
CSci 4271W
Development of Secure Software Systems

Day 4: Auditing and Threat Modeling 1
Stephen McCamant

University of Minnesota, Computer Science & Engineering

Outline

Code auditing

Integer overflow discussion

Threat modeling

Auditing is. . .

Reading code to find security bugs

Threat modeling comes first, tells you what kinds of
bugs you’re looking for

Bug fixing comes next (might be someone else’s job)

Tiers and triage

You might not have time to do a complete job, so
use auditing time strategically

Which bugs are most likely, and easiest to find?

Triage into definitely safe, definitively unsafe, hard to
tell

Hard to tell might be improved even if safe

Threat model and taint

Vulnerability depends on what an attacker might
control

Another word for attacker-controlled is “tainted”

Threat model is the best source of tainting
information

Of course, can always be conservative

Where to look for problems

If you can’t read all the code carefully, search for
indicators of common danger spots

For format strings, look for printf
For buffer overflows, look at buffers and copying functions

Ideal: proof

Given enough time, for each dangerous spot, be able
to convince someone:

Proof of safety: reasons why a bug could never happen,
could turn into assertions
Proof of vulnerability: example of tainted input that
causes a crash

Outline

Code auditing

Integer overflow discussion

Threat modeling



Integer overflow to buffer overflow

One common pattern: overflow causes an allocation
to be too small

In machine integers, multiplication doesn’t always
make a value larger

Overflow example

struct obj { short ident, x, y, z; long b; double c;};

struct obj *read_objs(int num_objs) {

unsigned int size = num_objs*(unsigned)sizeof(obj);

struct obj *objs = malloc(size);

struct obj *p = objs;

for (i = 0; i < num_objs; i++) {

fread(p, sizeof(struct obj), 1, stdin);

if (p->ident == 0x4442) return 0;

/* ... */ p++; }

return objs; }

Overflow example questions

1. What’s a value of num objs that would trigger an
overflow?

Think back to 2021 on how multiplication overflows

2. Why is the p->ident check relevant to
exploitability?

https://www-users.cselabs.umn.edu/classes/Fall-2023/

csci4271/slides/02/overflow-eg.c

Integer input parsing

Input is first parsed with strtol

As 64-bit signed integer; overflow clamped and ignored

Then copied to signed int
Throw away top bits, reinterpret sign bit

But any 32-bit int value can be produced by a
program input

Loop bound

Read loop is
for (int i = 0; i < num_objs; i++)

num_objs negative or zero will read nothing at all

Overflow in multiplication

Struct size is 24 bytes, or 11000 (16+8) in binary

24*x == (x << 4) + (x << 3)

Top three bits fall off

Interpreted as unsigned after multiplication, and by
malloc

Vulnerability condition

Overflow happens if we write more than we allocated

Allocation won’t fail on this 64-bit machine (4GB
available)

24 � max(x; 0) > (24 � x) mod 232

Safe if:
Count interpreted as negative
Overflow does not occur

Computing overflow values

One approach: input must be bigger than 232=24 to
overflow
No-calculator approach: pick numbers where
multiplication is easy

Compare in decimal: 1001 � 42 = 42042



Outline

Code auditing

Integer overflow discussion

Threat modeling

Why threat modeling?

Think about and describe the security design of your
system

Enumerate possible threats

Guide effort spent on combating threats

Communicate to customers and other developers

Why a structured approach?

Goal is to avoid missing a threat

Enumerate vectors for threats

Enumerate kinds of threats per vector

Convince readers of the model’s completeness

Data-flow modeling

Break down software into smaller modules
Modules drawn with rounded rectangles
More detail is better, within reason

Show data flows among modules and external
parties

Rectangles for external parties
Most data flows will be bi-drectional

Data flow example Trust boundaries

A trust boundary groups components with the same
privilege, which therefore trust each other

Drawn as labeled dotted box
Attacks usually don’t originate within a trust group

The boundary also corresponds to an attack surface

Trust boundaries example Attacks come with data flows

Principle: attacks propagate along data flows

Therefore, enumerate flows to enumerate attacks
A more specific prompt, but does not eliminate the need
for imagination
Other half is types of attacks, see next slide



STRIDE threat taxonomy

Spoofing (vs authentication)

Tampering (vs integrity)

Repudiation (vs. non-repudiation)

Information disclosure (vs. confidentiality)

Denial of service (vs. availability)

Elevation of privilege (vs. authortization)

What to do about threats

Mitigate: add a defense, which may not be complete

Eliminate: such as by removing functionality

Transfer functionality: let someone else handle it

Transfer risk: convince another to bear the cost

Accept risk: decide that the risk (probability � loss) is
sufficiently low

Spoofing threat examples

Using someone else’s account

Making a program use the wrong file

False address on network traffic

Tampering threat examples

Modifying an important file

Rearranging directory structure

Changing contents of network packets

Repudiation threat examples

Performing an important action without logging

Destroying existing logs

Add fake events to make real events hard to find or
not credible

Info. disclosure threat examples

Eavesdropping on network traffic

Reading sensitive files

Learning sensitive information from meta-data

DoS threat examples

Flood network link with bogus traffic

Make a server use up available memory

Make many well-formed but non-productive
interactions

Elevation of privilege threat examples

Cause data to be interpreted as code

Change process to run as root/administrator

Convince privileged process to run attacker’s code


