SoftBLE: An SDN Framework for BLE-Based IoT Networks

Mehdi Jafarizadeh, Xingzhi Liu, Rong Zheng
Problem

- Dense IoT Device Network are difficult to work with
 - Dropped packets, high congestion, power wasted
- Dense sensor networks shown to have ‘GoodPut’ down $\mathcal{O}(1/n)$ as ‘n’ devices increases
 - ‘GoodPut’ ability to successfully receive sensor data
- Example Problem:
 - Temperature sensors in a server room
Goal

- Increase Packet Reception Rate (PRR)
- Decrease Power Consumption (PWR)
Hierarchical Networks (2-Tier Networks)

• Benefits:
 • Reduce traffic to controller
 • Decrease latency with gateway closer to sensor and wired connection to controller

• Problems:
 • Without customizability, lacks the ability to scale with more devices and handle dynamic changes in traffic
SoftBLE Solution

• What if we can control and customize BLE traffic AT RUN TIME to create an optimal network?
• A Software Designed Network (SDN) that provides controllability for BLE Based 2-Tier Networks

• Contributions:
 1. An SDN designed as an overlay on a two-tier network forwarding plane
 2. Two orchestration algorithms for optimized scanning parameters on the gateway and advertising parameters on the sensor
Brief BLE Background

• Bluetooth Low Energy is a wireless personal area network that is similar to Bluetooth, but emphasizes low energy consumption while sacrificing some bandwidth and connectivity features
BLE Background

- Light-weight and power efficient
- Uses 40 possible channels with only 3 for advertising
- Has 5 possible states, but SoftBLE only utilizes 3 of them
 - Connected and Initiated are too power hungry
BLE Old Way

Sensors:
- Advertise for the "advertising interval" time + a "random delay"
- Can be configured via the following:
 - Advertising Channel Map
 - Advertising interval
 - TX power level
 - BLE Address (specifically Random Private Non-Resolvable) (Settable by the application)

Scanners:
- Scan on a channel map for a period of time called the scanning window
- Scan for a scanning interval then changes to next address on channel map
- Can be a passive scanner (scanning close to source)
- Can be an active scanner (accepts scan requests and connection requests form sensor)
- Can be configured to only scan a certain list of addresses
SDN – Software Designed Network

- SDN = Networking approach that uses software-based controllers with an emphasis on dynamic programmability for efficient networks
 1. **End User**: Sensor Nodes (generating data)
 2. **Flows**: Data ‘flows’ coming from sensors
 3. **SDN Switches**: BLE Gateways that forward flows
 4. **SDN Controller**: Central computer connected to gateways

Figure 4: The components of SDN framework in a SoftBLE.
Provisioning of an End User (Sensor)

- Sensors start un-provisioned and continually send out provision requests
 - ‘Please accept my data and let me into the network’
- After a certain number of requests, the controllers configures the sensor and allows it in the network
 - ‘Okay come on in, but here is your schedule and how you should act’
- Upon provisioning an observation matrix is created
Sensor-Gateway Observation Matrix

Generated during provisioning

Many to Many matrix defining the RSS (Received Signal Strength) from the sensor to each gateway

\[O = \begin{bmatrix} o_{11} & \cdots & o_{1N} \\ \vdots & \ddots & \vdots \\ o_{M1} & \cdots & o_{MN} \end{bmatrix}, o_{ij} = \begin{cases} 1 & \text{if } \max (rss^i_j) > P_{sen} \\ 0 & \text{if } \max (rss^i_j) < P_{sen} \end{cases} \quad (1) \]

\(\forall i \in \{1, \ldots, N\}, j \in \{1, \ldots, M\}\)
What is configured in SoftBLE?

<table>
<thead>
<tr>
<th>Channel Map of Sensors:</th>
<th>TX Power Level:</th>
<th>Advertise Address:</th>
<th>Channel Map of Gateway:</th>
<th>Whitelist of Gateway:</th>
</tr>
</thead>
<tbody>
<tr>
<td>• What channels a sensor will broadcast to</td>
<td>• How powerful will the sensor broadcast</td>
<td>• What private address a BLE device will have when broadcasting</td>
<td>• What channels a gateway will listen to</td>
<td>• What 8 addresses will the Gateway listen to on that channel</td>
</tr>
</tbody>
</table>
Control Plane

- Sits on top of the forwarding plane
- Only job is to provision new sensors OR re-provision disconnected sensors
- Three Jobs
 1. **Information Building**: ‘How strong is this sensor, what is our current sensor network’ (think observation matrix)
 2. **Gateway Orchestration**: ‘Which channels are each gateway scanning and what is open’
 3. **Sensor Orchestration**: ‘Okay SENSOR you should broadcast this strong on this channel for this long and GATEWAY listen on this channel’
Gateway Orchestration

- Gateway’s only scan ONE channel, deciding what channel that should be is gateway orchestration
- Assign a Gateway channel such that the neighboring gateway has the least number of interfering sensors
- Max-Min Optimization Heuristic applied here to determine best channel:
 - Max: Find the gateway that has the max common sensors on the three channels
 - Min: Find the channel on that has the least number of common sensors and choose that one
Sensor Orchestration

• Sensors can advertise on any of the three channels at varying transmission power levels
• But:
 • More channels, more traffic, lower PRR
 • Higher Tx, more power, more traffic, lower PRR
• Sensor orchestration is attempting to find that happy medium
Sensor Orchestration Factors

- **Expected PRR:**
 - Broken down into a Per Gateway PRR
 - **Solving for this, want higher PRR**
- Interference counter:
 - Number of potentially colliding sensors
- Traffic Load:
 - Sum of transmissions in a region
- Expected Number of Retransmissions:
 - Estimated number of times data must be re-transmitted
- **Expected Power:**
 - **Solving for this, want lower power**

\[
E[PRR]_s = 1 - (1 - \text{PRR}_s)^R.
\]

\[
E[PRR]_s = \sum_{r=1}^{\infty} \frac{1}{r} \cdot E[P]_s \cdot E[PRR]_s (1 - E[PRR]_s)^{(r-1)}
\]

\[
E[P]_s = P_{tx} \cdot \left\lfloor \frac{[DATA]}{\mu} + P_{IFS} \right\rfloor + P_{IFS} + P_{IFS} \cdot \left\lfloor \frac{[SS]}{\mu} \right\rfloor
\]

\[
P_{tx} = P_{tx} \cdot 10^{(TX_0/10)}.
\]
Sensor Orchestration

- The final algorithm for sensor orchestration is a simple nested for-loop running in $O(c)$ time
- First loop through all possible channel combinations (37,38,39), (37,38) etc.
 - For each channel combination loop through all 13 power configurations
 - Check for the lowest $E[pwr]$ and highest $E[prr]$
Performance Analysis

• Compared against LEMoNet
 • A static tiered network developed by this same research group

• LEMoNET vs. SoftBLE
 • In SoftBLE gateways only respond to sensors on their whitelist
 • RSS’s are extracted directly from device and not estimated in SoftBLE
 • No NCL mode in SoftBLE
 • TX Power in Soft BLE is variable

• Run in two modes for LEMoNET:
 • Normal Connectionless Mode:
 • “Here is my data, take it if you want it”
 • Scannable Connectionless Mode:
 • “Here is my data, I will keep resending N times until someone sends a scan request confirmation that it was received”

• 48 sensors, 2 Gateways
Results

- Almost all sensors chose a single channel based on a higher RSS, but one device had a bad signal to both gateways and chose to broadcast on both channels
- PRR 99.9%
- PWR down 70%
Simulation Study

- They also simulated a much larger network to test scalability:
 - Performance at Scale: How do 2500 sensors perform in network
 - Parameter Study: How do devices get configured in large networks
- See tradeoff in power and PER
- Notice how center sensors broadcast on 3 channels at low power and edge sensors broadcast on one channel at high power
Scalability + Duty Cycling Device

- SoftBLE scales very well
- Changing Duty Cycle (or how often data is pushed out) is able to be handled well by SoftBLE
Questions

• What if they worked on parameter tuning the advertising interval?
 • Could this lead to more efficiency or a lower PRR?

• How do you scale Gateways, since they are limited to 8 sensors per?

• Is it really necessary to choose the min-max algorithm or should gateways just choose channels that are not like their neighbor?