CSci 427\W
Development of Secure Software Systems
Day 9: Threat modeling, defenses

Stephen McCamant
University of Minnesota, Computer Science & Engineering

Outline

ROP exercise final followup

ROP mprotect example

I'll show this in Inkscape

Outline

Threat modeling: printer manager

Setting: shared lab with printer

©) Imagine a scenario similar to CSE Labs
® Computer labs used by many people, with administrators
©) Target for modeling: software system used to
manage printing
® Similar to real system, but use your imagination for
unknown details

Data flow diagram

£) Show structure of users, software/hardware
components, data flows, and trust boundaries

©) For this exercise, can mix software, OS, and network
perspectives

£ Include details relevant to security design decisions
£) Take 15 minutes to draw with your neighbors

STRIDE threat brainstorming

©) Think about possible threats using the STRIDE
classification

©) Are all six types applicable in this example?
£) Take 10 minutes to brainstorm with your neighbors

Outline

Return address protections

Canary in the coal mine

Adjacent canary idea

s
L% |24 (%rbp)
s
® 16(%rbp)
n
|8 (%rbp)
L srbp
-8(%rbp)

I
o9 |16 (%rbp)

lo
“top" of char(8]
stack

srsp____, [[01 |-24(%rbp)

Terminator canary

©) Value hard to reproduce because it would tell the
copy to stop
) StackGuard: 0x00 OD OA FF

® O: String functions

® newline: fgets(), etc.

8 -1 getc()

® carriage return: similar to newline?

©) Doesn't stop: memcpy, custom loops

Random canary

£) Can't reproduce because attacker can't guess
£ For efficiency, usually one per execution
£ Ineffective if disclosed

XOR canary

©) Want to protect against non-sequential overwrites
©) XOR return address with value c at entry

©) XOR again with ¢ before return

£) Standard choice for c: see random canary

Further refinements

©) More flexible to do earlier in compiler
£) Rearrange buffers after other variables
® Reduce chance of non-control overwrite

£) Skip canaries for functions with only small variables
® Who has an overflow bug in an 8-byte array?

What's usually not protected?

©) Backwards overflows

©) Function pointers

©) Adjacent structure fields

©) Adjacent static data objects

Where to keep canary value

£) Fast to access
£) Buggy code/attacker can't read or write
©) Linux/x86: %gs:0x14

Complex anti-canary attack

£) Canary not updated on fork in server
£) Attacker controls number of bytes overwritten

Complex anti-canary attack

£) Canary not updated on fork in server

£) Attacker controls number of bytes overwritten
©) ANRY BNRY CNRY DNRY ENRY FNRY

) search 232 — search 4 - 28

Shadow return stack

©) Suppose you have a safe place to store the canary
©) Why not just store the return address there?

©) Needs to be a separate stack

©) Ultimate return address protection

Outline

ASLR and counterattacks

Basic idea

£) "Address Space Layout Randomization”
£) Move memory areas around randomly so attackers
can't predict addresses
©) Keep internal structure unchanged
® Eg, whole stack moves together

Code and data locations

£) Execution of code depends on memory location

0 Eg, on x86-64:
® Direct jumps are relative
® Function pointers are absolute
® Data can be relative (%rip-based addressing)

Relocation (Windows)

£) Extension of technique already used in compilation

©) Keep table of absolute addresses, instructions on
how to update

©) Disadvantage: code modifications take time on load,
prevent sharing

PIC/PIE (GNU/Linux)

£) “Position-Independent Code / Executable”

£) Keep code unchanged, use register to point to data
area

£) Disadvantage: code complexity, register pressure
hurt performance (especially 32-bit)

What's not covered

©) Main executable (Linux PIC)
£) Incompatible DLLs (Windows)
©) Relative locations within a module/area

Entropy limitations

£ Intuitively, entropy measures amount of randomness,
in bits
£) Random 32-bit int: 32 bits of entropy

£) ASLR page aligned, so at most 32 — 12 = 20 bits of
entropy

£) Other constraints further reduce possibilities

Leakage limitations

0 If an attacker learns the randomized base address,
can reconstruct other locations

©) Any stack address — stack unprotected, etc.

