
Approximate inference (Ch. 14)



Bayesian Network: Efficiency

Last time we talked about how exact inference
is fine if you have a polytree 

Otherwise, exact inference is exponential
O(2n) and not really feasible

Instead we use an approximate approach,
specifically we will look at Monte Carlo
approaches that utilize sampling
(this let’s use balance runtime with accuracy)



Sampling

Sampling can mean different things:
(1) Sample an unknown distribution

- Much like running an experiment

(2) Sample from a known distribution
- Might also call this “simulation”
- Generate a random number to decide

outcome of an event
we will
use this
way

Tickle friend’s nose while asleep
... see how many times they react



Direct Sampling

The first method is called direct sampling,
which is basically just running a simulation
and tallying the results

Today we will use this simple Bay-net(work):

A

B

C

P(a) 0.2

P(b|a) 0.4

P(b|¬a) 0.01

P(c|a,b) 1

P(c|a,¬b) 0.7

P(c|¬a,b) 0.3

P(c|¬a,¬b) 0



Direct Sampling

Direct Sampling algorithm:

- Loop this a lot (N times)
-Repeat until all nodes have values:

(1) Find any node with all parents having 
been given a value already value

(2) Generate a random number (0 to 1)
(3) Assign value to node based off of

P(node | Parents(node))
- Calculate statistics



Direct Sampling

(1) Only node who has all parents with values 
is node A (as it has no parents)

(2) Pretend random value is: 0.183712

(3) Since 0.183712 < 0.2, set node A to a (true)

A

B

C

P(a) 0.2

P(b|a) 0.4

P(b|¬a) 0.01

P(c|a,b) 1

P(c|a,¬b) 0.7

P(c|¬a,b) 0.3

P(c|¬a,¬b) 0



Direct Sampling

(1) Only node who has all parents with values 
is node B (as only A has a value)

(2) Pretend random value is: 0.910184

(3) Since 0.910184 > 0.4, set node B to be ¬b 

a

B

C

P(a) 0.2

P(b|a) 0.4

P(b|¬a) 0.01

P(c|a,b) 1

P(c|a,¬b) 0.7

P(c|¬a,b) 0.3

P(c|¬a,¬b) 0

P(b|a), as A is a (i.e. a=true)



Direct Sampling

(1) Only node left is C (has both parents)

(2) Pretend random value is: 0.634523

(3) Since 0.634523 < 0.7, set node C to c

a

¬b

C

P(a) 0.2

P(b|a) 0.4

P(b|¬a) 0.01

P(c|a,b) 1

P(c|a,¬b) 0.7

P(c|¬a,b) 0.3

P(c|¬a,¬b) 0



Direct Sampling

After running the inner loop once, we have
a sample of (in format [A,B,C]):

[a, ¬b, c]

... we would then repeat this process N times
(outer loop) to get a bunch of these

Pretend you got the results on the next slide



Direct Sampling

1.  [a, ¬b, c]
2.  [a, b, c] 
3.  [¬a, b, c]
4.  [¬a, ¬b, ¬c]
5.  [¬a, ¬b, ¬c]
6.  [¬a, ¬b, ¬c]
7.  [¬a, ¬b, ¬c]
8.  [¬a, ¬b, ¬c]
9.  [¬a, ¬b, ¬c]
10.[¬a, ¬b, ¬c]

From here we can calculate
statistics of anything...

For example:



Direct Sampling

1.  [a, ¬b, c]
2.  [a, b, c] 
3.  [¬a, b, c]
4.  [¬a, ¬b, ¬c]
5.  [¬a, ¬b, ¬c]
6.  [¬a, ¬b, ¬c]
7.  [¬a, ¬b, ¬c]
8.  [¬a, ¬b, ¬c]
9.  [¬a, ¬b, ¬c]
10.[¬a, ¬b, ¬c]

In fact, you can estimate
P(a,b,c) from this:



Rejection Sampling

1.  [a, ¬b, c]
2.  [a, b, c] 
3.  [¬a, b, c]
4.  [¬a, ¬b, ¬c]
5.  [¬a, ¬b, ¬c]
6.  [¬a, ¬b, ¬c]
7.  [¬a, ¬b, ¬c]
8.  [¬a, ¬b, ¬c]
9.  [¬a, ¬b, ¬c]
10.[¬a, ¬b, ¬c]

How would you compute:



Rejection Sampling

1.  [a, ¬b, c]
2.  [a, b, c] 
3.  [¬a, b, c]
4.  [¬a, ¬b, ¬c]
5.  [¬a, ¬b, ¬c]
6.  [¬a, ¬b, ¬c]
7.  [¬a, ¬b, ¬c]
8.  [¬a, ¬b, ¬c]
9.  [¬a, ¬b, ¬c]
10.[¬a, ¬b, ¬c]

How would you compute:

You do the same counting,
but only look at entries
with “b” being true

... thus P(a|b) = 0.5



Rejection Sampling

This technique is called rejection sampling,
as you reject/ignore any samples that do
not have the given conditional information

For direct sampling, with N samples:

... or more generally...

Let us call the right hand side: 



Rejection Sampling

From here it is fairly easy to prove that
that rejection sampling is also finding the
correct probability (assuming many samples):

... or let “x” be what we want to find and “e” 
be the given info (here “e” = {b}, but both “x”
and “e” could be multiple variables, like

 “e” = {b,c})



Rejection Sampling

As number of samples, N, grows our accuracy
of approximating probabilities gets better

Using the Law of Large Numbers, we can
find that the standard deviation for our
estimates is:

So when we found P(a|b) = 0.5 (with 2
samples), we are 68.2% confident that
P(a|b) is within:

:(

in rejection sampling,
N = number non-rejected samples

as we using probabilities, the 
mean & std dev in [0,1] (small)



Good Sampling?

What is the general issue(s) with direct and/or
rejection sampling? (When is it good?)



Good Sampling?

What is the general issue(s) with direct and/or
rejection sampling? (When is it good?)

These sampling techniques are pretty good
for finding non-conditional probability:
P(a,b,c)

However, if the given information is restrictive
many samples will be rejected... leading to
poor approximations of the probabilities



Good Sampling?

The given information(also called “evidence”)
can be restrictive because:

(1) the tables have low probabilities
(2) many variables have to be satisfied

You will need exponentially more samples 
as you increase number of given variables

If P(y) = P(z) = 0.5, this table shows
number of samples for same accuracy

P(x) 100

P(x|y) 200

P(x|y,z) 400

N



Likelihood Weighting

There a way to not waste time generating
“rejected” samples called likelihood weighting

As mentioned before, direct sampling is 
decent at finding non-conditional probabilities

So for likelihood weighting we will assume
we want to find a conditional probability



Likelihood Weighting

Likelihood weighting, will weight samples:
For P(a|b): [a,b] w = 1, [¬a,b] w=0.2

If we did rejection sampling, we need about 5
¬a to actually get a ‘b’, so in 10 samples:
[a,b], [a,b], [a,b], [a,b], [a,b], 
[¬a,b], [¬a,¬b], [¬a,¬b], [¬a,¬b], [¬a,¬b]

A B P(a) 0.5

P(b|a) 1

P(b|¬a) 0.2



Likelihood Weighting

Since we normalize, all we care about is the
ratio between [a,b] and [¬a,b]

In likelihood weighting, the weights create
the correct ratio as “[¬a,b] : w=0.2” represents
that you would actually need 5 of these to get
a “true” sample

A B P(a) 0.5

P(b|a) 1

P(b|¬a) 0.2



Likelihood Weighting

We will use a bit of notation here:
x = things we want the probability of
e = “evidence” or given info
y = anything else

So in our original sample network:
P(a|b) : x={a}, e={b}, y={c}
P(a|b,c) : x={a}, e={b,c}, y={}
P(a,b|c) : x={a,b}, e={c}, y={}

A

B

C

must be non-empty assume non-empty for this alg



Likelihood Weighting

Likelihood weighting algorithm:
-Assign all given variables into network
-w = 1  // our “weight”
-Do once for every node:

(1) Find a node where all parents have values
(2a) If node given info (in set “e”): 

w = w * P(given | Parents(given))
(2b) Else (in sets “x” or “y”)

Generate random number to determine T/F
- Repeat above a lot and calculate statistics



Likelihood Weighting

Since we are finding P(a|b), we initially set
b=true in the network (and start w=1)

From here we need to loop through all three
nodes, finding any node that has all of its
parents with values

A

b

C

P(a) 0.2

P(b|a) 0.4

P(b|¬a) 0.01

P(c|a,b) 1

P(c|a,¬b) 0.7

P(c|¬a,b) 0.3

P(c|¬a,¬b) 0

w=1



Likelihood Weighting

(1) A is only one with all parents having
values, so pick A to look at

(2a) A is not given information, so we
generate a random number: 0.746949
0.746949 > 0.2, so we set A to ¬a

A

b

C

P(a) 0.2

P(b|a) 0.4

P(b|¬a) 0.01

P(c|a,b) 1

P(c|a,¬b) 0.7

P(c|¬a,b) 0.3

P(c|¬a,¬b) 0

w=1



Likelihood Weighting

(1) Here we could pick ‘b’ or ‘C’ as ‘b’ has
its parent and C has values for ‘a’ and ‘b’
... let’s pick B

(2b) B is given information, so we simply
multiply “w” by the probability P(b|¬a)
w = w*P(b|¬a) = 1*0.01 = 0.01

¬a

b

C

P(a) 0.2

P(b|a) 0.4

P(b|¬a) 0.01

P(c|a,b) 1

P(c|a,¬b) 0.7

P(c|¬a,b) 0.3

P(c|¬a,¬b) 0

as A sampled to 
be ¬a this time

w=1



Likelihood Weighting

(1) C is only node left... pick that

(2a) C is not given information, so generate
random number to sample/simulate:
0.987924 > 0.3, so set C to ¬c

¬a

b

C

P(a) 0.2

P(b|a) 0.4

P(b|¬a) 0.01

P(c|a,b) 1

P(c|a,¬b) 0.7

P(c|¬a,b) 0.3

P(c|¬a,¬b) 0

w=0.01

P(¬a,b)

if multiple given variables, w = product of all (multiple times)



Likelihood Weighting

Now we have a single sample:
[¬a, ¬c] : w=0.01

We would then repeat this process, say N
times (make sure to reset w=1 every time)

Afterwards we would have a bunch of
weighted samples where b=true always
... pretend they turned out as the next slide



Likelihood Weighting

1.  [a, c] : w=0.4
2.  [a, c] : w=0.4
3.  [¬a, c] : w=0.01
4.  [¬a, c] : w=0.01
5.  [¬a, ¬c] : w=0.01
6.  [¬a, ¬c] : w=0.01
7.  [¬a, ¬c] : w=0.01
8.  [¬a, ¬c] : w=0.01
9.  [¬a, ¬c] : w=0.01
10.[¬a, ¬c] : w=0.01 

Rather than doing a 
direct tally, we sum
the weights... so:

P(a|b) = 0.8/0.88 
= 0.909

This is also just our
normalization trick...

tells us P(a,c|b)



Likelihood Weighting

You try it! Calculate P(a|c) using this alg. and
using these random numbers (20 of them):
0.784   0.859   0.934   0.760   0.543
0.532   0.967   0.229   0.781   0.002
0.168   0.439   0.873   0.415   0.471
0.053   0.646   0.694   0.325   0.368

A

B

c

P(a) 0.2

P(b|a) 0.4

P(b|¬a) 0.01

P(c|a,b) 1

P(c|a,¬b) 0.7

P(c|¬a,b) 0.3

P(c|¬a,¬b) 0

use left
to right,
top to
bottom



Likelihood Weighting

1.  [¬a, ¬b] : w=0
2.  [¬a, ¬b] : w=0
3.  [¬a, ¬b] : w=0
4.  [¬a, ¬b] : w=0
5.  [¬a, b] : w=0.3
6.  [a, ¬b] : w=0.7
7.  [¬a, ¬b] : w=0
8.  [¬a, ¬b] : w=0
9.  [¬a, ¬b] : w=0
10.[¬a, ¬b] : w=0 

You should get these
samples from the
random simulation

Thus: 
P(a|c) = α 0.7
P(¬a|c) = α 0.3

So, P(a|c) = 0.7



Likelihood Weighting

Any issues with this?



Likelihood Weighting

Any issues with this?

When w=0, this is basically like rejection
sampling... 

This happens because you do not consider
the children when generating samples

In our example, A=true dominated the total 
weight(0.8 of 0.88), leading to accuracy issues



Likelihood Weighting

Why does this weight trick work? In our prob:

normalize trick:
P(a|c) = αP(a,c)



Likelihood Weighting

I mentioned this in the algorithm, but did not
do an example: weight’s product is cumulative

So if we want to find P(a|b,c), say 3 samples:
[a] : w = 0.4, [a] w= 0.4*1 = 0.4 
[¬a] : w = 0.01*0.3 = 0.003

A

b

c

P(a) 0.2

P(b|a) 0.4

P(b|¬a) 0.01

P(c|a,b) 1

P(c|a,¬b) 0.7

P(c|¬a,b) 0.3

P(c|¬a,¬b) 0
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