
CSci 4271W
Development of Secure Software Systems
Day 19: Web part 3 and cryptography part 1

Stephen McCamant

University of Minnesota, Computer Science & Engineering

Outline

Confidentiality and privacy, cont’d

Even more web risks

Announcements intermission

Crypto basics

Stream ciphers

Third party content / web bugs

Much tracking involves sites other than the one in
the URL bar

For fun, check where your cookies are coming from

Various levels of cooperation

Web bugs are typically 1x1 images used only for
tracking

Cookies arms race

Privacy-sensitive users like to block and/or delete
cookies

Sites have various reasons to retain identification

Various workarounds:
Similar features in Flash and HTML5
Various channels related to the cache
Evercookie: store in n places, regenerate if subset are
deleted

Browser fingerprinting

Combine various server or JS-visible attributes
passively

User agent string (10 bits)
Window/screen size (4.83 bits)
Available fonts (13.9 bits)
Plugin verions (15.4 bits)

(Data from panopticlick.eff.org, far from exhaustive)

History stealing

History of what sites you’ve visited is not supposed
to be JS-visible
But, many side-channel attacks have been possible

Query link color
CSS style with external image for visited links
Slow-rendering timing channel
Harvesting bitmaps
User perception (e.g. fake CAPTCHA)

Browser and extension choices

More aggressive privacy behavior lives in extensions
Disabling most JavaScript (NoScript)
HTTPS Everywhere (centralized list)
Tor Browser Bundle

Default behavior is much more controversial
Concern not to kill advertising support as an economic
model

Outline

Confidentiality and privacy, cont’d

Even more web risks

Announcements intermission

Crypto basics

Stream ciphers



Misconfiguration problems

Default accounts

Unneeded features

Framework behaviors
Don’t automatically create variables from query fields

Openness tradeoffs

Error reporting
Few benign users want to see a stack backtrace

Directory listings
Hallmark of the old days

Readable source code of scripts
Doesn’t have your DB password in it, does it?

Using vulnerable components

Large web apps can use a lot of third-party code

Convenient for attackers too
OWASP: two popular vulnerable components downloaded
22m times

Hiding doesn’t work if it’s popular

Stay up to date on security announcements

Clickjacking

Fool users about what they’re clicking on
Circumvent security confirmations
Fabricate ad interest

Example techniques:
Frame embedding
Transparency
Spoof cursor
Temporal “bait and switch”

Crawling and scraping

A lot of web content is free-of-charge, but
proprietary

Yours in a certain context, if you view ads, etc.

Sites don’t want it downloaded automatically (web
crawling)

Or parsed and user for another purpose (screen
scraping)

High-rate or honest access detectable

Outline

Confidentiality and privacy, cont’d

Even more web risks

Announcements intermission

Crypto basics

Stream ciphers

Course reminders

The OWASP Top Ten reading quiz is due tonight

Project 1 submission 1’s regular deadline is Friday
night

Please bring more questions to office hours and Piazza

Non-course reminders

Today is Election Day; in Minneapolis, it is the city
council election

Polls are open until 8pm tonight



Outline

Confidentiality and privacy, cont’d

Even more web risks

Announcements intermission

Crypto basics

Stream ciphers

-ography, -ology, -analysis

Cryptography (narrow sense): designing encryption

Cryptanalysis: breaking encryption

Cryptology: both of the above

Code (narrow sense): word-for-concept substitution

Cipher: the “codes” we actually care about

Caesar cipher

Advance three letters in alphabet:
A! D;B! E; : : :

Decrypt by going back three letters

Internet-era variant: rot-13

Easy to break if you know the principle

Keys and Kerckhoffs’s principle

The only secret part of the cipher is a key

Security does not depend on anything else being
secret

Modern (esp. civilian, academic) crypto embraces
openness quite strongly

Symmetric vs. public key

Symmetric key (today’s lecture): one key used by all
participants
Public key: one key kept secret, another published

Techniques invented in 1970s
Makes key distribution easier
Depends on fancier math

Goal: secure channel

Leaks no content information
Not protected: size, timing

Messages delivered intact and in order
Or not at all

Even if an adversary can read, insert, and delete
traffic

One-time pad

Secret key is truly random data as long as message

Encrypt by XOR (more generally addition mod
alphabet size)

Provides perfect, “information-theoretic” secrecy

No way to get around key size requirement

Computational security

More realistic: assume adversary has a limit on
computing power
Secure if breaking encryption is computationally
infeasible

E.g., exponential-time brute-force search

Ties cryptography to complexity theory



Key sizes and security levels

Difficulty measured in powers of two, ignore small
constant factors

Power of attack measured by number of steps, aim
for better than brute force

232 definitely too easy, probably 264 too

Modern symmetric key size: at least 2128

Crypto primitives

Base complicated systems on a minimal number of
simple operations

Designed to be fast, secure in wide variety of uses

Study those primitives very intensely

Attacks on encryption

Known ciphertext
Weakest attack

Known plaintext (and corresponding ciphertext)

Chosen plaintext

Chosen ciphertext (and plaintext)
Strongest version: adaptive

Certificational attacks

Good primitive claims no attack more effective than
brute force
Any break is news, even if it’s not yet practical

Canary in the coal mine

E.g., 2126:1 attack against AES-128

Also watched: attacks against simplified variants

Fundamental ignorance

We don’t really know that any computational
cryptosystem is secure

Security proof would be tantamount to proving
P 6= NP

Crypto is fundamentally more uncertain than other
parts of security

Relative proofs

Prove security under an unproved assumption

In symmetric crypto, prove a construction is secure
if the primitive is

Often the proof looks like: if the construction is insecure,
so is the primitive

Can also prove immunity against a particular kind of
attack

Random oracle paradigm

Assume ideal model of primitives: functions selected
uniformly from a large space

Anderson: elves in boxes

Not theoretically sound; assumption cannot be
satisfied

But seems to be safe in practice

Pseudorandomness and distinguishers

Claim: primitive cannot be distinguished from a truly
random counterpart

In polynomial time with non-negligible probability

We can build a distinguisher algorithm to exploit any
weakness

Slightly too strong for most practical primitives, but a
good goal



Open standards

How can we get good primitives?

Open-world best practice: run competition, invite
experts to propose then attack

Run by neutral experts, e.g. US NIST

Recent good examples: AES, SHA-3

A certain three-letter agency

National Security Agency (NSA): has primary
responsibility for “signals intelligence”
Dual-mission tension:

Break the encryption of everyone in the world
Help US encryption not be broken by foreign powers

Outline

Confidentiality and privacy, cont’d

Even more web risks

Announcements intermission

Crypto basics

Stream ciphers

Stream ciphers

Closest computational version of one-time pad

Key (or seed) used to generate a long
pseudorandom bitstream

Closely related: cryptographic RNG

Shift register stream ciphers

Linear-feedback shift register (LFSR): easy way to
generate long pseudorandom sequence

But linearity allows for attack

Several ways to add non-linearity

Common in constrained hardware, poor security
record

RC4

Fast, simple, widely used software stream cipher
Previously a trade secret, also “ARCFOUR”

Many attacks, none yet fatal to careful users (e.g.
TLS)

Famous non-careful user: WEP

Now deprecated, not recommended for new uses

Encryption 6= integrity

Encryption protects secrecy, not message integrity

For constant-size encryption, changing the
ciphertext just creates a different plaintext

How will your system handle that?

Always need to take care of integrity separately

Stream cipher mutability

Strong example of encryption vs. integrity

In stream cipher, flipping a ciphertext bit flips the
corresponding plaintext bit, only

Very convenient for targeted changes



Salsa and ChaCha

Published by Daniel Bernstein 2007-2008

Stream cipher with random access to stream
Related to counter mode discussed later

Fast on general-purpose CPUs without specialized
hardware
Adopted as option for TLS and SSH

Prominent early adopter: Chrome on Android

Stream cipher assessment

Currently less fashionable as a primitive in software

Not inherently insecure
Other common pitfall: must not reuse key(stream)


