CSci 427\W
Development of Secure Software Systems
Day 25: Crypto failure, authentication

Stephen McCamant
University of Minnesota, Computer Science & Engineering

Outline

SSL/TLS, contd

HTTPS hierarchical PKI

) Browser has order of 100 root certs

® Not same set in every browser
® Standards for selection not always clear

£) Many of these in turn have sub-CAs
©) Also, “wildcard” certs for individual domains

CA validation standards

£) CA's job to check if the buyer really is foo.com

£) Race to the bottom problem:

® CA has minimal liability for bad certs
® Many people want cheap certs
® Cost of validation cuts out of profit

©) “Extended validation” (green bar) certs attempt to fix

HTTPS and usability

©) Many HTTPS security challenges tied with user
decisions
0 Is this really my bank?

£) Seems to be a quite tricky problem

® Security warnings often ignored, etc.
® We'll return to this as an example later

Outline

More causes of crypto failure

Random numbers and entropy

£) Cryptographic RNGs use cipher-like techniques to
provide indistinguishability
©) But rely on truly random seeding to stop brute force

® Extreme case: no entropy — always same “randomness”

©) Modern best practice: seed pool with 256 bits of
entropy
® Suitable for security levels up to 22°¢

Netscape RNG failure

£) Early versions of Netscape SSL (1994-1995) seeded
with:
® Time of day
® Process ID
® Parent process ID

£) Best case entropy only 64 bits
® (Not out of step with using 40-bit encryption)

£) But worse because many bits guessable

Debian/OpenSSL RNG failure (1)

£) OpenSSL has pretty good scheme using
/dev/urandom
£) Also mixed in some uninitialized variable values
® “Extra variation can't hurt”
£) From modern perspective, this was the original sin
® Remember undefined behavior discussion?

©) But had no immediate ill effects

Debian/OpenSSL RNG failure (2)

) Debian maintainer commented out some lines to fix
a Valgrind warning
® "Potential use of uninitialized value”

£) Accidentally disabled most entropy (all but 16 bits)

) Brief mailing list discussion didn't lead to
understanding

£) Broken library used for ~2 years before discovery

Detected RSA/DSA collisions

£) 2012: around 1% of the SSL keys on the public net
are breakable
® Some sites share complete keypairs
® RSA keys with one prime in common (detected by
large-scale GCD)
©) One likely culprit: insufficient entropy in key
generation
® Embedded devices, Linux /dev/urandom Vs.
/dev/random

£) DSA signature algorithm also very vulnerable

Newer factoring problem (CCS'17)

£) An Infineon RSA library used primes of the form
p=k- M+ (65537“ mod M)

£) Smaller problems: fingerprintable, less entropy

£) Major problem: can factor with a variant of

Coppersmith’s algoritm
® Eg, 3 CPU months for a 1024-bit key

Side-channel attacks

©) Timing analysis:
® Number of 1 bits in modular exponentiation
® Unpadding, MAC checking, error handling
® Probe cache state of AES table entries

©) Power analysis

® Especially useful against smartcards
©) Fault injection
©) Data non-erasure

® Hard disks, “cold boot” on RAM

WEP “privacy”

) First WiFi encryption standard: Wired Equivalent
Privacy (WEP)
£) F&S: designed by a committee that contained no
cryptographers
£) Problem 1. note “privacy”: what about integrity?
® Nope: stream cipher + CRC = easy bit flipping

WEP shared key

©) Single key known by all parties on network
©) Easy to compromise

©) Hard to change

£) Also often disabled by default

©) Example: a previous employer

WEP key size and IV size

£) Original sizes: 40-bit shared key (export restrictions)
plus 24-bit IV = 64-bit RC4 key
® Both too small
£) 128-bit upgrade kept 24-bit IV

® Vague about how to choose IVs
® Least bad: sequential, collision takes hours
® Worse: random or everyone starts at zero

WEP RCA4 related key attacks

©) Only true crypto weakness

£) RC4 “key schedule” vulnerable when:

® RC4 keys very similar (e.g., same key, similar IV)
® First stream bytes used

©) Not such a problem for other RC4 users like SSL
® Key from a hash, skip first output bytes

Newer problem with WPA (CCS'17)

£) Session key set up in a 4-message handshake

©) Key reinstallation attack: replay #3
® Causes most implementations to reset nonce and replay
counter
® In turn allowing many other attacks
® One especially bad case: reset key to O

£) Protocol state machine behavior poorly described in
spec
® Outside the scope of previous security proofs

Trustworthiness of primitives

) Classic worry: DES S-boxes

) Obviously in trouble if cipher chosen by your
adversary

©) In a public spec, most worrying are unexplained
elements

©) Best practice: choose constants from well-known
math, like digits of 7t

Dual EC DRBG (1)

£) Pseudorandom generator in NIST standard, based on
elliptic curve

£) Looks like provable (slow enough!) but strangely no
proof

£) Specification includes long unexplained constants

) Academic researchers find:

® Some EC parts look good
® But outputs are statistically distinguishable

Dual EC DRBG (2)

©) Found 2007: special choice of constants allows
prediction attacks
® Big red flag for paranoid academics
o) Significant adoption in products sold to US govt.
FIPS-140 standards
® Semi-plausible rationale from RSA (EMC)
£) NSA scenario basically confirmed by Snowden leaks
® NIST and RSA immediately recommend withdrawal

Outline

Announcements intermission

Note to early readers

©) This is the section of the slides most likely to change
in the final version

0 If class has already happened, make sure you have
the latest slides for announcements

Outline

DNSSEC

DNS: trusted but vulnerable

) Almost every higher-level service interacts with DNS
©) UDP protocol with no authentication or crypto
® Lots of attacks possible
£) Problems known for a long time, but challenge to fix
compatibly

DNSSEC goals and non-goals

+ Authenticity of positive replies
+ Authenticity of negative replies
+ Integrity

— Confidentiality

— Availability

First cut: signatures and certificates

©) Each resource record gets an RRSIG signature

® Eg, A record for one name—address mapping
® Observe: signature often larger than data

©) Signature validation keys in DNSKEY RRs
£) Recursive chain up to the root (or other “anchor”)

Add more indirection

£) DNS needs to scale to very large flat domains like
.com

£) Facilitated by having single DS RR in parent indicating
delegation

£) Chain to root now includes DSes as well

Negative answers

©) Also don't want attackers to spoof non-existence
® Gratuitous denial of service, force fallback, etc.

£) But don't want to sign “x does not exist” for all x

©) Solution 1, NSEC: “there is no name between acacia
and baobab”

Preventing zone enumeration

£) Many domains would not like people enumerating all
their entries

£) DNS is public, but “not that public”
£) Unfortunately NSEC makes this trivial

£) Compromise: NSEC3 uses password-like salt and
repeated hash, allows opt-out

DANE: linking TLS to DNSSEC

©) "DNS-based Authentication of Named Entities”
©) DNS contains hash of TLS cert, don't need CAs
©) How is DNSSEC's tree of certs better than TLS's?

Signing the root

) Political problem: many already distrust US-centered
nature of DNS infrastructure

£) Practical problem: must be very secure with no
single point of failure

£ Finally accomplished in 2010

® Solution involves ‘key ceremonies’, international
committees, smart cards, safe deposit boxes, etc.

Deployment

©) Standard deployment problem: all cost and no
benefit to being first mover

©) Servers working on it, mostly top-down
) Clients: estimated around 30%

) Will probably be common for a while: insecure
connection to secure resolver

What about privacy?

£) Users increasingly want privacy for their DNS
queries as well

£) Older DNSCurve and DNSCrypt protocols were not
standardized

£) More recent "DNS over TLS” and "DNS over HTTPS”
are RFCs

£) DNS over HTTPS in major browsers might have
serious centralization effects

Outline

User authentication

Authentication factors

£) Something you know (password, PIN)
£) Something you have (e.g., smart card)
£) Something you are (biometrics)

) CAPTCHAs, time and location, ...

©) Multi-factor authentication

Passwords: love to hate

£) Many problems for users, sysadmins, researchers
©) But familiar and near-zero cost of entry

©) User-chosen passwords proliferate for low-stakes
web site authentication

Password entropy

£) Model password choice as probabilistic process
) If uniform, log; |S|
£) Controls difficulty of guessing attacks

£) Hard to estimate for user-chosen passwords
® Length is an imperfect proxy

Password hashing

©) Idea: don't store password or equivalent information

£) Password ‘encryption’ is a long-standing misnomer
® Eg, Unix crypt (3)

£) Presumably hard-to-invert function h
©) Store only h(p)

Dictionary attacks

£) Online: send quesses to server
£ Offline; attacker can check guesses internally

£) Specialized password lists more effective than literal
dictionaries
® Also generation algorithms (s — $, etc.)

£) ~25% of passwords consistently vulnerable

Better password hashing

©) Generate random salt s, store (s, h(s,p))
® Block pre-computed tables and equality inferences
® Salt must also have enough entropy

) Deliberately expensive hash function

® AKA password-based key derivation function (PBKDF)
® Requirement for time and/or space

Password usability

£) User compliance can be a major challenge
® Often caused by unrealistic demands

£) Distributed random passwords usually unrealistic
£) Password aging: not too frequently
£) Never have a fixed default password in a product

Backup authentication

) Desire: unassisted recovery from forgotten password
©) Fall back to other presumed-authentic channel
® Email, cell phone
©) Harder to forget (but less secret) shared information
® Mother’s maiden name, first pet's name
©) Brittle: ask Sarah Palin or Mat Honan

Backup auth suggestion: use time

£) Need for backup often comes for infrequently-used

accounts
£) May be acceptable to slow down recovery if it

reduces attack risk
® Account recovery is a hassle anyway

£) Time can allow legitimate owner to notice malicious
request

Centralized authentication

©) Enterprise-wide (e.g., UMN ID)

©) Anderson: Microsoft Passport

©) Today: Facebook Connect, Google ID

£) May or may not be single-sign-on (SSO)

Biometric authentication

£) Authenticate by a physical body attribute
+ Hard to lose

— Hard to reset

— Inherently statistical

— Variation among people

Example biometrics

©) (Handwritten) signatures

©) Fingerprints, hand geometry
£) Face and voice recognition
£ Iris codes

