
CSci 4271W
Development of Secure Software Systems

Day 25: Crypto failure, authentication
Stephen McCamant

University of Minnesota, Computer Science & Engineering

Outline

SSL/TLS, cont’d

More causes of crypto failure

Announcements intermission

DNSSEC

User authentication

HTTPS hierarchical PKI

Browser has order of 100 root certs
Not same set in every browser
Standards for selection not always clear

Many of these in turn have sub-CAs

Also, “wildcard” certs for individual domains

CA validation standards

CA’s job to check if the buyer really is foo.com

Race to the bottom problem:
CA has minimal liability for bad certs
Many people want cheap certs
Cost of validation cuts out of profit

“Extended validation” (green bar) certs attempt to fix

HTTPS and usability

Many HTTPS security challenges tied with user
decisions

Is this really my bank?

Seems to be a quite tricky problem
Security warnings often ignored, etc.
We’ll return to this as an example later

Outline

SSL/TLS, cont’d

More causes of crypto failure

Announcements intermission

DNSSEC

User authentication

Random numbers and entropy

Cryptographic RNGs use cipher-like techniques to
provide indistinguishability
But rely on truly random seeding to stop brute force

Extreme case: no entropy ! always same “randomness”

Modern best practice: seed pool with 256 bits of
entropy

Suitable for security levels up to 2
256

Netscape RNG failure

Early versions of Netscape SSL (1994-1995) seeded
with:

Time of day
Process ID
Parent process ID

Best case entropy only 64 bits
(Not out of step with using 40-bit encryption)

But worse because many bits guessable



Debian/OpenSSL RNG failure (1)

OpenSSL has pretty good scheme using
/dev/urandom

Also mixed in some uninitialized variable values
“Extra variation can’t hurt”

From modern perspective, this was the original sin
Remember undefined behavior discussion?

But had no immediate ill effects

Debian/OpenSSL RNG failure (2)

Debian maintainer commented out some lines to fix
a Valgrind warning

“Potential use of uninitialized value”

Accidentally disabled most entropy (all but 16 bits)

Brief mailing list discussion didn’t lead to
understanding

Broken library used for �2 years before discovery

Detected RSA/DSA collisions
2012: around 1% of the SSL keys on the public net
are breakable

Some sites share complete keypairs
RSA keys with one prime in common (detected by
large-scale GCD)

One likely culprit: insufficient entropy in key
generation

Embedded devices, Linux /dev/urandom vs.
/dev/random

DSA signature algorithm also very vulnerable

Newer factoring problem (CCS’17)

An Infineon RSA library used primes of the form
p = k � M+ (65537a mod M)

Smaller problems: fingerprintable, less entropy

Major problem: can factor with a variant of
Coppersmith’s algoritm

E.g., 3 CPU months for a 1024-bit key

Side-channel attacks
Timing analysis:

Number of 1 bits in modular exponentiation
Unpadding, MAC checking, error handling
Probe cache state of AES table entries

Power analysis
Especially useful against smartcards

Fault injection

Data non-erasure
Hard disks, “cold boot” on RAM

WEP “privacy”

First WiFi encryption standard: Wired Equivalent
Privacy (WEP)

F&S: designed by a committee that contained no
cryptographers
Problem 1: note “privacy”: what about integrity?

Nope: stream cipher + CRC = easy bit flipping

WEP shared key

Single key known by all parties on network

Easy to compromise

Hard to change

Also often disabled by default

Example: a previous employer

WEP key size and IV size

Original sizes: 40-bit shared key (export restrictions)
plus 24-bit IV = 64-bit RC4 key

Both too small

128-bit upgrade kept 24-bit IV
Vague about how to choose IVs
Least bad: sequential, collision takes hours
Worse: random or everyone starts at zero



WEP RC4 related key attacks

Only true crypto weakness

RC4 “key schedule” vulnerable when:
RC4 keys very similar (e.g., same key, similar IV)
First stream bytes used

Not such a problem for other RC4 users like SSL
Key from a hash, skip first output bytes

Newer problem with WPA (CCS’17)

Session key set up in a 4-message handshake

Key reinstallation attack: replay #3
Causes most implementations to reset nonce and replay
counter
In turn allowing many other attacks
One especially bad case: reset key to 0

Protocol state machine behavior poorly described in
spec

Outside the scope of previous security proofs

Trustworthiness of primitives

Classic worry: DES S-boxes

Obviously in trouble if cipher chosen by your
adversary

In a public spec, most worrying are unexplained
elements

Best practice: choose constants from well-known
math, like digits of �

Dual EC DRBG (1)

Pseudorandom generator in NIST standard, based on
elliptic curve

Looks like provable (slow enough!) but strangely no
proof

Specification includes long unexplained constants

Academic researchers find:
Some EC parts look good
But outputs are statistically distinguishable

Dual EC DRBG (2)

Found 2007: special choice of constants allows
prediction attacks

Big red flag for paranoid academics

Significant adoption in products sold to US govt.
FIPS-140 standards

Semi-plausible rationale from RSA (EMC)

NSA scenario basically confirmed by Snowden leaks
NIST and RSA immediately recommend withdrawal

Outline

SSL/TLS, cont’d

More causes of crypto failure

Announcements intermission

DNSSEC

User authentication

Note to early readers

This is the section of the slides most likely to change
in the final version

If class has already happened, make sure you have
the latest slides for announcements

Outline

SSL/TLS, cont’d

More causes of crypto failure

Announcements intermission

DNSSEC

User authentication



DNS: trusted but vulnerable

Almost every higher-level service interacts with DNS

UDP protocol with no authentication or crypto
Lots of attacks possible

Problems known for a long time, but challenge to fix
compatibly

DNSSEC goals and non-goals

+ Authenticity of positive replies

+ Authenticity of negative replies

+ Integrity

- Confidentiality

- Availability

First cut: signatures and certificates

Each resource record gets an RRSIG signature
E.g., A record for one name!address mapping
Observe: signature often larger than data

Signature validation keys in DNSKEY RRs

Recursive chain up to the root (or other “anchor”)

Add more indirection

DNS needs to scale to very large flat domains like
.com

Facilitated by having single DS RR in parent indicating
delegation

Chain to root now includes DSes as well

Negative answers

Also don’t want attackers to spoof non-existence
Gratuitous denial of service, force fallback, etc.

But don’t want to sign “x does not exist” for all x

Solution 1, NSEC: “there is no name between acacia

and baobab”

Preventing zone enumeration

Many domains would not like people enumerating all
their entries

DNS is public, but “not that public”

Unfortunately NSEC makes this trivial

Compromise: NSEC3 uses password-like salt and
repeated hash, allows opt-out

DANE: linking TLS to DNSSEC

“DNS-based Authentication of Named Entities”

DNS contains hash of TLS cert, don’t need CAs

How is DNSSEC’s tree of certs better than TLS’s?

Signing the root

Political problem: many already distrust US-centered
nature of DNS infrastructure

Practical problem: must be very secure with no
single point of failure
Finally accomplished in 2010

Solution involves ‘key ceremonies’, international
committees, smart cards, safe deposit boxes, etc.



Deployment

Standard deployment problem: all cost and no
benefit to being first mover

Servers working on it, mostly top-down

Clients: estimated around 30%

Will probably be common for a while: insecure
connection to secure resolver

What about privacy?

Users increasingly want privacy for their DNS
queries as well

Older DNSCurve and DNSCrypt protocols were not
standardized

More recent “DNS over TLS” and “DNS over HTTPS”
are RFCs

DNS over HTTPS in major browsers might have
serious centralization effects

Outline

SSL/TLS, cont’d

More causes of crypto failure

Announcements intermission

DNSSEC

User authentication

Authentication factors

Something you know (password, PIN)

Something you have (e.g., smart card)

Something you are (biometrics)

CAPTCHAs, time and location, . . .

Multi-factor authentication

Passwords: love to hate

Many problems for users, sysadmins, researchers

But familiar and near-zero cost of entry

User-chosen passwords proliferate for low-stakes
web site authentication

Password entropy

Model password choice as probabilistic process

If uniform, log2 jSj

Controls difficulty of guessing attacks

Hard to estimate for user-chosen passwords
Length is an imperfect proxy

Password hashing

Idea: don’t store password or equivalent information

Password ‘encryption’ is a long-standing misnomer
E.g., Unix crypt(3)

Presumably hard-to-invert function h

Store only h(p)

Dictionary attacks

Online: send guesses to server

Offline: attacker can check guesses internally

Specialized password lists more effective than literal
dictionaries

Also generation algorithms (s ! $, etc.)

�25% of passwords consistently vulnerable



Better password hashing

Generate random salt s, store (s; h(s; p))
Block pre-computed tables and equality inferences
Salt must also have enough entropy

Deliberately expensive hash function
AKA password-based key derivation function (PBKDF)
Requirement for time and/or space

Password usability

User compliance can be a major challenge
Often caused by unrealistic demands

Distributed random passwords usually unrealistic

Password aging: not too frequently

Never have a fixed default password in a product

Backup authentication

Desire: unassisted recovery from forgotten password

Fall back to other presumed-authentic channel
Email, cell phone

Harder to forget (but less secret) shared information
Mother’s maiden name, first pet’s name

Brittle: ask Sarah Palin or Mat Honan

Backup auth suggestion: use time

Need for backup often comes for infrequently-used
accounts
May be acceptable to slow down recovery if it
reduces attack risk

Account recovery is a hassle anyway

Time can allow legitimate owner to notice malicious
request

Centralized authentication

Enterprise-wide (e.g., UMN ID)

Anderson: Microsoft Passport

Today: Facebook Connect, Google ID

May or may not be single-sign-on (SSO)

Biometric authentication

Authenticate by a physical body attribute

+ Hard to lose

- Hard to reset

- Inherently statistical

- Variation among people

Example biometrics

(Handwritten) signatures

Fingerprints, hand geometry

Face and voice recognition

Iris codes


