
CSci 4271W
Development of Secure Software Systems

Day 9: Threat modeling, defenses
Stephen McCamant

University of Minnesota, Computer Science & Engineering

Outline

ROP exercise final followup

Threat modeling: printer manager

Return address protections

ASLR and counterattacks

ROP mprotect example

I’ll show this in Inkscape

Outline

ROP exercise final followup

Threat modeling: printer manager

Return address protections

ASLR and counterattacks

Setting: shared lab with printer

Imagine a scenario similar to CSE Labs
Computer labs used by many people, with administrators

Target for modeling: software system used to
manage printing

Similar to real system, but use your imagination for
unknown details

Data flow diagram

Show structure of users, software/hardware
components, data flows, and trust boundaries

For this exercise, can mix software, OS, and network
perspectives

Include details relevant to security design decisions

Take 15 minutes to draw with your neighbors

STRIDE threat brainstorming

Think about possible threats using the STRIDE
classification

Are all six types applicable in this example?

Take 10 minutes to brainstorm with your neighbors

Outline

ROP exercise final followup

Threat modeling: printer manager

Return address protections

ASLR and counterattacks



Canary in the coal mine

Photo credit: Fir0002 CC-BY-SA

Adjacent canary idea

Terminator canary

Value hard to reproduce because it would tell the
copy to stop
StackGuard: 0x00 0D 0A FF

0: String functions
newline: fgets(), etc.
-1: getc()
carriage return: similar to newline?

Doesn’t stop: memcpy, custom loops

Random canary

Can’t reproduce because attacker can’t guess

For efficiency, usually one per execution

Ineffective if disclosed

XOR canary

Want to protect against non-sequential overwrites

XOR return address with value c at entry

XOR again with c before return

Standard choice for c: see random canary

Further refinements

More flexible to do earlier in compiler

Rearrange buffers after other variables
Reduce chance of non-control overwrite

Skip canaries for functions with only small variables
Who has an overflow bug in an 8-byte array?

What’s usually not protected?

Backwards overflows

Function pointers

Adjacent structure fields

Adjacent static data objects

Where to keep canary value

Fast to access

Buggy code/attacker can’t read or write

Linux/x86: %gs:0x14



Complex anti-canary attack

Canary not updated on fork in server

Attacker controls number of bytes overwritten

Complex anti-canary attack

Canary not updated on fork in server

Attacker controls number of bytes overwritten

ANRY BNRY CNRY DNRY ENRY FNRY

search 232 ! search 4 � 28

Shadow return stack

Suppose you have a safe place to store the canary

Why not just store the return address there?

Needs to be a separate stack

Ultimate return address protection

Outline

ROP exercise final followup

Threat modeling: printer manager

Return address protections

ASLR and counterattacks

Basic idea

“Address Space Layout Randomization”

Move memory areas around randomly so attackers
can’t predict addresses
Keep internal structure unchanged

E.g., whole stack moves together

Code and data locations

Execution of code depends on memory location

E.g., on x86-64:
Direct jumps are relative
Function pointers are absolute
Data can be relative (%rip-based addressing)

Relocation (Windows)

Extension of technique already used in compilation

Keep table of absolute addresses, instructions on
how to update

Disadvantage: code modifications take time on load,
prevent sharing

PIC/PIE (GNU/Linux)

“Position-Independent Code / Executable”

Keep code unchanged, use register to point to data
area

Disadvantage: code complexity, register pressure
hurt performance (especially 32-bit)



What’s not covered

Main executable (Linux PIC)

Incompatible DLLs (Windows)

Relative locations within a module/area

Entropy limitations

Intuitively, entropy measures amount of randomness,
in bits

Random 32-bit int: 32 bits of entropy

ASLR page aligned, so at most 32- 12 = 20 bits of
entropy

Other constraints further reduce possibilities

Leakage limitations

If an attacker learns the randomized base address,
can reconstruct other locations

Any stack address ! stack unprotected, etc.


