
CSci 5271
Introduction to Computer Security
Day 24: Anonymizing the network

Stephen McCamant

University of Minnesota, Computer Science & Engineering

Outline
Intrusion detection systems

Malware and the network

Announcements intermission

Denial of service and the network

Anonymous communications techniques

Tor basics

Tor experiences and challenges

Basic idea: detect attacks

The worst attacks are the ones you don’t even know
about
Best case: stop before damage occurs

Marketed as “prevention”

Still good: prompt response

Challenge: what is an attack?

Network and host-based IDSes

Network IDS: watch packets similar to firewall
But don’t know what’s bad until you see it
More often implemented offline

Host-based IDS: look for compromised process or
user from within machine

Signature matching

Signature is a pattern that matches known bad
behavior

Typically human-curated to ensure specificity

See also: anti-virus scanners

Anomaly detection

Learn pattern of normal behavior

“Not normal” is a sign of a potential attack

Has possibility of finding novel attacks

Performance depends on normal behavior too

Recall: FPs and FNs

False positive: detector goes off without real attack

False negative: attack happens without detection

Any detector design is a tradeoff between these
(ROC curve)

Signature and anomaly weaknesses

Signatures
Won’t exist for novel attacks
Often easy to attack around

Anomaly detection
Hard to avoid false positives
Adversary can train over time

Base rate problems

If the true incidence is small (low base rate), most
positives will be false

Example: screening test for rare disease

Easy for false positives to overwhelm admins

E.g., 100 attacks out of 10 million packets, 0.01% FP
rate

How many false alarms?

Adversarial challenges

FP/FN statistics based on a fixed set of attacks

But attackers won’t keep using techniques that are
detected
Instead, will look for:

Existing attacks that are not detected
Minimal changes to attacks
Truly novel attacks

Wagner and Soto mimicry attack

Host-based IDS based on sequence of syscalls

Compute A \M, where:
A models allowed sequences
M models sequences achieving attacker’s goals

Further techniques required:
Many syscalls made into NOPs
Replacement subsequences with similar effect

Outline
Intrusion detection systems

Malware and the network

Announcements intermission

Denial of service and the network

Anonymous communications techniques

Tor basics

Tor experiences and challenges

Malicious software

Shortened to Mal. . . ware

Software whose inherent goal is malicious
Not just used for bad purposes

Strong adversary

High visibility

Many types

Trojan (horse)

Looks benign, has secret malicious functionality

Key technique: fool users into installing/running

Concern dates back to 1970s, MLS

(Computer) viruses

Attaches itself to other software

Propagates when that program runs

Once upon a time: floppy disks

More modern: macro viruses

Have declined in relative importance

Worms

Completely automatic self-propagation

Requires remote security holes

Classic example: 1988 Morris worm

“Golden age” in early 2000s

Internet-level threat seems to have declined

Fast worm propagation

Initial hit-list
Pre-scan list of likely targets
Accelerate cold-start phase

Permutation-based sampling
Systematic but not obviously patterned
Pseudorandom permutation

Approximate time: 15 minutes
“Warhol worm”
Too fast for human-in-the-loop response

Getting underneath

Lower-level/higher-privilege code can deceive
normal code

Rootkit: hide malware by changing kernel behavior

MBR virus: take control early in boot

Blue-pill attack: malware is a VMM running your
system

Malware motivation

Once upon a time: curiosity, fame

Now predominates: money
Modest-size industry
Competition and specialization

Also significant: nation-states
Industrial espionage
Stuxnet (not officially acknowledged)

User-based monetization

Adware, mild spyware

Keyloggers, stealing financial credentials

Ransomware
Application of public-key encryption
Malware encrypts user files
Only $300 for decryption key

Bots and botnets

Bot: program under control of remote attacker

Botnet: large group of bot-infected computers with
common “master”
Command & control network protocol

Once upon a time: IRC
Now more likely custom and obfuscated
Centralized ! peer-to-peer
Gradually learning crypto and protocol lessons

Bot monetization

Click (ad) fraud

Distributed DoS (next section)

Bitcoin mining

Pay-per-install (subcontracting)

Spam sending

Malware/anti-virus arms race

“Anti-virus” (AV) systems are really general
anti-malware

Clear need, but hard to do well

No clear distinction between benign and malicious

Endless possibilities for deception

Signature-based AV

Similar idea to signature-based IDS

Would work well if malware were static

In reality:
Large, changing database
Frequent updated from analysts
Not just software, a subscription
Malware stays enough ahead to survive

Emulation and AV

Simple idea: run sample, see if it does something evil

Obvious limitation: how long do you wait?

Simple version can be applied online

More sophisticated emulators/VMs used in backend
analysis

Polymorphism

Attacker makes many variants of starting malware

Different code sequences, same behavior

One estimate: 30 million samples observed in 2012

But could create more if needed

Packing

Sounds like compression, but real goal is obfuscation

Static code creates real code on the fly

Or, obfuscated bytecode interpreter

Outsourced to independent “protection” tools

Fake anti-virus

Major monentization strategy recently

Your system is infected, pay $19.95 for cleanup tool

For user, not fundamentally distinguishable from real
AV

Outline
Intrusion detection systems

Malware and the network

Announcements intermission

Denial of service and the network

Anonymous communications techniques

Tor basics

Tor experiences and challenges

Reminder: exercise set 3 due tonight

As usual, 11:59pm on Gradescope (link from Canvas)

Template and submission links now all available

This will be the last exercise set

Third project progress reports Wednesday

Due by 11:59pm on Canvas

Special this time: one report should include a sample
in the format of your final report

ACM conference proceedings format, like ACM CCS

Final exam Saturday 12/14

Same room as lecture, 10:30am-12:30pm

Similar to midterm:
Open-book, open-notes
Multiple-choice and exercise-like questions

Slightly longer than midterm

Comprehensive, but weighted slightly toward second
half of course

Outline
Intrusion detection systems

Malware and the network

Announcements intermission

Denial of service and the network

Anonymous communications techniques

Tor basics

Tor experiences and challenges

DoS versus other vulnerabilities

Effect: normal operations merely become impossible

Software example: crash as opposed to code
injection
Less power that complete compromise, but practical
severity can vary widely

Airplane control DoS, etc.

When is it DoS?

Very common for users to affect others’
performance

Focus is on unexpected and unintended effects

Unexpected channel or magnitude

Algorithmic complexity attacks

Can an adversary make your algorithm have
worst-case behavior?

O(n2) quicksort

Hash table with all entries in one bucket

Exponential backtracking in regex matching

XML entity expansion

XML entities (c.f. HTML <) are like C macros

#define B (A+A+A+A+A)

#define C (B+B+B+B+B)

#define D (C+C+C+C+C)

#define E (D+D+D+D+D)

#define F (E+E+E+E+E)

Compression DoS

Some formats allow very high compression ratios
Simple attack: compress very large input

More powerful: nested archives

Also possible: “zip file quine” decompresses to itself

DoS against network services

Common example: keep legitimate users from
viewing a web site

Easy case: pre-forked server supports 100
simultaneous connections

Fill them with very very slow downloads

Tiny bit of queueing theory

Mathematical theory of waiting in line

Simple case: random arrival, sequential fixed-time
service

M/D/1

If arrival rate � service rate, expected queue length
grows without bound

SYN flooding

SYN is first of three packets to set up new
connection

Traditional implementation allocates space for
control data

However much you allow, attacker fills with
unfinished connections

Early limits were very low (10-100)

SYN cookies

Change server behavior to stateless approach

Embed small amount of needed information in fields
that will be echoed in third packet

MAC-like construction

Other disadvantages, so usual implementations used
only under attack

DoS against network links

Try to use all available bandwidth, crowd out real
traffic

Brute force but still potentially effective

Baseline attacker power measured by packet
sending rate

Traffic multipliers

Third party networks (not attacker or victim)

One input packet causes n output packets

Commonly, victim’s address is forged source,
multiply replies

Misuse of debugging features

“Smurf” broadcast ping

ICMP echo request with forged source

Sent to a network broadcast address

Every recipient sends reply

Now mostly fixed by disabling this feature

Distributed DoS

Many attacker machines, one victim

Easy if you own a botnet

Impractical to stop bots one-by-one

May prefer legitimate-looking traffic over weird
attacks

Main consideration is difficulty to filter

Outline
Intrusion detection systems

Malware and the network

Announcements intermission

Denial of service and the network

Anonymous communications techniques

Tor basics

Tor experiences and challenges

Traffic analysis

What can you learn from encrypted data? A lot

Content size, timing

Who’s talking to who
! countermeasure: anonymity

Nymity slider (Goldberg)

Verinymity
Social security number

Persistent pseudonymity
Pen name (“George Eliot”), “moot”

Linkable anonymity
Frequent-shopper card

Unlinkable anonymity
(Idealized) cash payments

Nymity ratchet?

It’s easy to add names on top of an anonymous
protocol

The opposite direction is harder

But, we’re stuck with the Internet as is

So, add anonymity to conceal underlying identities

Steganography

One approach: hide real content within bland-looking
cover traffic

Classic: hide data in least-significant bits of images

Easy to fool casual inspection, hard if adversary
knows the scheme

Dining cryptographers

Dining cryptographers Dining cryptographers

Dining cryptographers Dining cryptographers

DC-net challenges

Quadratic key setups and message exchanges per
round

Scheduling who talks when

One traitor can anonymously sabotage

Improvements subject of ongoing research

Mixing/shuffling

Computer analogue of shaking a ballot box, etc.

Reorder encrypted messages by a random
permutation

Building block in larger protocols

Distributed and verifiable variants possible as well

Anonymous remailers

Anonymizing intermediaries for email
First cuts had single points of failure

Mix and forward messages after receiving a
sufficiently-large batch

Chain together mixes with multiple layers of
encryption

Fancy systems didn’t get critical mass of users

Outline
Intrusion detection systems

Malware and the network

Announcements intermission

Denial of service and the network

Anonymous communications techniques

Tor basics

Tor experiences and challenges

Tor: an overlay network

Tor (originally from “the onion router”)
https://www.torproject.org/

An anonymous network built on top of the
non-anonymous Internet

Designed to support a wide variety of anonymity use
cases

Low-latency TCP applications

Tor works by proxying TCP streams
(And DNS lookups)

Focuses on achieving interactive latency
WWW, but potentially also chat, SSH, etc.
Anonymity tradeoffs compared to remailers

Tor Onion routing

Stream from sender to D forwarded via A, B, and C
One Tor circuit made of four TCP hops

Encrypt packets (512-byte “cells”) as
EA(B; EB(C; EC(D;P)))

TLS-like hybrid encryption with “telescoping” path
setup

Client perspective

Install Tor client running in background

Configure browser to use Tor as proxy
Or complete Tor+Proxy+Browser bundle

Browse web as normal, but a lot slower
Also, sometimes google.com is in Swedish

Entry/guard relays

“Entry node”: first relay on path

Entry knows the client’s identity, so particularly
sensitive

Many attacks possible if one adversary controls entry
and exit

Choose a small random set of “guards” as only
entries to use

Rotate slowly or if necessary

For repeat users, better than random each time

Exit relays

Forwards traffic to/from non-Tor destination

Focal point for anti-abuse policies
E.g., no exits will forward for port 25 (email sending)

Can see plaintext traffic, so danger of sniffing, MITM,
etc.

Centralized directory

How to find relays in the first place?

Straightforward current approach: central directory
servers

Relay information includes bandwidth, exit polices,
public keys, etc.

Replicated, but potential bottleneck for scalability
and blocking

Outline
Intrusion detection systems

Malware and the network

Announcements intermission

Denial of service and the network

Anonymous communications techniques

Tor basics

Tor experiences and challenges

Anonymity loves company

Diverse user pool needed for anonymity to be
meaningful

Hypothetical Department of Defense Anonymity Network

Tor aims to be helpful to a broad range of
(sympathetic sounding) potential users

Who (arguably) needs Tor?

Consumers concerned about web tracking

Businesses doing research on the competition

Citizens of countries with Internet censorship

Reporters protecting their sources

Law enforcement investigating targets

Tor and the US government

Onion routing research started with the US Navy

Academic research still supported by NSF

Anti-censorship work supported by the State
Department

Same branch as Voice of America

But also targeted by the NSA
Per Snowden, so far only limited success

Volunteer relays

Tor relays are run basically by volunteers
Most are idealistic
A few have been less-ethical researchers, or GCHQ

Never enough, or enough bandwidth

P2P-style mandatory participation?
Unworkable/undesirable

Various other kinds of incentives explored

Performance

Increased latency from long paths

Bandwidth limited by relays

Recently 1-2 sec for 50KB, 3-7 sec for 1MB

Historically worse for many periods
Flooding (guessed botnet) fall 2013

Anti-censorship

As a web proxy, Tor is useful for getting around
blocking

Unless Tor itself is blocked, as it often is

Bridges are special less-public entry points

Also, protocol obfuscation arms race (uneven)

Hidden services

Tor can be used by servers as well as clients

Identified by cryptographic key, use special
rendezvous protocol

Servers often present easier attack surface

Undesirable users

P2P filesharing
Discouraged by Tor developers, to little effect

Terrorists
At least the NSA thinks so

Illicit e-commerce
“Silk Road” and its successors

Intersection attacks

Suppose you use Tor to update a pseudonymous
blog, reveal you live in Minneapolis
Comcast can tell who in the city was sending to Tor
at the moment you post an entry

Anonymity set of 1000 ! reasonable protection

But if you keep posting, adversary can keep
narrowing down the set

Exit sniffing

Easy mistake to make: log in to an HTTP web site
over Tor

A malicious exit node could now steal your password

Another reason to always use HTTPS for logins

Browser bundle JS attack

Tor’s Browser Bundle disables many features try to
stop tracking
But, JavaScript defaults to on

Usability for non-expert users
Fingerprinting via NoScript settings

Was incompatible with Firefox auto-updating

Many Tor users de-anonymized in August 2013 by
JS vulnerability patched in June

Traffic confirmation attacks

If the same entity controls both guard and exit on a
circuit, many attacks can link the two connections

“Traffic confirmation attack”
Can’t directly compare payload data, since it is encrypted

Standard approach: insert and observe delays

Protocol bug until recently: covert channel in hidden
service lookup

Hidden service traffic conf.
Bug allowed signal to guard when user looked up a
hidden service

Non-statistical traffic confirmation

For 5 months in 2014, 115 guard nodes (about 6%)
participated in this attack

Apparently researchers at CMU’s SEI/CERT

Beyond “research,” they also gave/sold info. to the
FBI

Apparently used in Silk Road 2.0 prosecution, etc.

