 5:15 pm
Room: Keller 3-230 or Online
Instructor: Daniel Boley

Lecture notes: http://www-users.cselabs.umn.edu/classes/Fall-2021/csci5304/

© Univ. of Minn August 27, 2021
VECTOR & MATRIX NORMS

- Inner products
- Vector norms
- Matrix norms
- Introduction to singular values
- Expressions of some matrix norms.
Inner products and Norms

Inner product of 2 vectors

- Inner product of 2 vectors x and y in \mathbb{R}^n:

$$x_1y_1 + x_2y_2 + \cdots + x_ny_n \text{ in } \mathbb{R}^n$$

Notation: (x, y) or $y^T x$

- For complex vectors

$$\langle x, y \rangle = x_1\bar{y}_1 + x_2\bar{y}_2 + \cdots + x_n\bar{y}_n \text{ in } \mathbb{C}^n$$

Note: $(x, y) = y^H x$

- On notation: Sometimes you will find $\langle ., . \rangle$ for $(., .)$ and A^* instead of A^H
Properties of Inner Product:

- $(x, y) = \overline{(y, x)}$.
- $(\alpha x + \beta y, z) = \alpha(x, z) + \beta(y, z)$ \hspace{1cm} \text{[Linearity]}
- $(x, x) \geq 0$ is always real and non-negative.
- $(x, x) = 0$ iff $x = 0$ (for finite dimensional spaces).
Given $A \in \mathbb{C}^{m \times n}$ then

$$(Ax, y) = (x, A^H y) \quad \forall \ x \in \mathbb{C}^n, \forall \ y \in \mathbb{C}^m$$
Norms are needed to measure lengths of vectors and closeness of two vectors. Examples of use: Estimate convergence rate of an iterative method; Estimate the error of an approximation to a given solution; ...
A vector norm on a vector space \mathbb{X} is a real-valued function on \mathbb{X}, which satisfies the following three conditions:

1. $\|x\| \geq 0$, $\forall x \in \mathbb{X}$, and $\|x\| = 0$ iff $x = 0$.
2. $\|\alpha x\| = |\alpha| \|x\|$, $\forall x \in \mathbb{X}$, $\forall \alpha \in \mathbb{C}$.
3. $\|x + y\| \leq \|x\| + \|y\|$, $\forall x, y \in \mathbb{X}$.

Third property is called the triangle inequality.
Important example: Euclidean norm on $\mathbb{X} = \mathbb{C}^n$,

$$\|x\|_2 = (x, x)^{1/2} = \sqrt{|x_1|^2 + |x_2|^2 + \ldots + |x_n|^2}$$

Show that when Q is orthogonal then $\|Qx\|_2 = \|x\|_2$
Most common vector norms in numerical linear algebra: special cases of the Hölder norms (for $p \geq 1$):

$$
\|x\|_p = \left(\sum_{i=1}^{n} |x_i|^p \right)^{1/p}.
$$

Find out (online search) how to show that these are indeed norms for any $p \geq 1$ (Not easy for 3rd requirement!)
Property:

- Limit of $\|x\|_p$ when $p \to \infty$ exists:

$$\lim_{p \to \infty} \|x\|_p = \max_{i=1}^n |x_i|$$

- Defines a norm denoted by $\|\cdot\|_\infty$.

- The cases $p = 1$, $p = 2$, and $p = \infty$ lead to the most important norms $\|\cdot\|_p$ in practice. These are:

$$\|x\|_1 = |x_1| + |x_2| + \cdots + |x_n|,$$

$$\|x\|_2 = \left[|x_1|^2 + |x_2|^2 + \cdots + |x_n|^2\right]^{1/2},$$

$$\|x\|_{\infty} = \max_{i=1,\ldots,n} |x_i|.$$
The Cauchy-Schwarz inequality (important) is:

\[|(x, y)| \leq \|x\|_2 \|y\|_2. \]

When do you have equality in the above relation?

Expand \((x + y, x + y)\). What does the Cauchy-Schwarz inequality imply?
The Hölder inequality (less important for $p \neq 2$) is:

$$|(x, y)| \leq \|x\|_p \|y\|_q,$$ with $\frac{1}{p} + \frac{1}{q} = 1$

Proof moved to supplement set #2.

Second triangle inequality: $|\|x\| - \|y\| | \leq \|x - y\|$.

Consider the metric $d(x, y) = \max_i |x_i - y_i|$. Show that any norm in \mathbb{R}^n is a continuous function with respect to this metric.
Equivalence of norms:

In finite dimensional spaces \((\mathbb{R}^n, \mathbb{C}^n, ..)\) all norms are ‘equivalent’: if \(\phi_1\) and \(\phi_2\) are two norms then there exists positive constants \(\alpha, \beta\) such that:

\[
\beta \phi_2(x) \leq \phi_1(x) \leq \alpha \phi_2(x).
\]

How can you prove this result? [Hint: Show for \(\phi_2 = \| \cdot \|_\infty\)]
We can bound one norm in terms of any other norm.

Show that for any x: $\frac{1}{\sqrt{n}} \| x \|_1 \leq \| x \|_2 \leq \| x \|_1$

What are the “unit balls” $B_p = \{ x \mid \| x \|_p \leq 1 \}$ associated with the norms $\| \cdot \|_p$ for $p = 1, 2, \infty$, in \mathbb{R}^2?
Convergence of vector sequences

A sequence of vectors $x^{(k)}$, $k = 1, \ldots, \infty$ converges to a vector x with respect to the norm $\|\cdot\|$ if, by definition,

$$\lim_{k \to \infty} \|x^{(k)} - x\| = 0$$

Important point: because all norms in \mathbb{R}^n are equivalent, the convergence of $x^{(k)}$ w.r.t. a given norm implies convergence w.r.t. any other norm.

Notation:

$$\lim_{k \to \infty} x^{(k)} = x$$
Example: The sequence

\[x^{(k)} = \begin{pmatrix} 1 + 1/k \\ k/k + \log_2 k \\ 1/k \end{pmatrix} \]

converges to

\[x = \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix} \]

Note: Convergence of \(x^{(k)} \) to \(x \) is the same as the convergence of each individual component \(x_i^{(k)} \) of \(x^{(k)} \) to the corresponding component \(x_i \) of \(x \).
Matrix norms

Can define matrix norms by considering $m \times n$ matrices as vectors in \mathbb{R}^{mn}. These norms satisfy the usual properties of vector norms, i.e.,

1. $\|A\| \geq 0$, $\forall A \in \mathbb{C}^{m\times n}$, and $\|A\| = 0$ iff $A = 0$
2. $\|\alpha A\| = |\alpha|\|A\|$, $\forall A \in \mathbb{C}^{m\times n}$, $\forall \alpha \in \mathbb{C}$
3. $\|A + B\| \leq \|A\| + \|B\|$, $\forall A, B \in \mathbb{C}^{m\times n}$.

However, these will lack (in general) the right properties for composition of operators (product of matrices).

The case of $\|\cdot\|_2$ yields the Frobenius norm of matrices.
Given a matrix A in $\mathbb{C}^{m \times n}$, define the set of matrix norms

$$
\|A\|_p = \max_{x \in \mathbb{C}^n, x \neq 0} \frac{\|Ax\|_p}{\|x\|_p}.
$$

These norms satisfy the usual properties of vector norms (see previous page).

The matrix norm $\|\cdot\|_p$ is induced by the vector norm $\|\cdot\|_p$.

Again, important cases are for $p = 1, 2, \infty$.

Show that

$$
\|A\|_p = \max_{x \in \mathbb{C}^n, \|x\|_p = 1} \|Ax\|_p
$$
A fundamental property of matrix norms is consistency

\[\| AB \|_p \leq \| A \|_p \| B \|_p. \]

[Also termed “sub-multiplicativity”]

Consequence: (for square matrices) \[\| A^k \|_p \leq \| A \|_p^k \]

\[A^k \] converges to zero if any of its \(p \)-norms is \(< 1\)

[Note: sufficient but not necessary condition]
The Frobenius norm of a matrix is defined by

\[\| A \|_F = \left(\sum_{j=1}^{n} \sum_{i=1}^{m} |a_{ij}|^2 \right)^{1/2}. \]

- Same as the 2-norm of the column vector in \(\mathbb{C}^{mn} \) consisting of all the columns (respectively rows) of \(A \).
- This norm is also consistent [but not induced from a vector norm]
Compute the Frobenius norms of the matrices

\[
\begin{pmatrix}
1 & 1 \\
1 & 0 \\
3 & 2
\end{pmatrix}
\quad
\begin{pmatrix}
1 & 2 & -1 \\
-1 & \sqrt{5} & 0 \\
-1 & 1 & \sqrt{2}
\end{pmatrix}
\]

Prove that the Frobenius norm is consistent [Hint: Use Cauchy-Schwarz]

Define the ‘vector 1-norm’ of a matrix \(A \) as the 1-norm of the vector of stacked columns of \(A \). Is this norm a consistent matrix norm?

[Hint: Result is true – Use Cauchy-Schwarz to prove it.]
Expressions of standard matrix norms

Recall the notation: (for square $n \times n$ matrices)

$$\rho(A) = \max |\lambda_i(A)|; \quad \text{Tr}(A) = \sum_{i=1}^{n} a_{ii} = \sum_{i=1}^{n} \lambda_i(A)$$

where $\lambda_i(A)$, $i = 1, 2, \ldots, n$ are all eigenvalues of A

$$\|A\|_1 = \max_{j=1,\ldots,n} \sum_{i=1}^{m} |a_{ij}|,$$

$$\|A\|_{\infty} = \max_{i=1,\ldots,m} \sum_{j=1}^{n} |a_{ij}|,$$

$$\|A\|_2 = \left[\rho(A^H A) \right]^{1/2} = \left[\rho(A A^H) \right]^{1/2},$$

$$\|A\|_F = \left[\text{Tr} (A^H A) \right]^{1/2} = \left[\text{Tr} (A A^H) \right]^{1/2}.$$
Compute the p-norm for $p = 1, 2, \infty, F$ for the matrix $A = \begin{pmatrix} 0 & 2 \\ 0 & 1 \end{pmatrix}$.

Show that $\rho(A) \leq \|A\|$ for any matrix norm.

Is $\rho(A)$ a norm?
1. \(\rho(A) = \|A\|_2 \) when \(A \) is Hermitian \((A^H = A) \). True for this particular case...

2. ... However, not true in general. For \(A = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} \), we have \(\rho(A) = 0 \) while \(A \neq 0 \). Also, triangle inequality not satisfied for the pair \(A \), and \(B = A^T \). Indeed, \(\rho(A + B) = 1 \) while \(\rho(A) + \rho(B) = 0 \).

Given a function \(f(t) \) (e.g., \(e^t \)) how would you define \(f(A) \)? [Was seen earlier. Here you need to fully justify answer. Assume \(A \) is diagonalizable]
Singular values and matrix norms

Let $A \in \mathbb{R}^{m \times n}$ or $A \in \mathbb{C}^{m \times n}$

Eigenvalues of $A^H A$ & AA^H are real ≥ 0. Show this.

Let

$$
\begin{cases}
\sigma_i = \sqrt{\lambda_i(A^H A)} & i = 1, \ldots, n \text{ if } n \leq m \\
\sigma_i = \sqrt{\lambda_i(AA^H)} & i = 1, \ldots, m \text{ if } m < n
\end{cases}
$$

The σ_i's are called singular values of A.

Note: a total of $\min(m, n)$ singular values.

Always sorted decreasingly: $\sigma_1 \geq \sigma_2 \geq \sigma_3 \geq \cdots \sigma_k \geq \cdots$

We will see a lot more on singular values later
Assume we have \(r \) nonzero singular values (with \(r \leq \min\{m, n\} \)):

\[
\sigma_1 \geq \sigma_2 \geq \cdots \geq \sigma_r > 0
\]

Then:

- \(\|A\|_2 = \sigma_1 \)
- \(\|A\|_F = \left[\sum_{i=1}^{r} \sigma_i^2\right]^{1/2} \)
More generally: Schatten p-norm ($p \geq 1$) defined by

$$\|A\|_{*,p} = \left[\sum_{i=1}^{r} \sigma_i^p\right]^{1/p}$$

Note: $\|A\|_{*,p} = p$-norm of vector $[\sigma_1; \sigma_2; \cdots; \sigma_r]$.

In particular: $\|A\|_{*,1} = \sum \sigma_i$ is called the nuclear norm and is denoted by $\|A\|_*$. (Common in machine learning).
A few properties of the 2-norm and the F-norm

Let \(A = uv^T \). Then \(\| A \|_2 = \| u \|_2 \| v \|_2 \)

Prove this result

In this case \(\| A \|_F = \) ??

For any \(A \in \mathbb{C}^{m \times n} \) and unitary matrix \(Q \in \mathbb{C}^{m \times m} \) we have
\[
\| QA \|_2 = \| A \|_2; \quad \| QA \|_F = \| A \|_F.
\]
Show that the result is true for any orthogonal matrix Q (Q has orthonormal columns), i.e., when $Q \in \mathbb{C}^{p \times m}$ with $p > m$.

Let $Q \in \mathbb{C}^{n \times n}$, unitary. Do we have $\|AQ\|_2 = \|A\|_2$? $\|AQ\|_F = \|A\|_F$? What if $Q \in \mathbb{C}^{n \times p}$, with $p < n$ (and $Q^H Q = I$)?