CSci 427\W
Development of Secure Software Systems
Day 27: Authentication and usability

Stephen McCamant
University of Minnesota, Computer Science & Engineering

Outline

ROC curve exercise, contd

Where are these in ROC space?

if (iris()) return REJECT; else return ACCEPT;

return REJECT;

if (iris()) return ACCEPT; else return REJECT;

if (iris() && pitch()) return ACCEPT; else return REJECT;
return ACCEPT;

if (rand() & 1) return ACCEPT; else return REJECT;

if (pitch()) return ACCEPT; else return REJECT;

I @ m m O O W >

if (iris() || pitch()) return ACCEPT; else return REJECT;

Outline

Web authentication

Per-website authentication

£) Many web sites implement their own login systems
-+ If users pick unique passwords, little systemic risk
— Inconvenient, many will reuse passwords
Lots of functionality each site must implement correctly
— Without enough framework support, many possible pitfalls

Building a session

) HTTP was originally stateless, but many sites want
stateful login sessions

£) Built by tying requests together with a shared
session ID

£) Must protect confidentiality and integrity

Session ID: what

©) Must not be predictable
® Not a sequential counter
©) Should ensure freshness
® Eg, limited validity window
o) If encoding data in ID, must be unforgeable

® E.g, data with properly used MAC
® Negative example: crypt(username || server secret)

Session ID: where

£) Session IDs in URLs are prone to leaking
® Including via user cut-and-paste
) Usual choice: non-persistent cookie
® Against network attacker, must send only under HTTPS
£) Because of CSRF, should also have a non-cookie
unigue ID

Session management

) Create new session ID on each login
©) Invalidate session on logout

©) Invalidate after timeout

® Usability / security tradeoff
® Needed to protect users who fail to log out from public
browsers

Account management

©) Limitations on account creation
® CAPTCHA? Outside email address?
£) See previous discussion on hashed password
storage
£) Automated password recovery

® Usually a weak spot
® But, practically required for large system

Client and server checks

©) For usability, interface should show what's possible

£) But must not rely on client to perform checks

£) Attackers can read/modify anything on the client
side

©) Easy example: item price in hidden field

Direct object references

£) Seems convenient: query parameter names
resource directly
® Eg, database key, filename (path traversal)
£) Easy to forget to validate on each use

©) Alternative: indirect reference like per-session table

® Not fundamentally more secure, but harder to forget
check

Function-level access control

©) E.g. pages accessed by URLs or interface buttons

£) Must check each time that user is authorized
® Attack: find URL when authorized, reuse when logged off

©) Helped by consistent structure in code

Outline

Names and identities

Accounts versus identities

©) “ldentity” is a broad term that can refer to a
personal conception or an automated sytem

£) "Name” is also ambiguous in this way

£) “Account” and “authentication” refer unambiguously
to institutional/computer abstractions

©) Any account system is only an approximation of the
real world

Real human names are messy

£) Most assumptions your code might make will fail for
someone

® ASCI, length limit, uniqueness, unchanging, etc.
£) So, don't design in assumptions about real names
£) Use something more computer-friendly as the core
identifier
® Make “real” names or nicknames a presentation aspect

Zooko's triangle

©) Claims (2001) it is hard/impossible for a naming
scheme to be simultaneously:
® Human-meaningful
® Secure
® Decentralized
£) Too imprecise to be definitively proven/refuted
® Blockchain-based name systems are highest-profile
claimed counterexamples

©) A useful heuristic for seeing design tensions

Identity documents: mostly unhelpful

£) "Send us a scan of your driver's license”
® Sometimes called for by specific regulations
® Unnecessary storage is a disclosure risk
® Fake IDs are very common

Identity numbers: mostly unhelpful

£) Common US example: social security number

©) Variously used as an identifier or an authenticator
® Dual use is itself a cause for concern

£) Known by many third parties (e.g., banks)
©) No checksum, guessing risks
£) Published soon after a person dies

“ldentity theft”

£) The first-order crime is impersonation fraud between
two other parties
® Eg, criminal trying to get money from a bank under false
pretenses
£) The impersonated “victim” is effectively victimized by
follow-on false statements
® Eg, by credit reporting agencies
® These costs are arguably the result of poor regulatory
choices

£) Be careful w/ negative info from 3rd parties

Outline

Announcements intermission

Note to early readers

£) This is the section of the slides most likely to change
in the final version

£ If class has already happened, make sure you have
the latest slides for announcements

Outline

Usability and security

Users are not ‘ideal components’

£) Frustrates engineers: cannot give users instructions
like a computer
® Closest approximation: military

£ Unrealistic expectations are bad for security

Most users are benign and sensible

©) On the other hand, you can't just treat users as
adversaries
® Some level of trust is inevitable
® Your institution is not a prison
©) Also need to take advantage of user common sense
and expertise
® A resource you can't afford to pass up

Don't blame users

) “User error” can be the end of a discussion
£) This is a poor excuse

£) Almost any “user error” could be avoidable with
better systems and procedures

Users as rational

) Economic perspective: users have goals and pursue
them
® They're just not necessarily aligned with security
©) Ignoring a security practice can be rational if the
rewards is greater than the risk

Perspectives from psychology

£) Users become habituated to experiences and
processes
® Learn “skill” of clicking OK in dialog boxes
£) Heuristic factors affect perception of risk
® Level of control, salience of examples
©) Social pressures can override security rules
® “Social engineering” attacks

User attention is a resource

©) Users have limited attention to devote to security
® Exaggeration: treat as fixed

o) If you waste attention on unimportant things, it won't
be available when you need it

) Fable of the boy who cried wolf

Research: ecological validity

£) User behavior with respect to security is hard to
study
©) Experimental settings are not like real situations

©) Subjects often:

® Have little really at stake

® Expect experimenters will protect them

® Do what seems socially acceptable

® Do what they think the experimenters want

Research: deception and ethics

£) Have to be very careful about ethics of experiments
with human subjects
® Enforced by institutional review systems
©) When is it acceptable to deceive subjects?
® Many security problems naturally include deception

Outline

Usable security example areas

Email encryption

£) Technology became available with PGP in the early
90s

) Classic depressing study: “Why Johnny can't
encrypt: a usability evaluation of PGP 5.0” (USENIX
Security 1999)

©) Still an open “challenge problem”
©) Also some other non-Ul difficulties: adoption, govt.
policy

Phishing

£) Attacker sends email appearing to come from an
institution you trust

©) Links to web site where you type your password,
etc.

£) Spear phishing. individually targeted, can be much
more effective

Phishing defenses

©) Educate users to pay attention to X:

® Spelling — copy from real emails
® URL — homograph attacks
® SSL “lock” icon — fake lock icon, or SSL-hosted attack

©) Extended validation (green bar) certificates
) Phishing URL blacklists

SSL warnings: prevalence

) Browsers will warn on SSL certificate problems

©) In the wild, most are false positives
® foo.com VS. www.foo.com
® Recently expired
® Technical problems with validation
® Self-signed certificates (HA2)

©) Classic warning-fatigue danger

Older SSL warning

wwwwwww

SSL warnings: effectiveness

©) Early warnings fared very poorly in lab settings

£) Recent browsers have a new generation of designs:

® Harder to click through mindlessly
® Persistent storage of exceptions

£) Recent telemetry study: they work pretty well

Modern Firefox warning

Modern Firefox warning (2)

Modern Firefox warning (3)

Spam-advertised purchases

©) "Replica” Rolex watches, herbal V!egre, etc.

£) This business is clearly unscrupulous; if | pay, will |
get anything at all?
£) Empirical answer: yes, almost always

® Not a scam, a black market
® Importance of credit-card bank relationships

Advance fee fraud

£) "Why do Nigerian Scammers say they are from
Nigeria?” (Herley, WEIS 2012)
©) Short answer: false positives

® Sending spam is cheap

® But, luring victims is expensive

® Scammer wants to minimize victims who respond but
ultimately don't pay

Trusted UI

£ Tricky to ask users to make trust decisions based
on Ul appearance
® Lock icon in browser, etc.
£) Attacking code can draw lookalike indicators

® Lock favicon
® Picture-in-picture attack

Smartphone app permissions

©) Smartphone OSes have more fine-grained
per-application permissions
® Access to GPS, microphone
® Access to address book
® Make calls

£) Phone also has more tempting targets
©) Users install more apps from small providers

Permissions manifest

©) Android approach: present listed of requested
permissions at install time
£) Can be hard question to answer hypothetically
® Users may have hard time understanding implications

£) User choices seem to put low value on privacy

Time-of-use checks

£) i0S approach: for narrower set of permissions, ask
on each use

©) Proper context makes decisions clearer
©) But, have to avoid asking about common things
) i0S app store is also more closely curated

Trusted Ul for privileged actions

£) Trusted Ul works better when asking permission
(e.g., Oakland'12)
£) Say, “take picture” button in phone app

® Requested by app
® Drawn and interpreted by OS
® OS well positioned to be sure click is real

) Little value to attacker in drawing fake button

