
CSci 4271W: Development of Secure Software Systems

Project due: November 21st, 30th, and December 9th, 2022

Ground Rules. This is an individual assignment that each student should complete on
their own. It’s OK to help other students with understanding the concepts behind what
we’re doing in the project, or to help with technical difficulties, especially if you do so
in venues like Piazza and office hours where the course staff are also present. But don’t
spoil the assignment for other students by telling them the locations of vulnerabilities or
details of how to exploit them: everyone should have the experience of figuring those out
for themselves. There will be three rounds of online submission for the project: the first on
Monday, November 21st, the second on Wednesday, November 30th, and the last on Friday,
December 9th. Each of the submissions will be online, accessible from the course Canvas
page, and the deadline time will be 11:59pm Central Time. You may use external written
sources to help with this assignment, such as books or web pages, but don’t get interactive
help with the assignment from outside sources. You must explicitly reference any external
sources (i.e., other than the lecture notes, class readings, and course staff) from which you
get substantial ideas about your solution.

The Program. The latest product of Badly Coded, Inc., that you are working with is
named the Badly Coded Image Viewer, or bcimgview for short. It provides the functionality
of viewing bitmap images in a GUI or converting them to a different format, but it is
distinguished from the many pre-existing image viewer programs by working solely on several
image file formats designed by Badly Coded and produced by other Badly Coded products
such as the Badly Coded scanner interface and the Badly Coded plotting tool (not yet
released).

Bcimgview runs on Linux (and in the future perhaps other compatible Unix variants),
and is distributed as a x86-64 binary that links with the GTK 3 family of GUI libraries. It has
functionality to recognize images in any of three different Badly Coded formats (distinguished
by the first few bytes of the file called a “magic number”), and to parse and decompress the
images into an internal format that includes a struct containing metadata and an array of
pixels, each represented by one-byte red, green, and blue samples (sometimes called 24-bit
per pixel true/direct color). For display, this internal format is further converted into a
GDK Pixbuf object which can be displayed by the GTK library in a GtkImage widget. The
program can take the name of an image file as a command line argument, or the GUI interface
has a button to bring up a standard GTK file chooser dialog box to select another image
to view. When the command-line option -c is supplied, the bcimgview binary will instead
operate in a batch conversion mode, converting an input image in one of the Badly Coded
formats into an output file in the PPM (Portable PixMap) format. (PPM is supported by
several Linux applications including the GIMP image editor and the eog image viewer.)
Both the GUI display and command-line conversion modes will also print a log message
about the image being displayed.

Bcimgview supports three bitmap image formats:

� BC-Raw, with the file extension .bcraw, is an uncompressed true color format similar
to bcimgview’s internal representation.
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� BC-Progressive, extension .bcprog, is intended for transmitting images over low-
bandwidth network connections, like web sites in the 1990s. Colors are represented
with single bytes from a 6x6x6 color cube, and scanlines are sent in an interleaved
order.

� BC-Flat, extension .bcflat, is a losslessly compressed true color format that separately
encodes the red, green, and blue channels. The differences between adjacent samples
in a scan line are computed and then one or more differences are encoded with a fixed
dictionary of variable-length binary codewords.

The source code for bcimgview, some sample images in the supported formats, and a
pre-compiled Linux x86-64 binary of the most recent release are available to download from
the course’s public web page. The program should work on most recent Linux systems,
though the supported configuration is to run it on CSE Labs Ubuntu 20.04 installations like
VOLE and the lab workstations.

If you want to use the GUI interface and see what the sample pictures look like, you’ll
need to run bcimgview together with the “X11” graphical environment that is common on
Unix systems. This will happen automatically if you run it on VOLE or when physically
logged in to a lab workstation. If you connect to a CSE Labs machine via SSH from another
Unix machine with a graphical interface, you can use the SSH feature called X forwarding
to display the GUI on your local computer. You can also use X forwarding to a Mac or
Windows computer, but you’d also need to run a separate X server on your local computer
to make this work.

Please use our supplied binary for the purpose of trying out attacks. This binary has
been compiled in a way to disable defenses against certain attacks, and using the exact
same binary makes the results more consistent. You may not be able to receive full credit if
you describe an attack that doesn’t work with our supplied binary on a CSE Labs Ubuntu
machine.

Specifically, the command we used to compile the bcimgview binary was:

gcc -no-pie -fno-stack-protector -Og -g -Wall \

$(pkg-config --cflags gtk+-3.0) \

bcimgview.c -o bcimgview \

-lgtk-3 -lgobject-2.0 -lglib-2.0 -lgdk_pixbuf-2.0 -lm

(The backlashes at the ends of lines represent line continuation; you won’t need them if
you copy the whole command onto one line.)
Your Job. For this project, you will take on a series of tasks helping the Badly Coded
developers with assessing and improving the security of bcimgview. For the first submission,
you’ll perform threat modeling, and describe a plan for auditing the code for vulnerabilities
in a written report. For the second submission, you’ll complete the audit and test how any
vulnerabilities you have found can be exploited, adding these details to your report. For
the final submission, you’ll provide fixes for the bugs in the program that made the attacks
possible, and make a final set of revisions to your report in response to our feedback. The
next sections describe these tasks in more detail.
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Threat Modeling. For threat modeling, you will analyze the architecture of the bcimgview
program, such as by describing data-flow and trust relationships, to determine which security
threats might be a risk against the program. Your threat modeling should include at least
one data-flow diagram showing the architecture and a text description of the parts of the
architecture, the flows between them, and which threats are possible given the data flows.

Your diagram should include more detail than having just one box representing the
bcimgview program. Instead you should show some of the internal functional structure of
the program: which parts of the functionality involve computation on different kinds of data?
The purpose of this level of detail is to guide thinking your about threats.

It is fine to include threats in your threat modeling for which you are unsure how serious
a problem they are, such depending on the context in which the program is used or what
data might be under the control of an adversary. It’s better to be aware of a threat that
turns out to not be a serious problem to reduce the risk of missing one that does. But you
may wish to highlight the risks that seem most serious.

One benefit of good threat modeling is to inform the auditing and bug-fixing processes,
but you aren’t restricted to doing the project completely in this order. If you find a vulner-
ability in a later stage, you should go back and check that it corresponds to a threat you
had identified, or add a new threat if one corresponding to the vulnerability was missing.
Code Auditing Plan. The next step of the project is to look for bugs in the bcimgview

source code that might be a problem for security. Your auditing should be informed in
part by your threat model: for instance, which parts of the code are more likely to be
vulnerable because they are exposed to untrusted inputs? You should also think about the
different kinds of memory-safety vulnerabilities we discussed in class, which are the focus of
this project and an important danger for a program written in C. For a vulnerability to be
exploitable, there needs to be the combination of a bug with a situation where the bug can
be triggered or controlled by an attacker-controlled value.

The second part of your first submission should describe how the bcimgview code should
be audited o look for relevant security vulnerabilities. You should write this section as if
you weren’t going to have time to do the auditing yourself, but you are providing guidance
to a colleague who is going to be doing the work. Your colleague has suitable background
knowledge of C and security concepts (like a fellow 4271 student), but imagine that they
haven’t worked closely with the bcimgview source code before. You should give them direc-
tions about what parts of the code to look most closely at, and what kinds of vulnerabilities
to watch out for.
Code Auditing Results. After the first submission, you will proceed to perform a security
audit on the bcimgview code. You can revise what had a been an auditing plan in your first
submission into a description of your auditing process: besides change the to the past tense,
the process may not have gone exactly as you planned.

The main result of the auditing in your report should be description of the vulnerabilities
you found. For each vulnerability, describe what the original programming mistake was,
how it leads to an unsafe situation, and how that unsafe situation might be controlled by
an adversary. You don’t need to give every detail of a possible attack here (that’s the next
section), but describe the adversarial control in a general way to explain why this is a security
problem and not just a non-security bug.

You can also include in the results of your audit other places in the code that looked like
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they might be dangerous from a security perspective, but where you aren’t sure that they are
vulnerable. Usually this will either be because something else in the code currently prevents
an attack, so you are confident it is not currently vulnerable, or because the conditions are
so complex that it is not clear whether an attack is possible. These other problem areas
might still be useful suggestions for the developers to improve, even if they are lower priority
than bugs that are known to be exploitable right now.

The bcimgview code contains at least four different security vulnerabilities that we placed
intentionally, and others might exist unintentionally. For full credit, your auditing results
should describe at least three of these vulnerabilities.
Creating Attacks. The second task for your second submission will be to demonstrate
the vulnerabilities you discovered by constructing working attacks. Because bcimgview has
memory-safety vulnerabilities, the goal for your attacks should be to take control of the
execution of the program.

To make things more uniform and so that you don’t have to write your own shellcode,
we have implemented a special function in the bcimgview code just for the purposes of your
attacks. The function named shellcode_target exists in the code of bcimgview, but it is
never called during normal execution. The only way this function can execute is if an attack
changes the execution of the program to go to a location chosen by the attacker, and that
what you should do to demonstrate that your attack technique is working. (Generally if you
have an attack that works to call shellcode_target, you could also modify it to execute
any other code of the attacker’s choosing, like injected shellcode or a ROP chain; we’re just
not asking you to do that later stage of the attack.)

For this project, we won’t be using any machine-checked way of verifying that your
attacks work. Instead, your need to describe the attacks in enough detail in the text of
your report to convince a reader of the report that you carried out the attack successfully.
So this part of the assignment includes writing clear and accurate technical description in
addition to discovering the attack in the first place. Your description of the attack should
also show that you correctly understand why it works; it shouldn’t sound like something you
discovered accidentally without understanding it. (Of course it’s OK if you originally find
an attack accidentally, as long as you understand it eventually.)

Because the binary-format image files are one of the main untrusted inputs to bcimgview,
it is likely that at least some of your attacks will involve maliciously-crafted images files
which are illegal or unexpected by the code in some way. One technique we’d recommend
for explaining an attack like this is to show the relevant part of the attack input in a binary-
oriented format like a hex dump, and to highlight the parts of the file contents that are
involved in the attack.

As with the auditing step, you will need to demonstrate successful attacks against at least
three different vulnerabilities for full credit; there are at least four usable vulnerabilities in
the code.
Fixing The Code. As part of your final submission, one of your tasks will be to fix the
security bugs you found in bcimgview. You should do this by modifying the source code
and recompiling it, and verifying that the normal functionality of the program still works
correctly but that things that used to be attacks are now safe. Between the second and final
submissions, we’ll post some more information on Piazza about the bugs that have been
found in bcimgview, so you can fix them even if you missed finding them the first time.
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The goal of your fixes should be to make the code secure. Your changes should be
sufficient so that the security bugs that previously existed are completely eliminated, but it
is not important to make non-security improvements to the code: you should think of this
as software maintenance, not rewriting. In some cases, a change that involves refactoring
the code might be easier to see the security of than a small change with a subtle security
argument. You should weigh this sort of tradeoff based on the assumption that your grade
will be significantly based on whether the result of your fix is secure. In other words, it is in
your interest to make the simplest change whose security you are confident of.

Your final written report should describe the ideas behind your fixes: how the new code
is different from the old code and how it avoids a security problem. Your general goal in
making a security fix is to keep the normal behavior of the program the same, but sometimes
people might differ as to what behavior is “normal,” or some change to functionality might
be unavoidable. In these latter cases you should justify the decisions you made.

Your change to the code should maintain at least as high a level of readability in terms
of things like variable names and comments as the code you are modifying. You don’t have
to put as much information into comments as you put in your written report, but if there is
some important information in a comment that would be helpful to future code maintainers,
that would be a good addition to your fix. If the original code had incorrect information in
a comment that was related to the vulnerability, you should correct the comment so that it
doesn’t mislead future developers.

You will submit your code changes in the form of a patch, a text file that shows just
the differences between the old version of the code and your fixed version. You may have
seen patches when working with Git or another version control system, but it’s up to you
whether or not you use version control in this project. You can create your patch by using the
command diff -up on a Linux machine; the arguments to the command are the old and new
source code files. The primary purpose of the patch is to be readable by another developer, so
you should check that the patch doesn’t contain extraneous changes like changing whitespace
or indentation.
Written Reports. Each of your submissions will include a written report describing the
progress of your project up to that point. Your second and third submissions should each
use the previous submissions as a basis and new material, though of course you can also
revise parts that were submitted previously.

The length expectations for each submission will be different (increasing) but each report
should be formatted for US-standard “Letter” paper (8.5 by 11 inches) with one-inch margins.
The main text of your report should use a Times, Times Roman, or Computer Modern
Roman font, 10 points high, and double spaced. (By comparison, these instructions use
single-spaced 12 point Computer Modern Roman on letter paper with one-inch margins, so
your document should take up the same area of the page, but should have a smaller font
with more space between the lines.) The length expectations refers to the text of you report.
Your report should probably also include some figures, but you should put them at the end,
after the main text, so that the length of your main text is clear at a glance. (This will
require readers to flip back and forth a bit, but we’re willing to accept this slight hassle.)
There is no maximum length limitation for the pages used by figures, but don’t include more
extra information that would be useful to readers.

Your report should be labeled with your name and UMN email address.

5



Writing is part of the purpose of this assignment and about half of what you will be
graded on, so be sure to allow time for quality writing, including revising, checking spelling
and grammar, and so on. You should write in a relatively formal style like a report you were
writing in business, but your priority should be explaining your technical points clearly.
Don’t make jokes or opinionated comments about the topic, and your approach doesn’t need
to be primarily arguing for any particular position. Instead your approach should be to
inform readers about the security of the software in an objective-sounding way, providing
the facts they need to do their job (e.g., to fix bugs or withdraw the product until it can be
improved).

The first submission (November 21st) should be 2-3 pages of text, the second submission
(November 30th) should be 4-5 pages of text, and the final submission (December 9th) should
be 5-6 pages of text, all not counting figures.

We will give you feedback on each of your rounds of report submission, covering both the
technical aspects of your report and the writing. In the second and third submissions you will
have a chance to improve these aspects of the your report based on our feedback and anything
else you have learned. For instance, this might include describing additional vulnerabilities
that you missed the first time, improving the vulnerability descriptions or threat model
discussion, or just making your writing clearer and grammatically correct. A portion of your
grade for the second and third submissions will be for improvements to parts of the report
you had first drafted in earlier submissions. These won’t replace the corresponding parts of
your score from previous submissions, but they are a chance to improve your overall score
because your revised version will be better than the original.

There will be separate Canvas assignment entries for your reports in PDF format for
each submission round. Together with the final report there will also be an entry to submit
the patch of your code changes: for compatibility with Canvas’s grading tools please submit
this as a plain text file with a .txt extension.
Other Suggestions. Binary formatted files like the image files in this project can’t be easily
edited with a normal text editor. To create binary files for testing or attacking bcimgview,
you will instead either want to write small programs that generate a binary file (such as
using binary I/O in C, pack in Perl, or similar features in other languages), or using an
editor designed for binary files. Editors designed for binary files are conventionally called
“hex editors”, because they are based around displaying each byte of the file in hexadecimal,
like an interactive version of the hex dump program hd. If you have a favorite programmer-
oriented text editor, it may already have a hex editing mode available. If you’re using the
CSE Labs machines, ghex is the name of a simple standalone hex editor that’s available.

Check out the class’s Piazza page for more Q&A and suggestions about the project. In
particular it’s the best place to ask questions. If you can ask a question without spoilers,
please ask in a public post (it can still be anonymous if you’d prefer) so that everyone
can contribute answers and benefit from them. If you are worried the question might be a
spoiler, use a private post (we might request that you make it public later if we think it’s
not a spoiler).
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