CSci 4271W Development of Secure Software Systems Day 19: Web part 3 and cryptography part 1

Stephen McCamant University of Minnesota, Computer Science & Engineering

Outline

Confidentiality and privacy, cont'd Even more web risks

- Announcements intermission
- Crypto basics
- Stream ciphers

Browser fingerprinting

- Combine various server or JS-visible attributes passively
 - User agent string (10 bits)
 - Window/screen size (4.83 bits)
 - Available fonts (13.9 bits)
 - Plugin verions (15.4 bits)

(Data from panopticlick.eff.org, far from exhaustive)

History stealing

- History of what sites you've visited is not supposed to be JS-visible
- But, many side-channel attacks have been possible
 - Query link color
 - CSS style with external image for visited links
 - Slow-rendering timing channel
 - Harvesting bitmaps
 - User perception (e.g. fake CAPTCHA)

Browser and extension choices

More aggressive privacy behavior lives in extensions

- Disabling most JavaScript (NoScript)
- HTTPS Everywhere (centralized list)
- Tor Browser Bundle
- Default behavior is much more controversial
 - Concern not to kill advertising support as an economic model

Outline

Confidentiality and privacy, cont'd

Even more web risks

- Announcements intermission
- **Crypto basics**
- Stream ciphers

Openness tradeoffs

Error reporting

 Few benign users want to see a stack backtrace
 Directory listings

 Hallmark of the old days

 Readable source code of scripts

 Doesn't have your DB password in it, does it?

Using vulnerable components

- Large web apps can use a lot of third-party code
- Convenient for attackers too
 - OWASP: two popular vulnerable components downloaded 22m times
- Hiding doesn't work if it's popular
- Stay up to date on security announcements

Clickjacking

Fool users about what they're clicking on

- Circumvent security confirmations
- Fabricate ad interest

Example techniques:

- Frame embedding
- Transparency
- Spoof cursor
- Temporal "bait and switch"

Crawling and scraping

- A lot of web content is free-of-charge, but proprietary
 - Yours in a certain context, if you view ads, etc.
- Sites don't want it downloaded automatically (web crawling)
- Or parsed and user for another purpose (screen scraping)
- High-rate or honest access detectable

Outline

Confidentiality and privacy, cont'd

Even more web risks

Announcements intermission

Crypto basics

Stream ciphers

Course reminders

The OWASP Top Ten reading quiz is due tonight
Project 1 submission 1's regular deadline is Friday

night

Please bring more questions to office hours and Piazza

Non-course reminders

- Today is Election Day; in Minneapolis, it is the city council election
- 🖲 Polls are open until 8pm tonight

-ography, -ology, -analysis

- Cryptography (narrow sense): designing encryption
- Cryptanalysis: breaking encryption
- Cryptology: both of the above
- Code (narrow sense): word-for-concept substitution
- Cipher: the "codes" we actually care about

Caesar cipher

- Decrypt by going back three letters
- 🖲 Internet-era variant: rot-13
- Easy to break if you know the principle

Keys and Kerckhoffs's principle

- The only secret part of the cipher is a key
- Security does not depend on anything else being secret
- Modern (esp. civilian, academic) crypto embraces openness quite strongly

Symmetric vs. public key

- Symmetric key (today's lecture): one key used by all participants
- Public key: one key kept secret, another published
 - Techniques invented in 1970s
 - Makes key distribution easier
 - Depends on fancier math

Goal: secure channel

- Leaks no content information Not protected: size, timing
- Messages delivered intact and in order Or not at all
- Even if an adversary can read, insert, and delete traffic

Crypto primitives

- Base complicated systems on a minimal number of simple operations
- Designed to be fast, secure in wide variety of uses
- Study those primitives very intensely

Fundamental ignorance

- We don't really know that any computational cryptosystem is secure
- Security proof would be tantamount to proving $P \neq NP$
- Crypto is fundamentally more uncertain than other parts of security

Relative proofs

- Prove security under an unproved assumption
- In symmetric crypto, prove a construction is secure if the primitive is
 - Often the proof looks like: if the construction is insecure, so is the primitive
- Can also prove immunity against a particular kind of attack

Random oracle paradigm Assume ideal model of primitives: functions selected uniformly from a large space Anderson: elves in boxes Not theoretically sound; assumption cannot be satisfied

But seems to be safe in practice

Pseudorandomness and distinguishers

- Claim: primitive cannot be distinguished from a truly random counterpart
 - In polynomial time with non-negligible probability
- We can build a distinguisher algorithm to exploit any weakness
- Slightly too strong for most practical primitives, but a good goal

Open standards

How can we get good primitives?
 Open-world best practice: run competition, invite experts to propose then attack
 Run by neutral experts, e.g. US NIST

Recent good examples: AES, SHA-3

Outline

Confidentiality and privacy, cont'd

Even more web risks

Announcements intermission

Crypto basics

Stream ciphers

Stream ciphers

Closest computational version of one-time pad

- Key (or seed) used to generate a long pseudorandom bitstream
- Closely related: cryptographic RNG

Shift register stream ciphers

- Linear-feedback shift register (LFSR): easy way to generate long pseudorandom sequence But linearity allows for attack
- Several ways to add non-linearity
- Common in constrained hardware, poor security record

RC4

- Fast, simple, widely used software stream cipher Previously a trade secret, also "ARCFOUR"
- Many attacks, none yet fatal to careful users (e.g. TLS)

Famous non-careful user: WEP

Now deprecated, not recommended for new uses

Encryption ≠ integrity Encryption protects secrecy, not message integrity For constant-size encryption, changing the ciphertext just creates a different plaintext How will your system handle that? Always need to take care of integrity separately

Stream cipher mutability

- Strong example of encryption vs. integrity
- In stream cipher, flipping a ciphertext bit flips the corresponding plaintext bit, only
- Very convenient for targeted changes

Salsa and ChaCha

Published by Daniel Bernstein 2007-2008
 Stream cipher with random access to stream

 Related to counter mode discussed later
 Fast on general-purpose CPUs without specialized

- hardware
- Adopted as option for TLS and SSH
 - Prominent early adopter: Chrome on Android

Stream cipher assessment

Currently less fashionable as a primitive in software
 Not inherently insecure

Other common pitfall: must not reuse key(stream)