## Approximate inference (Ch. 14)



## Bayesian Network: Efficiency

Last time we talked about how exact inference is fine if you have a polytree

Otherwise, exact inference is exponential $\mathrm{O}\left(2^{\mathrm{n}}\right)$ and not really feasible

Instead we use an approximate approach, specifically we will look at Monte Carlo approaches that utilize sampling
(this let's use balance runtime with accuracy)

## Sampling

Sampling can mean different things:
(1) Sample an unknown distribution

- Much like running an experiment

Tickle friend's nose while asleep ... see how many times they react
(2) Sample from a known distribution - Might also call this "simulation" $\begin{gathered}\text { we will } \\ \text { wsentis }\end{gathered}-$ Generate a random number to decide use this way outcome of an event

## Direct Sampling

The first method is called direct sampling, which is basically just running a simulation and tallying the results

Today we will use this simple Bay-net(work):

$$
\begin{array}{llll}
P(a) & 0.2 & P(c \mid a, b) & 1
\end{array}
$$

B


$$
\begin{array}{ll}
\mathrm{P}(c \mid a, b) & 1 \\
\mathrm{P}(c \mid a, \neg b) & 0.7 \\
\mathrm{P}(\mathrm{c} \mid \neg a, b) & 0.3 \\
\mathrm{P}(\mathrm{c} \mid \neg \mathrm{a}, \neg \mathrm{~b}) & 0
\end{array}
$$

## Direct Sampling

Direct Sampling algorithm:

- Loop this a lot ( N times)
-Repeat until all nodes have values:
(1) Find any node with all parents having been given a value already value
(2) Generate a random number (0 to 1 )
(3) Assign value to node based off of P(node | Parents(node))
- Calculate statistics


## Direct Sampling



$$
\begin{array}{ll}
\mathrm{P}(c \mid a, b) & 1 \\
\mathrm{P}(c \mid a, \neg b) & 0.7 \\
\mathrm{P}(\mathrm{c} \mid \neg a, b) & 0.3 \\
\mathrm{P}(\mathrm{c} \mid \neg \mathrm{a}, \neg \mathrm{~b}) & 0
\end{array}
$$

(1) Only node who has all parents with values is node A (as it has no parents)
(2) Pretend random value is: 0.183712
(3) Since $0.183712 \leq 0.2$, set node A to a (true)

## Direct Sampling


(1) Only node who has all parents with values is node B (as only A has a value)
(2) Pretend random value is: 0.910184 $\mathrm{P}(\mathrm{b} \mid \mathrm{a})$, as A is a (i.e. a=true)
(3) Since $0.910184>0.4$, set node $B$ to be $\neg b$

## Direct Sampling


(1) Only node left is C (has both parents)
(2) Pretend random value is: 0.634523
(3) Since $0.634523 \leq 0.7$, set node C to c

## Direct Sampling

After running the inner loop once, we have a sample of (in format [A,B,C]):
[a, ᄀb, c]
... we would then repeat this process N times (outer loop) to get a bunch of these

Pretend you got the results on the next slide

## Direct Sampling

1. $[\mathrm{a}, \quad \neg \mathrm{b}, \mathrm{c}]$
2. $[\mathrm{a}, \mathrm{b}, \mathrm{c}]$
3. $[\neg \mathrm{a}, \mathrm{b}, \mathrm{c}]$
4. $[\neg \mathrm{a}, \neg \mathrm{b}, \neg \mathrm{c}]$
5. $[\neg \mathrm{a}, \neg \mathrm{b}, \neg \mathrm{c}]$ For example:
6. [ $\neg \mathrm{a}, \neg \mathrm{b}, \neg \mathrm{c}] \quad P(\neg c)=\frac{\text { count of } " \neg c "}{\text { total possible times }}$
7. $[\neg \mathrm{a}, \neg \mathrm{b}, \neg \mathrm{c}]$
8. $[\neg \mathrm{a}, \neg \mathrm{b}, \neg \mathrm{c}]$

$$
=\frac{7}{10}
$$

From here we can calculate statistics of anything...
9. $[\neg \mathrm{a}, \neg \mathrm{b}, \neg \mathrm{c}]$
10.[ $\neg \mathrm{a}, \quad \neg \mathrm{b}, ~ \neg \mathrm{c}]$

## Direct Sampling

1. [a, $\neg \mathrm{b}, \mathrm{c}]$ In fact, you can estimate
2. $[a, b, c]$
3. $[\neg \mathrm{a}, \mathrm{b}, \mathrm{c}]$
4. $[\neg \mathrm{a}, \neg \mathrm{b}, \neg \mathrm{c}]$
5. $[\neg \mathrm{a}, \neg \mathrm{b}, \neg \mathrm{c}]$
6. $[\neg \mathrm{a}, \neg \mathrm{b}, \neg \mathrm{c}]$
7. $[\neg \mathrm{a}, \neg \mathrm{b}, \neg \mathrm{c}]$
8. $[\neg \mathrm{a}, \neg \mathrm{b}, \neg \mathrm{c}]$
9. $[\neg \mathrm{a}, \neg \mathrm{b}, \neg \mathrm{c}]$
10.[ $\neg \mathrm{a}, \quad \neg \mathrm{b}, ~ \neg \mathrm{c}]$
$\mathrm{P}(\mathrm{a}, \mathrm{b}, \mathrm{c})$ from this:

$$
\begin{aligned}
& P(a, \quad b, \quad c)=0.1 \\
& P(a, \quad b, \neg c)=0 \\
& P(a, \neg b, \quad c)=0.1 \\
& P(a, \neg b, \neg c)=0 \\
& P(\neg a, \quad b, \quad c)=0.1 \\
& P(\neg a, \quad b, \neg c)=0 \\
& P(\neg a, \neg b, \quad c)=0 \\
& P(\neg a, \neg b, \neg c)=0.7
\end{aligned}
$$

## Rejection Sampling

1. $[\mathrm{a}, \quad \neg \mathrm{b}, \mathrm{c}]$
2. $[a, b, \quad c]$ How would you compute:
3. $[\neg \mathrm{a}, \mathrm{b}, \mathrm{c}]$
4. $[\neg \mathrm{a}, \neg \mathrm{b}, \neg \mathrm{c}]$
5. $[\neg \mathrm{a}, \neg \mathrm{b}, \neg \mathrm{c}]$
6. $[\neg \mathrm{a}, \neg \mathrm{b}, \neg \mathrm{c}]$
7. $[\neg \mathrm{a}, \neg \mathrm{b}, \neg \mathrm{c}]$
8. $[\neg \mathrm{a}, \neg \mathrm{b}, \neg \mathrm{c}]$
9. $[\neg \mathrm{a}, \neg \mathrm{b}, \neg \mathrm{c}]$
10. [ $\neg \mathrm{a}, \quad \neg \mathrm{b}, ~ \neg \mathrm{c}]$

## Rejection Sampling

1. $[\mathrm{a}, \quad \neg \mathrm{b}, \mathrm{c}]$
2. $\left[\begin{array}{lll}\mathrm{a}, & \mathrm{b}, & \mathrm{c}\end{array}\right]$
3. $[\neg a, b, c]$

How would you compute:
4. $[\neg \mathrm{a}, \neg \mathrm{b}, \neg \mathrm{c}]$
$P(a \mid b)$
5. [ $\neg \mathrm{a}, \neg \mathrm{b}, \neg \mathrm{c}]$ You do the same counting,
6. $[\neg a, \neg b, \neg c]$ but only look at entries
7. $[\neg \mathrm{a}, ~ \neg \mathrm{~b}, \neg \mathrm{c}]$ with "b" being true
8. $[\neg \mathrm{a}, \neg \mathrm{b}, \neg \mathrm{c}]$
9. $[\neg \mathrm{a}, \neg \mathrm{b}, \neg \mathrm{c}]$... thus $\mathrm{P}(\mathrm{a} \mid \mathrm{b})=0.5$
10. [ $\neg \mathrm{a}, \quad \neg \mathrm{b}, ~ \neg \mathrm{c}]$

## Rejection Sampling

This technique is called rejection sampling, as you reject/ignore any samples that do not have the given conditional information

For direct sampling, with N samples:

$$
P(a, b, c)=P(a) P(b \mid a) P(c \mid b, a)=\lim _{N \rightarrow \infty} \frac{\operatorname{count}(a, b, c)}{N}
$$

... or more generally...

$$
P\left(x_{1}, \cdots x_{n}\right)=\prod_{i=1}^{n} P\left(x_{i} \mid \text { Parents }\left(X_{i}\right)\right)=\lim _{N \rightarrow \infty} \frac{\operatorname{count} t\left(x_{1}, \cdots x_{n}\right)}{N}
$$

Let us call the right hand side: $N_{P S}(a, b, c)$

## Rejection Sampling

From here it is fairly easy to prove that that rejection sampling is also finding the correct probability (assuming many samples):

$$
P(a \mid b)=N_{P S}(a, b) / N_{P S}(b)=\lim _{N \rightarrow \infty} \frac{\left(\frac{(\operatorname{count}+(a, b)}{N}\right)}{\left(\frac{\cos n A_{n}(b)}{N}\right)}=\frac{\operatorname{count}(a, b)}{\operatorname{count}(b)}
$$

... or let " $\mathbf{x}$ " be what we want to find and "e" be the given info (here "e" = \{b\}, but both " $\mathbf{x}$ " and "e" could be multiple variables, like $P(x \mid e)=\lim _{N \rightarrow \infty} \frac{\left(\frac{\operatorname{count}(x, e)}{}\right)}{\left(\frac{\operatorname{cosinte}(e)}{N}\right)}=\frac{\operatorname{count}(x, e)}{\operatorname{count}(e)} \quad \quad$ e" $\left.=\{\mathrm{b}, \mathrm{c}\}\right)$

## Rejection Sampling

As number of samples, N , grows our accuracy of approximating probabilities gets better

Using the Law of Large Numbers, we can find that the standard deviation for our estimates is: $\frac{\sigma}{\sqrt{N}} \approx \frac{1 /}{\sqrt{N}} \quad \begin{aligned} & \text { as we suing provabilities (the } \\ & \text { mean \& std de dev in }[0,1] \text { (small) }\end{aligned}$
in rejection sampling,
$\mathrm{N}=$ number non-rejected samples
So when we found $\mathrm{P}(\mathrm{a} \mid \mathrm{b})=0.5$ (with 2 samples), we are $68.2 \%$ confident that $\mathrm{P}(\mathrm{a} \mid \mathrm{b})$ is within: $\left[0.5-\frac{0.5}{\sqrt{2}}, 0.5+\frac{0.5}{\sqrt{2}}\right]=[0.15,0.85]$

## Good Sampling?

What is the general issue(s) with direct and/or rejection sampling? (When is it good?)

## Good Sampling?

What is the general issue(s) with direct and/or rejection sampling? (When is it good?)

These sampling techniques are pretty good for finding non-conditional probability: P(a,b,c)

However, if the given information is restrictive many samples will be rejected... leading to poor approximations of the probabilities

## Good Sampling?

The given information(also called "evidence") can be restrictive because:
(1) the tables have low probabilities
(2) many variables have to be satisfied

You will need exponentially more samples as you increase number of given variables
$P(x) \quad 100$

If $\mathrm{P}(\mathrm{y})=\mathrm{P}(\mathrm{z})=0.5$, this table shows $\frac{\mathrm{P}(\mathrm{x} \mid \mathrm{y})}{\mathrm{P}(\mathrm{x} \mid \mathrm{y}, \mathrm{z})} 200$ number of samples for same accuracy

## Likelihood Weighting

There a way to not waste time generating "rejected" samples called likelihood weighting

As mentioned before, direct sampling is decent at finding non-conditional probabilities

So for likelihood weighting we will assume we want to find a conditional probability

## Likelihood Weighting

$$
\begin{array}{lllll} 
& & P(b \mid a) & 1 \\
P(b \mid \neg a) & 0.2
\end{array}
$$

Likelihood weighting, will weight samples: For $\mathrm{P}(\mathrm{a} \mid \mathrm{b}):[\mathrm{a}, \mathrm{b}] \mathrm{w}=1,[\neg \mathrm{a}, \mathrm{b}] \mathrm{w}=0.2$

If we did rejection sampling, we need about 5 ᄀa to actually get a 'b’, so in 10 samples:
[a,b], [a,b], [a,b], [a,b], [a,b],
[ $\neg \mathrm{a}, \mathrm{b}],[\neg \mathrm{a}, \neg \mathrm{b}],[\neg \mathrm{a}, \neg \mathrm{b}],[\mathrm{a}, \neg \mathrm{b}],[\neg \mathrm{a}, \neg \mathrm{b}]$

## Likelihood Weighting

$$
\begin{array}{lllll} 
& & P(b \mid a) & 1 \\
P & P(a) & 0.5 & \mathrm{P}(\mathrm{~b} \mid \neg \mathrm{a}) & 0.2
\end{array}
$$

Since we normalize, all we care about is the ratio between [a,b] and [ $\neg \mathrm{a}, \mathrm{b}$ ]

In likelihood weighting, the weights create the correct ratio as "[ $\neg \mathrm{a}, \mathrm{b}]$ : w=0.2" represents that you would actually need 5 of these to get a "true" sample

## Likelihood Weighting

We will use a bit of notation here: $x=$ things we want the probability of e = "evidence" or given info $\mathrm{y}=$ anything else


So in our original sample network:
$P(a \mid b): x=\{a\}, e=\{b\}, y=\{c\}$
$P(a \mid b, c): x=\{a\}, e=\{b, c\}, y=\{ \}$
$P(a, b \mid c): x=\{a, b\}, e=\{c\}, y=\{ \}$
must be non-empty assume non-empty for this alg

## Likelihood Weighting

Likelihood weighting algorithm:
-Assign all given variables into network
-w = 1 // our "weight"
-Do once for every node:
(1) Find a node where all parents have values
(2a) If node given info (in set "e"):
$\mathrm{w}=\mathrm{w}$ * P(given | Parents(given))
(2b) Else (in sets "x" or " $y$ ")
Generate random number to determine T/F

- Repeat above a lot and calculate statistics


## Likelihood Weighting

$$
\begin{array}{lll}
\mathrm{P}(\mathrm{a}) & 0.2 \\
\mathrm{P}(\mathrm{~b} \mid \mathrm{a}) & 0.4 \\
\mathrm{P}(\mathrm{~b} \mid \neg \mathrm{a}) & 0.01
\end{array}
$$

Since we are finding $\mathrm{P}(\mathrm{a} \mid \mathrm{b})$, we initially set $\mathrm{b}=$ true in the network (and start $\mathrm{w}=1$ )

From here we need to loop through all three nodes, finding any node that has all of its parents with values

## Likelihood Weighting

$$
\begin{array}{lll}
\mathrm{P}(\mathrm{a}) & 0.2 \\
\mathrm{P}(\mathrm{~b} \mid \mathrm{a}) & 0.4 \\
\mathrm{P}(\mathrm{~b} \mid \neg \mathrm{a}) & 0.01
\end{array}
$$

(1) A is only one with all parents having values, so pick A to look at
(2a) A is not given information, so we generate a random number: 0.746949 $0.746949>0.2$, so we set $A$ to $\neg a$

## Likelihood Weighting

$$
\begin{array}{lllll}
\mathrm{P}=1 \\
\mathrm{P}(\mathrm{a}) & 0.2 & \mathrm{P}(\mathrm{c} \mid \mathrm{a}, \mathrm{~b}) & 1 \\
\mathrm{P}(\mathrm{~b} \mid \mathrm{a}) & 0.4 \\
\mathrm{P}(\mathrm{~b} \mid \neg \mathrm{a}) & 0.01
\end{array} \quad \begin{array}{lll}
\mathrm{P}(\mathrm{c} \mid \mathrm{a}, \neg \mathrm{~b}) & 0.7 \\
\mathrm{P}(\mathrm{c} \mid \neg a, b) & 0.3 \\
\mathrm{P}(\mathrm{c} \mid \neg a, \neg b) & 0
\end{array}
$$

(1) Here we could pick 'b' or ' $C$ ' as 'b' has its parent and $C$ has values for ' $a$ ' and ' $b$ ' ... let's pick B
(2b) B is given information, so we simply multiply " $w$ " by the probability $\mathrm{P}(\mathrm{b} \mid \neg \mathrm{a})$ " $\mathrm{w}=\mathrm{w} * \mathrm{P}(\mathrm{b} \mid \neg \mathrm{a})=1 * 0.01=\underline{0.01}$

## Likelihood Weighting

if multiple given variables, $\mathrm{w}=$ product of all (multiple times)

$$
\mathrm{w}=0.01
$$

$$
\mathrm{P}(\mathrm{a}) \quad 0.2
$$

$$
\begin{array}{ll}
\mathrm{P}(\mathrm{~b} \mid \mathrm{a}) & 0.4 \\
\mathrm{P}(\mathrm{~b} \mid \neg \mathrm{a}) & 0.01
\end{array}
$$

$$
\begin{array}{ll}
P(c \mid a, b) & 1 \\
P(c \mid a, \neg b) & 0.7 \\
P(c \mid \neg a, b) & 0.3 \\
P(c \mid \neg a, \neg b) & 0
\end{array}
$$

(1) C is only node left... pick that
(2a) C is not given information, so generate random number to sample/simulate:
$0.987924>0.3$, so set C to $\neg \mathrm{C}$

$$
\mathrm{P}(\neg \mathrm{a}, \mathrm{~b})
$$

## Likelihood Weighting

Now we have a single sample: $[\neg \mathrm{a}, \neg \mathrm{c}]: \mathrm{w}=0.01$

We would then repeat this process, say N times (make sure to reset w=1 every time)

Afterwards we would have a bunch of weighted samples where $b=$ true always ... pretend they turned out as the next slide

## Likelihood Weighting tells us $\mathrm{P}(\mathrm{a}, \mathrm{c} \mid \mathrm{b})$

1. $[\mathrm{a}, \mathrm{c}]: \mathrm{w}=0.4$
2. $[a, c]: w=0.4$
3. $[\neg a, c]: w=0.01$
4. $[\neg a, c]: w=0.01$
5. $[\neg a, \neg c]: w=0.01$
6. $[\neg a, \neg c]: w=0.01$
7. $[\neg a, \neg c]: w=0.01$
8. $[\neg \mathrm{a}, \neg \mathrm{c}]$ : $\mathrm{w}=0.01$ This is also just our 9. $[\neg \mathrm{a}, \neg \mathrm{c}]$ : $\mathrm{w}=0.01$ normalization trick... 10. $[\neg \mathrm{a}, \neg \mathrm{c}]: \mathrm{w}=0.01 \quad P(a \mid b)=\alpha 0.8, P(\neg a \mid b)=\alpha 0.08$

## Likelihood Weighting



You try it! Calculate $\mathrm{P}(\mathrm{a} \mid \mathrm{c})$ using this alg. and using these random numbers (20 of them): $\begin{array}{llllll}0.784 & 0.859 & 0.934 & 0.760 & 0.543 & \text { use left }\end{array}$ $\begin{array}{lllll}0.532 & 0.967 & 0.229 & 0.781 & 0.002\end{array}$ to right, $\begin{array}{llllll}0.168 & 0.439 & 0.873 & 0.415 & 0.471 & \text { bottom }\end{array}$ $\begin{array}{lllll}0.053 & 0.646 & 0.694 & 0.325 & 0.368\end{array}$

## Likelihood Weighting

1. $[\neg \mathrm{a}, \neg \mathrm{b}]$ : $\mathrm{w}=0$
2. $[\neg \mathrm{a}, \neg \mathrm{b}]: \mathrm{w}=0$
3. $[\neg \mathrm{a}, \neg \mathrm{b}]: \mathrm{w}=0$
4. $[\neg \mathrm{a}, \neg \mathrm{b}]$ : $\mathrm{w}=0$
5. $[\neg a, b]$ : w=0.3
6. $[\mathrm{a}, \neg \mathrm{b}]: \mathrm{w}=0.7$
7. $[\neg \mathrm{a}, \neg \mathrm{b}]: \mathrm{w}=0$
8. $[\neg \mathrm{a}, \neg \mathrm{b}]$ : $\mathrm{w}=0$
9. $[\neg a, \neg b]$ : $w=0$
10.[ $\neg \mathrm{a}, \neg \mathrm{b}]: \mathrm{w}=0$

You should get these samples from the random simulation

Thus:
$\mathrm{P}(\mathrm{a} \mid \mathrm{c})=\alpha 0.7$
$\mathrm{P}(\neg \mathrm{a} \mid \mathrm{c})=\alpha 0.3$
So, $\mathrm{P}(\mathrm{a} \mid \mathrm{c})=0.7$

## Likelihood Weighting

Any issues with this?

## Likelihood Weighting

## Any issues with this?

When $\mathrm{w}=0$, this is basically like rejection sampling...

This happens because you do not consider the children when generating samples

In our example, $\mathrm{A}=$ true dominated the total weight(0.8 of 0.88$)$, leading to accuracy issues

## Likelihood Weighting

Why does this weight trick work? In our prob:

$$
\begin{aligned}
P(a \mid c) & =\alpha \operatorname{True} A(w \operatorname{For}(\text { inTable })) \\
& =\alpha P(a=\operatorname{trueInTable}) \cdot w \operatorname{For}(\text { inTable }) \\
& =\alpha \sum_{b} P(a, b) \cdot w \operatorname{For}(\text { inTable }) \\
& =\alpha \sum_{b} P(a) P(b \mid a) \cdot w \operatorname{For}(\text { inTable }) \\
& =\alpha \sum_{b} \underbrace{P(a) P(b \mid a)}_{\text {percent in table table }} \cdot \underbrace{P(c \mid a, b)}_{\text {weight of sample }}
\end{aligned}
$$

$$
=\alpha \sum_{b} P(a, b, c) \quad \text { normalize trick: }
$$

$$
=\alpha P(a, c)^{4}
$$

## Likelihood Weighting



I mentioned this in the algorithm, but did not do an example: weight's product is cumulative

So if we want to find $\mathrm{P}(\mathrm{a} \mid \mathrm{b}, \mathrm{c})$, say 3 samples: [a] : w = 0.4, [a] w= $0.4^{*} 1=0.4$ $[\neg \mathrm{a}]: \mathrm{w}=0.01 * 0.3=0.003$

