
Linear Regression/Classification
(Ch. 18.6-18.7)

Linear Regression

Let’s move away from decision trees (yay!)
and talk about more general learning

Today we will look at regression a bit
(as I have been ignoring it mostly)

This is a concept that you may have
encountered before, but not in the context
of learning

Linear Regression

Idea: You have a bunch of data points, and
you want to find the line “closest” to them

Linear Regression

Why linear and not some polynomial?

Linear Regression

Why linear and not some polynomial?

It is a lot harder to “overfit” with a linear fit,
yet it still gets the major “trend” of data

Also hard to “visualize” data if high dimension

Another bonus is that it makes
the calculations much easier
(which is always nice...)

Linear Regression: How To

To find this line, let’s start with the simple
case: only one variable

Then our line will look like (call them “h”
just like our learning trees):

Then we need to define what “fit to data”
means (i.e. how do we calculate how “wrong”
a line is, often called the “loss”)

w is {w
0
, w

1
} as parameters

Linear Regression: How To

There are multiple options, but a common
choice is the square difference, so “loss” is:

... where N is the number of examples/points

This makes sense as it penalizes “wrong”
answers more the further they are away
(two points off by 1 better than one off by 2)

y
j
 is actual y-coordinate h

w
(x

j
) is approximated (line) y-coordinate

Linear Regression: How To

You can plot this loss function (z-axis) with
respect to the choice of w

0
 and w

1

Regression Loss

Linear Regression: How To

We want the regression line (w
0
, w

1
) to have

the lowest loss possible

As the loss function looks convex (it is), the
minimum is unique, so from calculus we want:

bottom is when both w
0
 and w

1
 derivatives zero

Linear Regression: How To

It is not too hard to do a bit of calculus to find
the unique solution for w

0
 and w

1
:

Unfortunately, if you want to do polynomials,
you might not have a closed form solution
like this (i.e. no “easy” exact answer)

all sum from j=1 to N

Linear Regression: Estimate

You can do a gradient descent (much like
Newton’s method)(similar to “hill-climbing”)

w
old

w
new

Linear Regression: Estimate

Again, you need calculus to figure out what
direction is “down hill”, so to move the
weights (w

0
, w

1
, ...) towards the bottom:

... where α is basically the “step size”
(we will often use alpha in a similar fashion,
but call it the “learning factor/rate”)

w
new

w
old

Loss function is what we minimizing (convex), so derivative of it

w
old

Linear Regression: Estimate

The choice of α is somewhat arbitrary...

You don’t want it too big, but anything small
is fine (even better if you shrink it over time)

Linear Regression: Estimate

You can extend this to more than just one
variable (or attribute) in a similar fashion

If we have X as (for attributes a,b,c ...):

... and w as:

Linear Regression: Estimate

Then if x
j
 is a single row of X:

Then our “line” is just the dot product:

Just like for the single variable case, we update
our w’s as:

... after math:

attribute for the corresponding weight in example, so if updating “w
2
” then “b

j
” as in line we do “w

2
*b

j
”

y
j
 is actual output for example/point number j

Linear Regression: Example

Let’s do an example...

Assume we have the following data points:
(assume trying to calculate BMI or something)
Age: Height: Calories:
5 20 1500
22 50 2500
50 48 2000

We will try to fit (age + height) to estimate Cal

Linear Regression: Example

So we will need to come up with some
equation to predict Calories in the form:
w

0
 + w

1
*age + w

2
*height

Initially, we can pick whatever for the w’s:
w

0
=550, w

1
=-20, w

2
=50

From this we can calculate the loss:

Linear Regression: Example

From our data:
Loss = (1500 – (550 + -20*5 + 50*20))2

+(2500 – (550 + -20*22 + 50*50))2

+(2000 – (550 + -20*50 + 50*48))2

Loss = 17,100
... this is pretty big so, these w’s aren’t great

Let’s update w
2
 to make it better!

Linear Regression: Estimate

Use update formula (with α=0.0001) for w
2
:

w
2
 = 50 + 0.0001 * [

20*(1500 – (550 + -20*5 + 50*20))
+50*(2500 – (550 + -20*22 + 50*50))
+48*(2000 – (550 + -20*50 + 50*48))]

w
2
 = 49.79

(Note: α chosen small as Loss was large and
we don’t want w

2
 to change by a large amount)

since w
2
 is associated with height, we multiply by the height out front

Linear Regression: Estimate

We can then re-calculate the loss with the new
w

2
=49.79:

Loss = (1500 – (550 + -20*5 + 49.79*20))2

+(2500 – (550 + -20*22 + 49.79*50))2

+(2000 – (550 + -20*50 + 49.79*48))2

Loss = 16,447.5

... which is better than the old Loss = 17,100

Linear Regression: Exact

However, you can solve for linear regression
exactly even with multiple inputs

Specifically, you can find optimal weights as:

This requires you to find a matrix inverse,
which can be a bit ugly... but do-able

Thus we estimate our line as:

matrix multiplication

Linear Regression: Exact

So for:
Age: Height: Calories:
5 20 1500
22 50 2500
50 48 2000

... thus the “best fit” w’s are:

Linear Regression: Overfitting

You actually still can overfit even with a
linear approximation by using too many
variables (can’t overfit “trend”)

Another option to minimize (rather than loss):

... where we will treat λ as some constant
and:
... where is similar to the p-norm

as before for line fit

Side note: “Distance”

The p-norm is a generalized way of measuring
distance (you already know some of these)

The definition is of a p-norm:

Specifically in 2 dimensions:

(Manhattan distance)

(Euclidean distance)

Linear Regression: Overfitting

We drop the exponent for L’s, so in 2D:

So we treat the weight vector’s “distance”
as the complexity (to minimize)

Here L
1
 is often the best choice as it tends

to have 0’s on “irrelevant” attributes/varaibles

... why are 0’s good? Why does it happen?

Linear Regression: Overfitting

This is because the L
1
 (Manhattan distance)

has a sharper “angle” than a circle (L
2
)

has w
1
 = 0,

as on y-axis
... so w

1

seems
irrelevant
(less overfit)

Linear Classification

A similar problem is instead of finding the
“closest” line, we want to find a line that
separates the data points (assume T/F for data)

This is more similar to what we were doing
with decision trees,
except we will use
lines rather than trees

Linear Classification

This is actually a bit harder than linear
regression as you can wiggle the line,
yet the classification stays the same

This means, most places the derivative are
zero, so we cannot do simple gradient descent

To classify we check if:

... if yes, then guess True... otherwise guess F

same as before: line defined by weights

Linear Classification

For example, in three dimensions:

This is simply one side of a plane in 3D,
so this is trying to classify
all possible points using
a single plane...

c = -w
0y is not “output” atm

Linear Classification

Despite gradient descent not working, we can
still “update” weights until convergence as:

Start weight randomly, then update weight
for every example with above equation

... what does this equation look like?

Linear Classification

Despite gradient descent not working, we can
still “update” weights until convergence as:

Start weight randomly, then update weight
for every example with above equation

... what does this equation look like?
Just the gradient descent (but I thought you
said we couldn’t since derivative messed up!)

Linear Classification

If we had only 2 inputs, it would be everything
above a line in 2D, but consider XOR on right

There is no way a single line can classify XOR
... what should we do?

Linear Classification

If one line isn’t enough... use more!
Our next topic will do just this...

	Slide 1
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36

