
CSci 4271W
Development of Secure Software Systems

Day 10: Unix Access Control
Stephen McCamant

University of Minnesota, Computer Science & Engineering

Outline

Return address protections, cont’d

ASLR and counterattacks

Access control: mechanism and policy

Unix filesystem concepts

Unix permissions basics

More Unix permissions

Random canary

Can’t reproduce because attacker can’t guess

For efficiency, usually one per execution

Ineffective if disclosed

XOR canary

Want to protect against non-sequential overwrites

XOR return address with value c at entry

XOR again with c before return

Standard choice for c: see random canary

Further refinements

More flexible to do earlier in compiler

Rearrange buffers after other variables
Reduce chance of non-control overwrite

Skip canaries for functions with only small variables
Who has an overflow bug in an 8-byte array?

What’s usually not protected?

Backwards overflows

Function pointers

Adjacent structure fields

Adjacent static data objects

Where to keep canary value

Fast to access

Buggy code/attacker can’t read or write

Linux/x86: %gs:0x14

Complex anti-canary attack

Canary not updated on fork in server

Attacker controls number of bytes overwritten



Complex anti-canary attack

Canary not updated on fork in server

Attacker controls number of bytes overwritten

ANRY BNRY CNRY DNRY ENRY FNRY

search 232 ! search 4 � 28

Shadow return stack

Suppose you have a safe place to store the canary

Why not just store the return address there?

Needs to be a separate stack

Ultimate return address protection

Outline

Return address protections, cont’d

ASLR and counterattacks

Access control: mechanism and policy

Unix filesystem concepts

Unix permissions basics

More Unix permissions

Basic idea

“Address Space Layout Randomization”

Move memory areas around randomly so attackers
can’t predict addresses
Keep internal structure unchanged

E.g., whole stack moves together

Code and data locations

Execution of code depends on memory location

E.g., on x86-64:
Direct jumps are relative
Function pointers are absolute
Data can be relative (%rip-based addressing)

Relocation (Windows)

Extension of technique already used in compilation

Keep table of absolute addresses, instructions on
how to update

Disadvantage: code modifications take time on load,
prevent sharing

PIC/PIE (GNU/Linux)

“Position-Independent Code / Executable”

Keep code unchanged, use register to point to data
area

Disadvantage: code complexity, register pressure
hurt performance (especially 32-bit)

What’s not covered

Main executable (Linux PIC)

Incompatible DLLs (Windows)

Relative locations within a module/area



Entropy limitations

Intuitively, entropy measures amount of randomness,
in bits

Random 32-bit int: 32 bits of entropy

ASLR page aligned, so at most 32- 12 = 20 bits of
entropy

Other constraints further reduce possibilities

Leakage limitations

If an attacker learns the randomized base address,
can reconstruct other locations

Any stack address ! stack unprotected, etc.

Outline

Return address protections, cont’d

ASLR and counterattacks

Access control: mechanism and policy

Unix filesystem concepts

Unix permissions basics

More Unix permissions

Configurability

Basic idea: let one mechanism (implementation)
support a variety of security policies

I.e., make security a system configuration

Classic example for today: OS access control

Flexible mechanism to support different policies

Trade-off: an incorrect configuration can lead to
insecurity

Confidentiality and integrity

Access control directly serves two security goals:

Confidentiality, opposite of information disclosure

Integrity, opposite of tampering

By prohibiting read and write operations respectively

Access control policy

Decision-making aspect of OS

Should subject S (user or process) be allowed to
access object (e.g., file) O?

Complex, since admininstrator must specify what
should happen

Access control matrix

grades.txt /dev/hda /usr/bin/bcvi
Alice r rw rx
Bob rw - rx

Carol r - rx

Slicing the matrix

O(nm) matrix impractical to store, much less
administer
Columns: access control list (ACL)

Convenient to store with object
E.g., Unix file permissions

Rows: capabilities
Convenient to store by subject
E.g., Unix file descriptors



Groups/roles

Simplify by factoring out commonality

Before: users have permissions

After: users have roles, roles have permissions

Simple example: Unix groups

Complex versions called role-based access control
(RBAC)

Outline

Return address protections, cont’d

ASLR and counterattacks

Access control: mechanism and policy

Unix filesystem concepts

Unix permissions basics

More Unix permissions

One namespace

All files can be accessed via absolute pathnames
made of directory components separated by slashes

I.e., everything is a descendant of a root directory
named /

Filesystems and mounting

There may be multiple filesystems, like disk partitions
or removable devices

One filesystem is the root filesystem that includes
the root directory
Other filesystems are mounted in place of a
directory

E.g., /media/smccaman/mp3player/podcast.mp3

Special files and devices

Some hardware devices (disks, serial ports) also
look like files

Usually kept under /dev

Some special data sources look like devices
/dev/null, /dev/zero, /dev/urandom

Some OS data also available via /proc and sys

filesystems
E.g., /proc/self/maps

Current directory, relative paths

At a given moment, each process has a current
working directory

Changed by cd shell command, chdir system call

Pathnames that do not start with / are interpreted
relative to the current directory

Inodes

Most information about a file is a structure called an
inode

Includes size, owner, permissions, and a unique inode
number

Inodes exist independently of pathnames

Directory entries and links

A directory is a list of directory entries, each
mapping from a name to an inode

These mappings are also called links

“Deleting a file” is really removing a directory entry
The system call unlink



Entries . and ..

Every directory contains entries named . and ..

. links back to the directory itself

.. links back to the parent directory, or itself for the
root

(Hard) links

Multiple directory entries can link to the same inode

These are called hard links

Only allowed within one filesystem, and not for
directories

Symbolic links

Symbolic links are a different linking method

A symbolic link is an inode that contains a pathname

Most system calls follow symbolic as well as hard
links to operate on they point to

Outline

Return address protections, cont’d

ASLR and counterattacks

Access control: mechanism and policy

Unix filesystem concepts

Unix permissions basics

More Unix permissions

UIDs and GIDs

To kernel, users and groups are just numeric
identifiers
Names are a user-space nicety

E.g., /etc/passwd mapping

Historically 16-bit, now 32

User 0 is the special superuser root
Exempt from all access control checks

File mode bits

Core permissions are 9 bits, three groups of three

Read, write, execute for user, group, other

ls format: rwx r-x r--

Octal format: 0754

Interpretation of mode bits

File also has one user and group ID

Choose one set of bits
If users match, use user bits
If subject is in the group, use group bits
Otherwise, use other bits

Note no fallback, so can stop yourself or have
negative groups

Directory mode bits

Same bits, slightly different interpretation

Read: list contents (e.g., ls)

Write: add or delete files

Execute: traverse

X but not R means: have to know the names



Other permission rules

Only file owner or root can change permissions

Only root can change file owner
Former System V behavior: “give away chown”

Setuid/gid bits cleared on chown

Set owner first, then enable setuid

Non-checks

File permissions on stat

File permissions on link, unlink, rename

File permissions on read, write

Parent directory permissions generally
Except traversal
I.e., permissions not automatically recursive

Outline

Return address protections, cont’d

ASLR and counterattacks

Access control: mechanism and policy

Unix filesystem concepts

Unix permissions basics

More Unix permissions

Process UIDs and setuid(2)

UID is inherited by child processes, and an
unprivileged process can’t change it

But there are syscalls root can use to change the
UID, starting with setuid

E.g., login program, SSH server

Setuid programs, different UIDs

If 04000 “setuid” bit set, newly exec’d process will
take UID of its file owner

Other side conditions, like process not traced

Specifically the effective UID is changed, while the
real UID is unchanged

Shows who called you, allows switching back

More different UIDs

Two mechanisms for temporary switching:
Swap real UID and effective UID (BSD)
Remember saved UID, allow switching to it (System V)

Modern systems support both mechanisms at the
same time

Setgid, games

Setgid bit 02000 mostly analogous to setuid

But note no supergroup, so UID 0 is still special

Classic application: setgid games for managing
high-score files

Special case: /tmp

We’d like to allow anyone to make files in /tmp

So, everyone should have write permission

But don’t want Alice deleting Bob’s files

Solution: “sticky bit” 01000



Special case: group inheritance

When using group to manage permissions, want a
whole tree to have a single group
When 02000 bit set, newly created entries with
have the parent’s group

(Historic BSD behavior)

Also, directories will themselves inherit 02000

Other permission rules

Only file owner or root can change permissions

Only root can change file owner
Former System V behavior: “give away chown”

Setuid/gid bits cleared on chown

Set owner first, then enable setuid


