
CSci 4271W
Development of Secure Software Systems

Day 14: OS Protection and Isolation
Stephen McCamant

University of Minnesota, Computer Science & Engineering

Outline

Secure OS interaction

Announcements intermission

OS: protection and isolation

More choices for isolation

Testing and fuzzing

Avoid special privileges

Require users to have appropriate permissions
Rather than putting trust in programs

Dangerous pattern 1: setuid/setgid program

Dangerous pattern 2: privileged daemon

But, sometimes unavoidable (e.g., email)

Prefer file descriptors

Maintain references to files by keeping them open
and using file descriptors, rather than by name

References same contents despite file system
changes

Use openat, etc., variants to use FD instead of
directory paths

Prefer absolute paths

Use full paths (starting with /) for programs and files

$PATH under local user control

Initial working directory under local user control
But FD-like, so can be used in place of openat if missing

Prefer fully trusted paths

Each directory component in a path must be write
protected

Read-only file in read-only directory can be changed
if a parent directory is modified

Don’t separate check from use

Avoid pattern of e.g., access then open

Instead, just handle failure of open
You have to do this anyway

Multiple references allow races
And access also has a history of bugs

Be careful with temporary files

Create files exclusively with tight permissions and
never reopen them

See detailed recommendations in Wheeler (q.v.)

Not quite good enough: reopen and check matching
device and inode

Fails with sufficiently patient attack

Give up privileges

Using appropriate combinations of set*id functions
Alas, details differ between Unix variants

Best: give up permanently

Second best: give up temporarily

Detailed recommendations: Setuid Demystified
(USENIX’02)

Allow-list environment variables

Can change the behavior of called program in
unexpected ways
Decide which ones are necessary

As few as possible

Save these, remove any others

For more details. . .

The first external reading is chapters from a
web-hosted book by David A. Wheeler
Reading questions will be due one week after they
are posted on Canvas

In this case, next Wednesday

Outline

Secure OS interaction

Announcements intermission

OS: protection and isolation

More choices for isolation

Testing and fuzzing

Upcoming activities

Problem set 1 is due Friday at 11:59pm

Watch Piazza for midterm solution information,
probably ready to give back in class on Tuesday

First reading assignment, about OS interaction,
available now with quiz due in one week

Outline

Secure OS interaction

Announcements intermission

OS: protection and isolation

More choices for isolation

Testing and fuzzing

OS security topics

Resource protection

Process isolation

User authentication (will cover later)

Access control (already covered)

Protection and isolation

Resource protection: prevent processes from
accessing hardware

Process isolation: prevent processes from interfering
with each other

Design: by default processes can do neither

Must request access from operating system

Reference monitor

Complete mediation: all accesses are checked

Tamperproof: the monitor is itself protected from
modification

Small enough to be thoroughly verified

Hardware basis: memory protection

Historic: segments

Modern: paging and page protection
Memory divided into pages (e.g. 4k)
Every process has own virtual to physical page table
Pages also have R/W/X permissions

Linux example Hardware basis: supervisor bit

Supervisor (kernel) mode: all instructions available

User mode: no hardware or VM control instructions

Only way to switch to kernel mode is specified entry
point

Also generalizes to multiple “rings”

Outline

Secure OS interaction

Announcements intermission

OS: protection and isolation

More choices for isolation

Testing and fuzzing

Ideal: least privilege

Programs and users should have the most limited
set of powers needed to do their job
Presupposes that privileges are suitably divisible

Contrast: Unix root

“Trusted”, TCB

In security, “trusted” is a bad word

X is trusted: X can break your security

“Untrusted” = okay if it’s evil

Trusted Computing Base (TCB): minimize

Restricted languages

Main application: code provided by untrusted parties

Packet filters in the kernel

JavaScript in web browsers
Also Java, Flash ActionScript, etc.

SFI

Software-based Fault Isolation

Instruction-level rewriting
Analogous to but predates control-flow integrity

Limit memory stores and sometimes loads

Can’t jump out except to designated points

E.g., Google Native Client

Separate processes

OS (and hardware) isolate one process from another

Pay overhead for creation and communication

System call interface allows many possibilities for
mischief

System-call interposition

Trusted process examines syscalls made by
untrusted

Implement via ptrace (like strace, gdb) or via kernel
change

Easy policy: deny

Interposition challenges

Argument values can change in memory (TOCTTOU)

OS objects can change (TOCTTOU)

How to get canonical object identifiers?

Interposer must accurately model kernel behavior

Details: Garfinkel (NDSS’03)

Separate users

Reuse OS facilities for access control

Unit of trust: program or application

Older example: qmail

Newer example: Android

Limitation: lots of things available to any user

chroot

Unix system call to change root directory

Restrict/virtualize file system access

Only available to root

Does not isolate other namespaces

OS-enabled containers

One kernel, but virtualizes all namespaces

FreeBSD jails, Linux LXC, Solaris zones, etc.

Quite robust, but the full, fixed, kernel is in the TCB

(System) virtual machines

Presents hardware-like interface to an untrusted
kernel

Strong isolation, full administrative complexity

I/O interface looks like a network, etc.

Virtual machine designs

(Type 1) hypervisor: ‘superkernel’ underneath VMs

Hosted: regular OS underneath VMs

Paravirtualizaion: modify kernels in VMs for ease of
virtualization

Virtual machine technologies

Hardware based: fastest, now common

Partial translation: e.g., original VMware

Full emulation: e.g. QEMU proper
Slowest, but can be a different CPU architecture

Modern example: Chrom(ium)

Separates “browser kernel” from less-trusted
“rendering engine”

Pragmatic, keeps high-risk components together

Experimented with various Windows and Linux
sandboxing techniques

Blocked 70% of historic vulnerabilities, not all new
ones

http://seclab.stanford.edu/websec/chromium/

Outline

Secure OS interaction

Announcements intermission

OS: protection and isolation

More choices for isolation

Testing and fuzzing

Testing and security

“Testing shows the presence, not the absence of
bugs” – Dijkstra
Easy versions of some bugs can be found by
targeted tests:

Buffer overflows: long strings
Integer overflows: large numbers
Format string vulnerabilities: %x

Random or fuzz testing

Random testing can also sometimes reveal bugs

Original ‘fuzz’ (Miller): program </dev/urandom

Even this was surprisingly effective

Mutational fuzzing

Instead of totally random inputs, make small random
changes to normal inputs

Changes are called mutations

Benign starting inputs are called seeds

Good seeds help in exercising interesting/deep
behavior

Grammar-based fuzzing

Observation: it helps to know what correct inputs
look like

Grammar specifies legal patterns, run backwards
with random choices to generate

Generated inputs can again be basis for mutation

Most commonly used for standard input formats
Network protocols, JavaScript, etc.

What if you don’t have a grammar?

Input format may be unknown, or buggy and limited

Writing a grammar may be too much manual work

Can the structure of interesting inputs be figured out
automatically?

Coverage-driven fuzzing

Instrument code to record what code is executed

An input is interesting if it executes code that was
not executed before

Only interesting inputs are used as basis for future
mutation

AFL

Best known open-source tool, pioneered
coverage-driven fuzzing

American Fuzzy Lop, a breed of rabbits

Stores coverage information in a compact hash table

Compiler-based or binary-level instrumentation

Has a number of other optimizations

