
Value Iteration
(Ch. 17.1-17.2)



Markov Decision Process

Last time, we discussed how random variables
and utility functions could tell you the “best”
action to take among options

We will continue this train of though, but now
we will need to take multiple actions before
we can stop

One way of framing this is called a Markov
decision process (MDP)



Markov Decision Process

The “Markov” property is useful as it means
the only thing that matters where we go next
is our current state/position (not any previous)

Just as we have in the past, we will assume
there is some uncertainty in the problem

A simple example of this would be a robot 
exploring a simple grid-world, but sometimes
it does not go where it wants when moving



Markov Decision Process
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Markov Decision Process

When the robot
tries to move,
80% of the time 
it ends up where
it wants to go

10% it will end
up 90 degrees off

Wall = no move
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Markov Decision Process

Given this setup, we want to find the best
sequence of actions that will reach an end
with the most utility

Any sequence of actions we call a “policy” 
and represented as π

We will use a * to represent the “optimal”
so π* would be the optimal/best policy, 
which is what we want to find



Markov Decision Process

We assume that you get some “reward” for
landing in a state after an action, R(s)

In our example, it costs the agent “1” to move, 
so R(s) = -1 for all states (except the ends)

Since our policy, π, is the sequence of action
to go from start to end, we need to evaluate
the utility of ending up in a sequence of states



MDP Utilities

In other words, we need to find some number:
U(s
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... If you can then conclude that you would
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We call this a stationary preference
(and it has some large implications)

MDP Utilities



If you have a stationary preference, then there
are only two valid utility functions:

Additive:

Discounted:

... where 0<γ<1

MDP Utilities



We will assume the “discounted” version,
as the math is actually easier

However, if you use the “additive” rewards,
there are similar results (with assumptions)

If we have:

... what does this look like?

MDP Utilities



A geometric series!

Let R
max

 be the highest reward of any possible
state, then:

Thus utility is always finite (if reward finite)

MDP Utilities



To compare policies, we can calculate them as:

We can use a similar definition as “maximum
expected utility” from last time:

MDP Utilities

best action
from state s

add over possible states you end up in

80%, 10%, 10%



To compare policies, we can calculate them as:

We can use a similar definition as “maximum
expected utility” from last time:

... How do you find U(s’)?

MDP Utilities



Turns out, you can represent state utility in
terms of other states (Bellman equation):

So for example, the utility of (2,2):
U(2,2) = -1 + γ * max of:
a=Up:
a=D:
a=L:
a=R:

Bellman Equations

s=(2,2)
U(1,2)=50



Assuming you should go “up” from (2,2):
(let γ=0.9)

Then some algebra:

... What is U(2,3) assuming
best answer is going “left”?

Bellman Equations



U(2,3) going “left” is:

... algebra ...

Could solve this as sys. linear
equations, but we cheated

Bellman Equations

assumed we knew 
which actions



This is problematic in general as we have to
know the utility of the surrounding states
to know our utility

... but these surrounding states need our utility
to be know! (Recursive logic...)

We have actually seen something like this
before... what was it?

Value Iteration



This is problematic in general as we have to
know the utility of the surrounding states
to know our utility

... but these surrounding states need our utility
to be know! (Recursive logic...)

We have actually seen something like this
before... what was it?
Gibbs sampling!

Value Iteration



This will actually be one of our favorite tricks
in the course: Both A and B unknown

Step 1: Assume you know A and solve for B
Step 2: Use answer for B to solve for A
... repeat above a lot

So we can actually just assign random utilities
and keep using the Bellman equations to
get new “estimates” for the states

Value Iteration



Since we can pick any number for utility, let’s
assume non-end states are zero at start:

We would then compute U(2,2) as:

So,

Value Iteration
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We would then go through and compute all the
rest of the utilities before updating them

So for spot (2,3):

Value Iteration
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This algorithm is called value iteration as we
repeatedly update the utility values

After going through all 8 “unknown” utilities
you should get the following:

Do one more iteration 
of all 8 utilities: -50

50

35 -1 -1

-1

-1-1-1

-1

Value Iteration



You should get on second iteration:

-50

50

38.06 24.02
-1.9

-1.9

-1.9-1.9-1.9
19.61

Value Iteration



After doing this a bunch, you should get:

-50

50

41.99 35.65 29.55

27.18 24.73

22.21 18.28 20.27

Value Iteration



You simply repeat this process until the
numbers “converge” (i.e. stop changing much)

In fact, it is both guaranteed to converge
always and within a bounded amount

It has been shown that if you have two sets
of utilities U

0
 and U

0
’, then use Bellman eq.s

to get U
1
 and U

1
’, then:

Value Iteration Convergence

the ∞-norm (i.e. abs max),  || [1,-2] – [2, 4] || = 6



This means no matter what two sets of 
utilities you have, they will become “closer”
after applying the Bellman update

This is called a contraction and has a nice
property you will always converge to a
unique solution (when γ<1)

We can also notice that if U* are the correct
utilities, applying Bellman will not change

Bellman Equations



Thus, if U
i
 is after applying the Bellman eq.

i times:

But we have a “worst case” utility of:

Since the difference can at most double this:
   

Bellman Equations



If we want to guarantee we are within ε of the
optimal solution, we can then find N:

... as each update contracts/shrinks by γ and
we start at most 2*R

max
/(1-γ) away from opt.

Also do not need to wait for utility to converge
as policy just needs to find best action

Bellman Equations



The Bellman equations find some “utility”
for each state that you then find best actions

... but our original goal was:

This is similar to the Bellman equations, 
but Bellman only look one step ahead...
while our goal is start to end

Bellman Equations



This is actually not a problem, as if after 
doing “i” Bellman updates, you have:

... then you are guaranteed (worse case) to be 
within a a bound of the optimal policy:

We call the above the “policy loss”

Bellman Equations
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