CSci 427IW Development of Secure Software Systems Day 25: Crypto failure, authentication

Stephen McCamant University of Minnesota, Computer Science & Engineering

Outline

SSL/TLS, cont'd

More causes of crypto failure

Announcements intermission

DNSSEC

User authentication

HTTPS hierarchical PKI

Browser has order of 100 root certs Not same set in every browser

- Standards for selection not always clear
- Many of these in turn have sub-CAs
- 🖲 Also, "wildcard" certs for individual domains

CA validation standards

CA's job to check if the buyer really is foo.com

Race to the bottom problem:

- CA has minimal liability for bad certs
- Many people want cheap certs
- Cost of validation cuts out of profit

"Extended validation" (green bar) certs attempt to fix

HTTPS and usability

Many HTTPS security challenges tied with user decisions

Is this really my bank?

Seems to be a quite tricky problem

- Security warnings often ignored, etc.
- We'll return to this as an example later

Outline

SSL/TLS, cont'd

More causes of crypto failure

Announcements intermission

DNSSEC

User authentication

Debian/OpenSSL RNG failure (2)

- Debian maintainer commented out some lines to fix a Valgrind warning
 - "Potential use of uninitialized value"
- Accidentally disabled most entropy (all but 16 bits)
- Brief mailing list discussion didn't lead to understanding
- Broken library used for ~2 years before discovery

Detected RSA/DSA collisions New © 2012: around 1% of the SSL keys on the public net are breakable An Infin © Some sites share complete keypairs An Infin © RSA keys with one prime in common (detected by large-scale GCD) Smaller © One likely culprit: insufficient entropy in key generation Smaller © Embedded devices, Linux /dev/urandom vs. /dev/random Major p Coppers E.g.,

Newer factoring problem (CCS'17)

- **a** An Infineon RSA library used primes of the form $p = k \cdot M + (65537^{\alpha} \text{ mod } M)$
- Smaller problems: fingerprintable, less entropy
- Major problem: can factor with a variant of Coppersmith's algoritm
 - E.g., 3 CPU months for a 1024-bit key

Side-channel attacks

🖲 Timing analysis:

- Number of 1 bits in modular exponentiation
- Unpadding, MAC checking, error handling
- Probe cache state of AES table entries
- 🖲 Power analysis
 - Especially useful against smartcards
- Fault injection
- 🖲 Data non-erasure
 - Hard disks, "cold boot" on RAM

WEP "privacy"

- First WiFi encryption standard: Wired Equivalent Privacy (WEP)
- F&S: designed by a committee that contained no cryptographers
- Problem 1: note "privacy": what about integrity?
 - Nope: stream cipher + CRC = easy bit flipping

WEP key size and IV size

- Original sizes: 40-bit shared key (export restrictions) plus 24-bit IV = 64-bit RC4 key
 Both too small
- 🖲 128-bit upgrade kept 24-bit IV
 - Vague about how to choose IVs
 - Least bad: sequential, collision takes hours
 - Worse: random or everyone starts at zero

Newer problem with WPA (CCS'17)

- Session key set up in a 4-message handshake
- Key reinstallation attack: replay #3
 - Causes most implementations to reset nonce and replay counter
 - In turn allowing many other attacks
 - One especially bad case: reset key to 0
- Protocol state machine behavior poorly described in spec
 - Outside the scope of previous security proofs

Trustworthiness of primitives

- Classic worry: DES S-boxes
- Obviously in trouble if cipher chosen by your adversary
- In a public spec, most worrying are unexplained elements
- Best practice: choose constants from well-known math, like digits of π

Dual_EC_DRBG (1)

- Pseudorandom generator in NIST standard, based on elliptic curve
- Looks like provable (slow enough!) but strangely no proof
- Specification includes long unexplained constants
- Academic researchers find:
 - Some EC parts look good
 - But outputs are statistically distinguishable

Dual_EC_DRBG (2)

- Found 2007: special choice of constants allows prediction attacks
 - Big red flag for paranoid academics
- Significant adoption in products sold to US govt. FIPS-140 standards
 - Semi-plausible rationale from RSA (EMC)
- NSA scenario basically confirmed by Snowden leaks NIST and RSA immediately recommend withdrawal

Outline

SSL/TLS, cont'd

More causes of crypto failure

Announcements intermission

DNSSEC

User authentication

Note to early readers

- This is the section of the slides most likely to change in the final version
- If class has already happened, make sure you have the latest slides for announcements

Outline

SSL/TLS, cont'd More causes of crypto failure Announcements intermission

DNSSEC

User authentication

DNSSEC goals and non-goals

- + Authenticity of positive replies
- + Authenticity of negative replies
- + Integrity
- Confidentiality
- Availability

Each resource record gets an RRSIG signature
 E.g., A record for one name-address mapping
 Observe: signature often larger than data

- Signature validation keys in DNSKEY RRs
- Recursive chain up to the root (or other "anchor")

- DNS needs to scale to very large flat domains like . com
- Facilitated by having single DS RR in parent indicating delegation
- Chain to root now includes DSes as well

Negative answers

Also don't want attackers to spoof non-existence Gratuitous denial of service, force fallback, etc.

But don't want to sign "x does not exist" for all x

Solution 1, NSEC: "there is no name between acacia and baobab"

Preventing zone enumeration

- Many domains would not like people enumerating all their entries
- DNS is public, but "not that public"
- Unfortunately NSEC makes this trivial
- Compromise: NSEC3 uses password-like salt and repeated hash, allows opt-out

DANE: linking TLS to DNSSEC

"DNS-based Authentication of Named Entities"
DNS contains hash of TLS cert, don't need CAs
How is DNSSEC's tree of certs better than TLS's?

Signing the root

- Political problem: many already distrust US-centered nature of DNS infrastructure
- Practical problem: must be very secure with no single point of failure
- Finally accomplished in 2010
 - Solution involves 'key ceremonies', international committees, smart cards, safe deposit boxes, etc.

What about privacy?

- Users increasingly want privacy for their DNS queries as well
- Older DNSCurve and DNSCrypt protocols were not standardized
- More recent "DNS over TLS" and "DNS over HTTPS" are RFCs
- DNS over HTTPS in major browsers might have serious centralization effects

Passwords: love to hate

Many problems for users, sysadmins, researchers
 But familiar and near-zero cost of entry

User-chosen passwords proliferate for low-stakes web site authentication

Password entropy

- Model password choice as probabilistic process
- \bigcirc If uniform, $\log_2 |S|$
- Controls difficulty of guessing attacks
- Hard to estimate for user-chosen passwords Length is an imperfect proxy

- Online: send guesses to server
- Offline: attacker can check guesses internally
- Specialized password lists more effective than literal dictionaries

 \blacksquare Also generation algorithms (s \rightarrow \$, etc.)

~25% of passwords consistently vulnerable

Better password hashing

Output Generate random salt s, store (s, h(s, p))

- Block pre-computed tables and equality inferences
- Salt must also have enough entropy
- Deliberately expensive hash function
 - AKA password-based key derivation function (PBKDF)
 - Requirement for time and/or space

Password usability

- User compliance can be a major challenge
 Often caused by unrealistic demands
- Distributed random passwords usually unrealistic
- Password aging: not too frequently
- Never have a fixed default password in a product

Backup authentication

Desire: unassisted recovery from forgotten password

- Fall back to other presumed-authentic channel Email, cell phone
- Harder to forget (but less secret) shared information
 Mother's maiden name, first pet's name
- 🖲 Brittle: ask Sarah Palin or Mat Honan

Backup auth suggestion: use time

- Need for backup often comes for infrequently-used accounts
- May be acceptable to slow down recovery if it reduces attack risk
 - Account recovery is a hassle anyway
- Time can allow legitimate owner to notice malicious request

Centralized authentication

- 🖲 Enterprise-wide (e.g., UMN ID)
- 🗐 Anderson: Microsoft Passport
- 🖲 Today: Facebook Connect, Google ID
- May or may not be single-sign-on (SSO)

Biometric authentication

- Authenticate by a physical body attribute
- + Hard to lose
- Hard to reset
- Inherently statistical
- Variation among people

Example biometrics

- 🖲 (Handwritten) signatures
- 🖲 Fingerprints, hand geometry
- Face and voice recognition
- 🖲 Iris codes