Neural Network

Presented by Daniel Boley
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Perceptron Unit
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Feed Forward (single unit) :

® y=WOX;
o y=[(J)
o [ — (y . ydesired)2
(or other distance measure)

Feed Forward (several units in parallel):
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o y; = f(9;)
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Back Propagation:
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Propagate derivative of error:

o So- =i gy G

o & =wjig(y;) G

Propagate to the previous layer.

o 55 =) wji-g(y;) 5
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Nonlinearities
Alternative Activation Functions:
e Sigmoid: f(7) = 1/(1+ exp(—7)), f/(
o Tanh: f(j) = Z2ED. f/(§) = gly) = 1 — y*.
e ReLU: f(9) = max{0, g}, f'(§) =g(y) ={lify >0; 0 o.w.}.

e Leaky ReLU: f(§) = max{ag. g}, f'(5) = g(y) = {1 it y > 0; a 0.w.}
where 0 < a0 << 1.

Nag
N—"
I
Na
N
Ny
N—"
I
Ny
—~
—
|
<
N——"

o Softmax: fr(y) = exp(ayr)/ D ,exp(aye); -
ij;k(y) = gk(y) = Oéfk(Y)(5jk — f; (v)), 0jk= {1 if ]:k} (Kronecker delta.)

0 o.w.

Alternative Error Functionals
e Quadratic: E=>",(z¢ — ts)%; g—zEj = 2(z; — t;).
e KL Divergence: £ = — ) ,[t¢logze + (1 — o) log(1l — z¢)];

dE _ (2i—t;)
dzj — z;(1—z;)"
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Simple Multilayer Network

e Simple multilayer network with 2 fully connected layers (not counting inputs).

e Each layer consists of
e V. WW: linear combinations of its inputs, represented by matrices

e f: an [elementwise| nonlinearity “activation function”

e Training:
e Training samples presented to network one by one.
e Outputs z; compared to “true” desired labels ¢;.
e Weight matrices V, W updated to improve match z; < ;.
e Updates: propagate gradients back through the network, layer by layer.

input hidden layer outer layer

x =V = y=>f-y —-W= z—=f—z
2o =1 . yo =1 --- artificial variables for biases
71 =~ f = = =z

Lo \ f Qg%f%y \ f 22%]0%22

- =V = - - = W = :
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Im Qn%f%yn 219%]0%2]?
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Training
e Construct network.

e Initialize weights to random values.

e For s in sample training set:

e Feed s to network computing all internal activation values.

e Compute derivatives gf} — for all layers k.
ij
e Update weights: wfj += — iik o learning_rate.

ij
On each sample, take a small step to slightly reduce the error
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Training protoype code

Ts= true labels
rate=.01;

[d,n]=size(digits); / training data
V=[...]l;W=[...]; random initialization
for epoch = 1:1000;
for k=1:n
[dE_dV,dE_dW,E,z,y]l=deltaNN(V,W,digits(:,k),Ts(:,k));
V =V - ratexdE_dV;
W =W - ratexdE_dW;
end;
end;
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Training prototype derivative computation

function [dE_dV,dE_dW,E,z,yl=deltaNN2(V,W,x,t)

hx-—V-->y-—W-->2z2

% Forward Propagation
% First Layer:

yhat = V*[1;x];

y = tanh(yhat);

% Second Layer:
zhat = Wx[1;y];
z = tanh(zhat) ;

% Measure output error:

E = sum((z-t)."2)/2;
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%, Backward
dE_dz =
dz_dzhat =
dzhat_dW =

dE_dzhat =
dE_dWw =

% Backward
dzhat_dy =
dy_dyhat =
dyhat_dV =

%, Backward
dE_dy =
dE_dyhat =
dE_dV =

Propagation - Last Layer
z—t;

1-z.72;

[1,y°];

dE_dz .* dz_dzhat;
dE_dzhat * dzhat_dW;

Propagation - Hidden Layer
W;

1-y.72;

[1,x°];

Propagation - Input Layer
dzhat_dy’ * dE_dzhat;
dE_dy(2:end) .* dy_dyhat;
dE_dyhat * dyhat_dV;
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Recent Developments

Most Popular New Concepts
e Convolution
e Activation Functions: ReLU, Softmax
e Down Sampling
e Stochastic Gradient Descent

e Dropout (to reduce overfitting)

Novel Architectures
e Recurrent Neural Networks (RNN), Long Short-Term Memory (LSTM)
e Fncoders/Decoders = Variational Autoencoders
e Adverserial Neural Networks: Generator + Discriminator

e Attention and Transformers (good for sequences)
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Illustration

2D Visualization of a Convolutional Neural Network - Mozilla Firefox
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Long Short-Term Memory

output

self-loop

input input gate ot gate Hutput gate
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Block diagram of the LSTM recurrent network
“cell.”  Cells are connected recurrently to
each other, replacing the usual hidden units of
ordinary recurrent networks. An input feature
is computed with a regular artificial neuron
unit. Its value can be accumulated into the
state if the sigmoidal input gate allows it. The
state unit has a linear self-loop whose weight
is controlled by the forget gate. The output of
the cell can be shut off by the output gate. All
the gating units have a sigmoid nonlinearity,
while the input unit can have any squashing
nonlinearity. The state unit can also be used
as an extra input to the gating units. The
black square indicates a delay of a single time
step.

From Deep Learning by 1 Goodfellow, Y
Bengio, A Courville.
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Attention, Transformers

Attention:
e Feed an entire sequence of words or tokens at once.
e Measure affinity between each token and every other token.
e Pass a weighted linear combination of tokens to next layer.

e Usually followed by a fully connected layer.

Transformers:
e Encoder/Decoder architecture.

e Encoder & Decoder each consists of a few Attention layers.

Performance:
e Can extract long distance relations better than RNNs.

e Lack of backward feedback loops means faster training.
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