
CSci 4271W
Development of Secure Software Systems

Day 26: Authentication
Stephen McCamant

University of Minnesota, Computer Science & Engineering

Outline

User authentication

Announcements intermission

Error rate trade-offs

Web authentication

Names and identities

Authentication factors

Something you know (password, PIN)

Something you have (e.g., smart card)

Something you are (biometrics)

CAPTCHAs, time and location, . . .

Multi-factor authentication

Passwords: love to hate

Many problems for users, sysadmins, researchers

But familiar and near-zero cost of entry

User-chosen passwords proliferate for low-stakes
web site authentication

Password entropy

Model password choice as probabilistic process

If uniform, log2 jSj

Controls difficulty of guessing attacks

Hard to estimate for user-chosen passwords
Length is an imperfect proxy

Password hashing

Idea: don’t store password or equivalent information

Password ‘encryption’ is a long-standing misnomer
E.g., Unix crypt(3)

Presumably hard-to-invert function h

Store only h(p)

Dictionary attacks

Online: send guesses to server

Offline: attacker can check guesses internally

Specialized password lists more effective than literal
dictionaries

Also generation algorithms (s ! $, etc.)

�25% of passwords consistently vulnerable

Better password hashing

Generate random salt s, store (s; h(s; p))
Block pre-computed tables and equality inferences
Salt must also have enough entropy

Deliberately expensive hash function
AKA password-based key derivation function (PBKDF)
Requirement for time and/or space

Password usability

User compliance can be a major challenge
Often caused by unrealistic demands

Distributed random passwords usually unrealistic

Password aging: not too frequently

Never have a fixed default password in a product

Backup authentication

Desire: unassisted recovery from forgotten password

Fall back to other presumed-authentic channel
Email, cell phone

Harder to forget (but less secret) shared information
Mother’s maiden name, first pet’s name

Brittle: ask Sarah Palin or Mat Honan

Backup auth suggestion: use time

Need for backup often comes for infrequently-used
accounts
May be acceptable to slow down recovery if it
reduces attack risk

Account recovery is a hassle anyway

Time can allow legitimate owner to notice malicious
request

Centralized authentication

Enterprise-wide (e.g., UMN ID)

Anderson: Microsoft Passport

Today: Facebook Connect, Google ID

May or may not be single-sign-on (SSO)

Biometric authentication

Authenticate by a physical body attribute

+ Hard to lose

- Hard to reset

- Inherently statistical

- Variation among people

Example biometrics

(Handwritten) signatures

Fingerprints, hand geometry

Face and voice recognition

Iris codes

Outline

User authentication

Announcements intermission

Error rate trade-offs

Web authentication

Names and identities

Note to early readers

This is the section of the slides most likely to change
in the final version

If class has already happened, make sure you have
the latest slides for announcements

Outline

User authentication

Announcements intermission

Error rate trade-offs

Web authentication

Names and identities

Imperfect detection

Many security mechanisms involve imperfect
detection/classification of relevant events

Biometric authentication

Network intrusion detection

Anti-virus (malware detection)

Anything based on machine learning

Detection results

True positive: detector says yes, reality is yes

True negative: detector says no, reality is no

False positive: detector says yes, reality is no

False negative: detector says no, reality is yes

Note: terminology may flip based on detecting good
or bad

Why a trade-off?

Imperfect methods have a trade-off between
avoiding FPs and avoiding FNs
Sometimes a continuous trade-off (curve), e.g. based
on a threshold

E.g., spam detector “score”

May need to choose both a basic mechanism and a
threshold

Two ratios to capture the trade-off

True positive rate:

TPR =
TP
P
=

TP
TP+ FN

= 1- FNR

False positive rate:

FPR =
FP
N
=

FP
FP+ TN

= 1- TNR

ROC curve intro

Error rates: ROC curve Extreme biometrics examples

exact iris code match: very low false positive
(false authentication)

similar voice pitch: very low false negative
(false reject)

Where are these in ROC space?

A if (iris()) return REJECT; else return ACCEPT;

B return REJECT;

C if (iris()) return ACCEPT; else return REJECT;

D if (iris() && pitch()) return ACCEPT; else return REJECT;

E return ACCEPT;

F if (rand() & 1) return ACCEPT; else return REJECT;

G if (pitch()) return ACCEPT; else return REJECT;

H if (iris() || pitch()) return ACCEPT; else return REJECT;

Outline

User authentication

Announcements intermission

Error rate trade-offs

Web authentication

Names and identities

Per-website authentication

Many web sites implement their own login systems
+ If users pick unique passwords, little systemic risk
- Inconvenient, many will reuse passwords
- Lots of functionality each site must implement correctly
- Without enough framework support, many possible pitfalls

Building a session

HTTP was originally stateless, but many sites want
stateful login sessions

Built by tying requests together with a shared
session ID

Must protect confidentiality and integrity

Session ID: what

Must not be predictable
Not a sequential counter

Should ensure freshness
E.g., limited validity window

If encoding data in ID, must be unforgeable
E.g., data with properly used MAC
Negative example: crypt(username k server secret)

Session ID: where

Session IDs in URLs are prone to leaking
Including via user cut-and-paste

Usual choice: non-persistent cookie
Against network attacker, must send only under HTTPS

Because of CSRF, should also have a non-cookie
unique ID

Session management

Create new session ID on each login

Invalidate session on logout

Invalidate after timeout
Usability / security tradeoff
Needed to protect users who fail to log out from public
browsers

Account management

Limitations on account creation
CAPTCHA? Outside email address?

See previous discussion on hashed password
storage
Automated password recovery

Usually a weak spot
But, practically required for large system

Client and server checks

For usability, interface should show what’s possible

But must not rely on client to perform checks

Attackers can read/modify anything on the client
side

Easy example: item price in hidden field

Direct object references

Seems convenient: query parameter names
resource directly

E.g., database key, filename (path traversal)

Easy to forget to validate on each use

Alternative: indirect reference like per-session table
Not fundamentally more secure, but harder to forget
check

Function-level access control

E.g. pages accessed by URLs or interface buttons

Must check each time that user is authorized
Attack: find URL when authorized, reuse when logged off

Helped by consistent structure in code

Outline

User authentication

Announcements intermission

Error rate trade-offs

Web authentication

Names and identities

Accounts versus identities

“Identity” is a broad term that can refer to a
personal conception or an automated sytem

“Name” is also ambiguous in this way

“Account” and “authentication” refer unambiguously
to institutional/computer abstractions

Any account system is only an approximation of the
real world

Real human names are messy

Most assumptions your code might make will fail for
someone

ASCII, length limit, uniqueness, unchanging, etc.

So, don’t design in assumptions about real names

Use something more computer-friendly as the core
identifier

Make “real” names or nicknames a presentation aspect

Zooko’s triangle

Claims (2001) it is hard/impossible for a naming
scheme to be simultaneously:

Human-meaningful
Secure
Decentralized

Too imprecise to be definitively proven/refuted
Blockchain-based name systems are highest-profile
claimed counterexamples

A useful heuristic for seeing design tensions

Identity documents: mostly unhelpful

“Send us a scan of your driver’s license”
Sometimes called for by specific regulations
Unnecessary storage is a disclosure risk
Fake IDs are very common

Identity numbers: mostly unhelpful

Common US example: social security number

Variously used as an identifier or an authenticator
Dual use is itself a cause for concern

Known by many third parties (e.g., banks)

No checksum, guessing risks

Published soon after a person dies

“Identity theft”
The first-order crime is impersonation fraud between
two other parties

E.g., criminal trying to get money from a bank under false
pretenses

The impersonated “victim” is effectively victimized by
follow-on false statements

E.g., by credit reporting agencies
These costs are arguably the result of poor regulatory
choices

Be careful w/ negative info from 3rd parties

