
CSci 4271W
Development of Secure Software Systems

Day 27: Authentication and usability
Stephen McCamant

University of Minnesota, Computer Science & Engineering

Outline

ROC curve exercise, cont’d

Web authentication

Names and identities

Announcements intermission

Usability and security

Usable security example areas

Where are these in ROC space?

A if (iris()) return REJECT; else return ACCEPT;

B return REJECT;

C if (iris()) return ACCEPT; else return REJECT;

D if (iris() && pitch()) return ACCEPT; else return REJECT;

E return ACCEPT;

F if (rand() & 1) return ACCEPT; else return REJECT;

G if (pitch()) return ACCEPT; else return REJECT;

H if (iris() || pitch()) return ACCEPT; else return REJECT;

Outline

ROC curve exercise, cont’d

Web authentication

Names and identities

Announcements intermission

Usability and security

Usable security example areas

Per-website authentication

Many web sites implement their own login systems
+ If users pick unique passwords, little systemic risk
- Inconvenient, many will reuse passwords
- Lots of functionality each site must implement correctly
- Without enough framework support, many possible pitfalls

Building a session

HTTP was originally stateless, but many sites want
stateful login sessions

Built by tying requests together with a shared
session ID

Must protect confidentiality and integrity

Session ID: what

Must not be predictable
Not a sequential counter

Should ensure freshness
E.g., limited validity window

If encoding data in ID, must be unforgeable
E.g., data with properly used MAC
Negative example: crypt(username k server secret)

Session ID: where

Session IDs in URLs are prone to leaking
Including via user cut-and-paste

Usual choice: non-persistent cookie
Against network attacker, must send only under HTTPS

Because of CSRF, should also have a non-cookie
unique ID

Session management

Create new session ID on each login

Invalidate session on logout

Invalidate after timeout
Usability / security tradeoff
Needed to protect users who fail to log out from public
browsers

Account management

Limitations on account creation
CAPTCHA? Outside email address?

See previous discussion on hashed password
storage
Automated password recovery

Usually a weak spot
But, practically required for large system

Client and server checks

For usability, interface should show what’s possible

But must not rely on client to perform checks

Attackers can read/modify anything on the client
side

Easy example: item price in hidden field

Direct object references

Seems convenient: query parameter names
resource directly

E.g., database key, filename (path traversal)

Easy to forget to validate on each use

Alternative: indirect reference like per-session table
Not fundamentally more secure, but harder to forget
check

Function-level access control

E.g. pages accessed by URLs or interface buttons

Must check each time that user is authorized
Attack: find URL when authorized, reuse when logged off

Helped by consistent structure in code

Outline

ROC curve exercise, cont’d

Web authentication

Names and identities

Announcements intermission

Usability and security

Usable security example areas

Accounts versus identities

“Identity” is a broad term that can refer to a
personal conception or an automated sytem

“Name” is also ambiguous in this way

“Account” and “authentication” refer unambiguously
to institutional/computer abstractions

Any account system is only an approximation of the
real world

Real human names are messy

Most assumptions your code might make will fail for
someone

ASCII, length limit, uniqueness, unchanging, etc.

So, don’t design in assumptions about real names

Use something more computer-friendly as the core
identifier

Make “real” names or nicknames a presentation aspect

Zooko’s triangle

Claims (2001) it is hard/impossible for a naming
scheme to be simultaneously:

Human-meaningful
Secure
Decentralized

Too imprecise to be definitively proven/refuted
Blockchain-based name systems are highest-profile
claimed counterexamples

A useful heuristic for seeing design tensions

Identity documents: mostly unhelpful

“Send us a scan of your driver’s license”
Sometimes called for by specific regulations
Unnecessary storage is a disclosure risk
Fake IDs are very common

Identity numbers: mostly unhelpful

Common US example: social security number

Variously used as an identifier or an authenticator
Dual use is itself a cause for concern

Known by many third parties (e.g., banks)

No checksum, guessing risks

Published soon after a person dies

“Identity theft”
The first-order crime is impersonation fraud between
two other parties

E.g., criminal trying to get money from a bank under false
pretenses

The impersonated “victim” is effectively victimized by
follow-on false statements

E.g., by credit reporting agencies
These costs are arguably the result of poor regulatory
choices

Be careful w/ negative info from 3rd parties

Outline

ROC curve exercise, cont’d

Web authentication

Names and identities

Announcements intermission

Usability and security

Usable security example areas

Note to early readers

This is the section of the slides most likely to change
in the final version

If class has already happened, make sure you have
the latest slides for announcements

Outline

ROC curve exercise, cont’d

Web authentication

Names and identities

Announcements intermission

Usability and security

Usable security example areas

Users are not ‘ideal components’

Frustrates engineers: cannot give users instructions
like a computer

Closest approximation: military

Unrealistic expectations are bad for security

Most users are benign and sensible

On the other hand, you can’t just treat users as
adversaries

Some level of trust is inevitable
Your institution is not a prison

Also need to take advantage of user common sense
and expertise

A resource you can’t afford to pass up

Don’t blame users

“User error” can be the end of a discussion

This is a poor excuse

Almost any “user error” could be avoidable with
better systems and procedures

Users as rational

Economic perspective: users have goals and pursue
them

They’re just not necessarily aligned with security

Ignoring a security practice can be rational if the
rewards is greater than the risk

Perspectives from psychology

Users become habituated to experiences and
processes

Learn “skill” of clicking OK in dialog boxes

Heuristic factors affect perception of risk
Level of control, salience of examples

Social pressures can override security rules
“Social engineering” attacks

User attention is a resource

Users have limited attention to devote to security
Exaggeration: treat as fixed

If you waste attention on unimportant things, it won’t
be available when you need it

Fable of the boy who cried wolf

Research: ecological validity

User behavior with respect to security is hard to
study

Experimental settings are not like real situations

Subjects often:
Have little really at stake
Expect experimenters will protect them
Do what seems socially acceptable
Do what they think the experimenters want

Research: deception and ethics

Have to be very careful about ethics of experiments
with human subjects

Enforced by institutional review systems

When is it acceptable to deceive subjects?
Many security problems naturally include deception

Outline

ROC curve exercise, cont’d

Web authentication

Names and identities

Announcements intermission

Usability and security

Usable security example areas

Email encryption

Technology became available with PGP in the early
90s

Classic depressing study: “Why Johnny can’t
encrypt: a usability evaluation of PGP 5.0” (USENIX
Security 1999)

Still an open “challenge problem”

Also some other non-UI difficulties: adoption, govt.
policy

Phishing

Attacker sends email appearing to come from an
institution you trust

Links to web site where you type your password,
etc.

Spear phishing: individually targeted, can be much
more effective

Phishing defenses

Educate users to pay attention to X:
Spelling ! copy from real emails
URL ! homograph attacks
SSL “lock” icon ! fake lock icon, or SSL-hosted attack

Extended validation (green bar) certificates

Phishing URL blacklists

SSL warnings: prevalence

Browsers will warn on SSL certificate problems

In the wild, most are false positives
foo.com vs. www.foo.com
Recently expired
Technical problems with validation
Self-signed certificates (HA2)

Classic warning-fatigue danger

Older SSL warning SSL warnings: effectiveness

Early warnings fared very poorly in lab settings

Recent browsers have a new generation of designs:
Harder to click through mindlessly
Persistent storage of exceptions

Recent telemetry study: they work pretty well

Modern Firefox warning Modern Firefox warning (2)

Modern Firefox warning (3) Spam-advertised purchases

“Replica” Rolex watches, herbal V!@gr@, etc.

This business is clearly unscrupulous; if I pay, will I
get anything at all?
Empirical answer: yes, almost always

Not a scam, a black market
Importance of credit-card bank relationships

Advance fee fraud

“Why do Nigerian Scammers say they are from
Nigeria?” (Herley, WEIS 2012)
Short answer: false positives

Sending spam is cheap
But, luring victims is expensive
Scammer wants to minimize victims who respond but
ultimately don’t pay

Trusted UI

Tricky to ask users to make trust decisions based
on UI appearance

Lock icon in browser, etc.

Attacking code can draw lookalike indicators
Lock favicon
Picture-in-picture attack

Smartphone app permissions

Smartphone OSes have more fine-grained
per-application permissions

Access to GPS, microphone
Access to address book
Make calls

Phone also has more tempting targets

Users install more apps from small providers

Permissions manifest

Android approach: present listed of requested
permissions at install time
Can be hard question to answer hypothetically

Users may have hard time understanding implications

User choices seem to put low value on privacy

Time-of-use checks

iOS approach: for narrower set of permissions, ask
on each use

Proper context makes decisions clearer

But, have to avoid asking about common things

iOS app store is also more closely curated

Trusted UI for privileged actions

Trusted UI works better when asking permission
(e.g., Oakland’12)
Say, “take picture” button in phone app

Requested by app
Drawn and interpreted by OS
OS well positioned to be sure click is real

Little value to attacker in drawing fake button

