C S C I 5304

COMPUTATIONAL ASPECTS OF MATRIX THEORY

Class time : MW 4:00 – 5:15 pm
Room : Keller 3-230 or Online
Instructor : Daniel Boley

Lecture notes: http://www-users.cselabs.umn.edu/classes/Fall-2021/csci5304/

August 27, 2021
SYMMETRIC POSITIVE DEFINITE (SPD) MATRICES

SPD LINEAR SYSTEMS

- Symmetric positive definite matrices.
- The $LDLT$ decomposition; The Cholesky factorization
A real matrix is said to be positive definite if

\[(Au, u) > 0 \text{ for all } u \neq 0 \in \mathbb{R}^n\]

Let \(A\) be a real positive definite matrix. Then there is a scalar \(\alpha > 0\) such that

\[(Au, u) \geq \alpha \|u\|^2_2.\]
Consider now the case of Symmetric Positive Definite (SPD) matrices.

Consequence 1: \mathbf{A} is nonsingular

Consequence 2: the eigenvalues of \mathbf{A} are (real) positive
A few properties of SPD matrices

- Diagonal entries of A are positive
- Recall: the k-th principal submatrix A_k is the $k \times k$ submatrix of A with entries a_{ij}, $1 \leq i, j \leq k$ (Matlab: $A(1:k, 1:k)$).

1. Each A_k is SPD
2. Consequence: $\text{Det}(A_k) > 0$ for $k = 1, \ldots, n$. In fact A is SPD iff this condition holds.
If A is SPD then for any $n \times k$ matrix X of rank k, the matrix X^TAX is SPD.
The mapping:

\[(x, y) \rightarrow (x, y)_A \equiv (Ax, y) \]

defines a proper inner product on \(\mathbb{R}^n \). The associated norm, denoted by \(\| \cdot \|_A \), is called the energy norm, or simply the A-norm:

\[
\| x \|_A = (Ax, x)^{1/2} = \sqrt{x^T A x}
\]

Related measure in Machine Learning, Vision, Statistics: the Mahalanobis distance between two vectors:

\[
d_A(x, y) = \| x - y \|_A = \sqrt{(x - y)^T A (x - y)}
\]

Appropriate distance (measured in \# standard deviations) if \(x \) is a sample generated by a Gaussian distribution with covariance matrix \(A \) and center \(y \).
More terminology

- A matrix is Positive Semi-Definite if:
 \[(Au, u) \geq 0 \text{ for all } u \in \mathbb{R}^n\]

- Eigenvalues of symmetric positive semi-definite matrices are real nonnegative, i.e., ...

- ... \(A\) can be singular [If not, \(A\) is SPD]

- A matrix is said to be Negative Definite if \(-A\) is positive definite. Similar definition for Negative Semi-Definite
A matrix that is neither positive semi-definite nor negative semi-definite is indefinite

Show that if $A^T = A$ and $(Ax, x) = 0 \ \forall x$ then $A = 0$

Show: $A \neq 0$ is indefinite iff $\exists x, y : (Ax, x)(Ay, y) < 0$
The (standard) LU factorization of an SPD matrix A exists

Let $A = LU$ and $D = \text{diag}(U)$ and set $M \equiv (D^{-1}U)^T$.

Then

$$A = LU = LD(D^{-1}U) = LD(M^T)$$

Both L and M are unit lower triangular.
Consider \(L^{-1} A L^{-T} = D M^T L^{-T} \)

Matrix on the right is upper triangular. But it is also symmetric. Therefore \(M^T L^{-T} = I \) and so \(M = L \)
Alternative proof: exploit uniqueness of LU factorization without pivoting + symmetry: \(A = LDM^T = MDL^T \rightarrow M = L \)

The diagonal entries of \(D \) are positive [Proof: consider \(L^{-1}AL^{-T} = D \)]. In the end:

\[
A = LDL^T = GG^T \text{ where } G = LD^{1/2}
\]

Cholesky factorization is a specialization of the LU factorization for the SPD case. Several variants exist.
First algorithm: row-oriented LDLT

Adapted from Gaussian Elimination. Main observation: The working matrix $A(k+1:n, k+1:n)$ in standard LU remains symmetric.

→ Work only on its upper triangular part & ignore lower part
1. For \(k = 1 : n - 1 \) Do:
2. For \(i = k + 1 : n \) Do:
3. \(\text{piv} := a(k, i)/a(k, k) \)
4. \(a(i, i : n) := a(i, i : n) - \text{piv} \times a(k, i : n) \)
5. End
6. End

This will give the U matrix of the LU factorization. Therefore \(D = \text{diag}(U) \), \(L^T = D^{-1}U \).
Row-Cholesky (outer product form)

Scale the rows as the algorithm proceeds. Line 4 becomes

\[a(i, :) := a(i, :) - \left[a(k, i) / \sqrt{a(k, k)} \right] \ast \left[a(k, :) / \sqrt{a(k, k)} \right] \]

ALGORITHM : 1. Outer product Cholesky

1. **For** \(k = 1 : n \) **Do:**
2. \(A(k, k : n) = A(k, k : n) / \sqrt{A(k, k)} \);
3. **For** \(i := k + 1 : n \) **Do**:
4. \(A(i, i : n) = A(i, i : n) - A(k, i) \ast A(k, i : n); \)
5. **End**
6. **End**

\[\text{Result: Upper triangular matrix } U \text{ such } A = U^T U. \]
Example:

\[A = \begin{pmatrix} 1 & -1 & 2 \\ -1 & 5 & 0 \\ 2 & 0 & 9 \end{pmatrix} \]

- Is \(A \) symmetric positive definite?
- What is the \(LDL^T \) factorization of \(A \)?
- What is the Cholesky factorization of \(A \)?
Column Cholesky. Let $A = GG^T$ with $G =$ lower triangular. Then equate j-th columns:

$$a(:, j) = \sum_{k=1}^{j} g(:, k)g^T(k, j) \rightarrow$$

$$A(:, j) = \sum_{k=1}^{j} G(j, k)G(:, k)$$

$$= G(j, j)G(:, j) + \sum_{k=1}^{j-1} G(j, k)G(:, k) \rightarrow$$

$$G(j, j)G(:, j) = A(:, j) - \sum_{k=1}^{j-1} G(j, k)G(:, k)$$
Assume that first $j - 1$ columns of G already known.

Compute unscaled column-vector:

$$v = A(:, j) - \sum_{k=1}^{j-1} G(j, k)G(:, k)$$

Notice that $v(j) \equiv G(j, j)^2$.

Compute $\sqrt{v(j)}$ and scale v to get j-th column of G.
ALGORITHM 2. Column Cholesky

1. For $j = 1 : n$ do
2. For $k = 1 : j - 1$ do
3. $A(j : n, j) = A(j : n, j) - A(j, k) \times A(j : n, k)$
4. EndDo
5. If $A(j, j) \leq 0$ ExitError(“Matrix not SPD”)
6. $A(j, j) = \sqrt{A(j, j)}$
7. $A(j + 1 : n, j) = A(j + 1 : n, j)/A(j, j)$
8. EndDo

Try algorithm on:

$$A = \begin{pmatrix} 1 & -1 & 2 \\ -1 & 5 & 0 \\ 2 & 0 & 9 \end{pmatrix}$$