
CSci 4271W
Development of Secure Software Systems

Day 8: ROP and Fuzzing
Stephen McCamant

University of Minnesota, Computer Science & Engineering

Outline

Threat modeling: printer manager (cont’d)

Return-oriented programming (ROP)

Announcements intermission

ROP shellcoding exercise

Testing and fuzzing

STRIDE threat brainstorming

Think about possible threats using the STRIDE
classification

Are all six types applicable in this example?

Took 10 minutes Tuesday to brainstorm with your
neighbors

STRIDE threat taxonomy

Spoofing

Tampering

Repudiation

Information disclosure

Denial of service

Elevation of privilege

Outline

Threat modeling: printer manager (cont’d)

Return-oriented programming (ROP)

Announcements intermission

ROP shellcoding exercise

Testing and fuzzing

Counterattack: code reuse

Attacker can’t execute new code

So, take advantage of instructions already in binary

There are usually a lot of them

And no need to obey original structure

Classic return-to-libc (1997)

Overwrite stack with copies of:
Pointer to libc’s system function
Pointer to "/bin/sh" string (also in libc)

The system function is especially convenient

Distinctive feature: return to entry point

Chained return-to-libc

Shellcode often wants a sequence of actions, e.g.
Restore privileges
Allow execution of memory area
Overwrite system file, etc.

Can put multiple fake frames on the stack
Basic idea present in 1997, further refinements

Pop culture analogy: ransom note trope Basic new idea

Treat the stack like a new instruction set

“Opcodes” are pointers to existing code

Generalizes return-to-libc with more programmability

Academic introduction and source of name: Hovav
Shacham, ACM CCS 2007

ret2pop (Nergal, Müller)

Take advantage of shellcode pointer already present
on stack
Rewrite intervening stack to treat the shellcode
pointer like a return address

A long sequence of chained returns, one pop

ret2pop (Nergal, Müller)

Gadgets

Basic code unit in ROP

Any existing instruction sequence that ends in a
return

Found by (possibly automated) search

Another partial example

Overlapping x86 instructions

push %esi

mov $0x56,%dh sbb $0xff,%al inc %eax or %al,%dh

movzbl 0x1c(%esi),%edx incl 0x8(%eax) ...

0f b6 56 1c ff 40 08 c6

Variable length instructions can start at any byte

Usually only one intended stream

Where gadgets come from

Possibilities:
Entirely intended instructions
Entirely unaligned bytes
Fall through from unaligned to intended

Standard x86 return is only one byte, 0xc3

Building instructions

String together gadgets into manageable units of
functionality
Examples:

Loads and stores
Arithmetic
Unconditional jumps

Must work around limitations of available gadgets

Hardest case: conditional branch

Existing jCC instructions not useful

But carry flag CF is

Three steps:
1. Do operation that sets CF
2. Transfer CF to general-purpose register
3. Add variable amount to %esp

Further advances in ROP

Can also use other indirect jumps, overlapping not
required

Automation in gadget finding and compilers

In practice: minimal ROP code to allow transfer to
other shellcode

Outline

Threat modeling: printer manager (cont’d)

Return-oriented programming (ROP)

Announcements intermission

ROP shellcoding exercise

Testing and fuzzing

Note to early readers

This is the section of the slides most likely to change
in the final version

If class has already happened, make sure you have
the latest slides for announcements

Outline

Threat modeling: printer manager (cont’d)

Return-oriented programming (ROP)

Announcements intermission

ROP shellcoding exercise

Testing and fuzzing

Setup

Key motivation for ROP is to disable W � X

Can be done with a single syscall, similar to execve

shellcode

Your exercise: put together such shellcode from a
limited gadget set

Puzzle/planning aspect: order to avoid overwriting

Outline

Threat modeling: printer manager (cont’d)

Return-oriented programming (ROP)

Announcements intermission

ROP shellcoding exercise

Testing and fuzzing

Testing and security

“Testing shows the presence, not the absence of
bugs” – Dijkstra
Easy versions of some bugs can be found by
targeted tests:

Buffer overflows: long strings
Integer overflows: large numbers
Format string vulnerabilities: %x

Random or fuzz testing

Random testing can also sometimes reveal bugs

Original ‘fuzz’ (Miller): program </dev/urandom

Even this was surprisingly effective

Mutational fuzzing

Instead of totally random inputs, make small random
changes to normal inputs

Changes are called mutations

Benign starting inputs are called seeds

Good seeds help in exercising interesting/deep
behavior

Grammar-based fuzzing

Observation: it helps to know what correct inputs
look like

Grammar specifies legal patterns, run backwards
with random choices to generate

Generated inputs can again be basis for mutation

Most commonly used for standard input formats
Network protocols, JavaScript, etc.

What if you don’t have a grammar?

Input format may be unknown, or buggy and limited

Writing a grammar may be too much manual work

Can the structure of interesting inputs be figured out
automatically?

Coverage-driven fuzzing

Instrument code to record what code is executed

An input is interesting if it executes code that was
not executed before

Only interesting inputs are used as basis for future
mutation

AFL

Best known open-source tool, pioneered
coverage-driven fuzzing

American Fuzzy Lop, a breed of rabbits

Stores coverage information in a compact hash table

Compiler-based or binary-level instrumentation

Has a number of other optimizations

