Neural Network

Presented by Daniel Boley

NNt.22.11.28.119 pl of12

Outline

e Perceptron
e Nonlinearities
e Training

e Recent Developments

NNt.22.11.28.119 p2 of1l2

Perceptron Unit

2170:1

w10

T Wi + Y1 / Y1
f

)

Feed Forward (single unit) :

® y=WOX;
o y=[(J)
o [— (y . ydesired)2
(or other distance measure)

Feed Forward (several units in parallel):

L gj:Wj:OXi
o y; = f(9;)

o [— Zj (yj L y?esired)2

NNt.22.11.28.119

Back Propagation:

dy; ~
0 = f(05) = 9(y;)
|fcn of output of f|

dy;
¢ dwjz 'CU?’
dg; _ =
¢ da:z w]’I’
Product Rule:
dy;

dA.
d—zi — Wy; 'g(yj)

Propagate derivative of error:

o So- =i gy G

o & =wjig(y;) G

Propagate to the previous layer.

o 55 =) wji-g(y;) 5

p3 ofl12

Nonlinearities
Alternative Activation Functions:
e Sigmoid: f(7) = 1/(1+ exp(—7)), f/(
o Tanh: f(j) = Z2ED. f/(§) = gly) = 1 — y*.
e ReLU: f(9) = max{0, g}, f'(§) =g(y) ={lify >0; 0 o.w.}.

e Leaky ReLU: f(§) = max{ag. g}, f'(5) = g(y) = {1 it y > 0; a 0.w.}
where 0 < a0 << 1.

Nag
N—"
I
Na
N
Ny
N—"
I
Ny
—~
—
|
<
N——"

o Softmax: fr(y) = exp(ayr)/ D ,exp(aye); -
ij;k(y) = gk(y) = Oéfk(Y)(5jk — f; (v)), 0jk= {1 if]:k} (Kronecker delta.)

0 o.w.

Alternative Error Functionals
e Quadratic: E=>",(z¢ — ts)%; g—zEj = 2(z; — t;).
e KL Divergence: £ = —) ,[t¢logze + (1 — o) log(1l — z¢)];

dE _ (2i—t;)
dzj — z;(1—z;)"

NNt.22.11.28.119 p4 of1l2

Simple Multilayer Network

e Simple multilayer network with 2 fully connected layers (not counting inputs).

e Each layer consists of
e V. WW: linear combinations of its inputs, represented by matrices

e f: an [elementwise| nonlinearity “activation function”

e Training:
e Training samples presented to network one by one.
e Outputs z; compared to “true” desired labels ¢;.
e Weight matrices V, W updated to improve match z; < ;.
e Updates: propagate gradients back through the network, layer by layer.

input hidden layer outer layer

x =V = y=>f-y —-W= z—=f—z
2o =1 . yo =1 --- artificial variables for biases
71 =~ f = = =z

Lo \ f Qg%f%y \ f 22%]0%22

- =V = - - = W = :

SN VAN
Im Qn%f%yn 219%]0%2]?

NNt.22.11.28.119 p5 of12

Training
e Construct network.

e Initialize weights to random values.

e For s in sample training set:

e Feed s to network computing all internal activation values.

e Compute derivatives gf} — for all layers k.
ij
e Update weights: wfj += — iik o learning_rate.

ij
On each sample, take a small step to slightly reduce the error

NNt.22.11.28.119 p6 of1l2

Training protoype code

Ts= true labels
rate=.01;

[d,n]=size(digits); / training data
V=[...]l;W=[...]; random initialization
for epoch = 1:1000;
for k=1:n
[dE_dV,dE_dW,E,z,y]l=deltaNN(V,W,digits(:,k),Ts(:,k));
V =V - ratexdE_dV;
W =W - ratexdE_dW;
end;
end;

NNt.22.11.28.119 p7 of1l2

Training prototype derivative computation

function [dE_dV,dE_dW,E,z,yl=deltaNN2(V,W,x,t)

hx-—V-->y-—W-->2z2

% Forward Propagation
% First Layer:

yhat = V*[1;x];

y = tanh(yhat);

% Second Layer:
zhat = Wx[1;y];
z = tanh(zhat) ;

% Measure output error:

E = sum((z-t)."2)/2;

NNt.22.11.28.119

%, Backward
dE_dz =
dz_dzhat =
dzhat_dW =

dE_dzhat =
dE_dWw =

% Backward
dzhat_dy =
dy_dyhat =
dyhat_dV =

%, Backward
dE_dy =
dE_dyhat =
dE_dV =

Propagation - Last Layer
z—t;

1-z.72;

[1,y°];

dE_dz .* dz_dzhat;
dE_dzhat * dzhat_dW;

Propagation - Hidden Layer
W;

1-y.72;

[1,x°];

Propagation - Input Layer
dzhat_dy’ * dE_dzhat;
dE_dy(2:end) .* dy_dyhat;
dE_dyhat * dyhat_dV;

P8

of 12

Recent Developments

Most Popular New Concepts
e Convolution
e Activation Functions: ReLU, Softmax
e Down Sampling
e Stochastic Gradient Descent

e Dropout (to reduce overfitting)

Novel Architectures
e Recurrent Neural Networks (RNN), Long Short-Term Memory (LSTM)
e Fncoders/Decoders = Variational Autoencoders
e Adverserial Neural Networks: Generator + Discriminator

e Attention and Transformers (good for sequences)

NNt.22.11.28.119 p9 ofl2

Illustration

2D Visualization of a Convolutional Neural Network - Mozilla Firefox

File Edit View History Bookmarks Tools Help
& University o @ chapleumn B3 UNITE Medi: s Class Sched @ translate-G A Neural Netwe B3 Gradebook E3 Week 2 Sync % Unsupervise ER Team CS&E ® newpage tr 2D Visuali

&« c o ®0 ryerson.ca/~aha € @
£ Most Visited) GettingStarted [B Richard KentFlesvigJ... @ http://www.srgssride... @ ITHome

0123456789
{ B |

_vis

=
S
~
g
O
O
>
(0]
—
~
]
£
jo)
©
~
~

https

NNt.22.11.28.119

Long Short-Term Memory

output

self-loop

input input gate ot gate Hutput gate

NNt.22.11.28.119

Block diagram of the LSTM recurrent network
“cell.” Cells are connected recurrently to
each other, replacing the usual hidden units of
ordinary recurrent networks. An input feature
is computed with a regular artificial neuron
unit. Its value can be accumulated into the
state if the sigmoidal input gate allows it. The
state unit has a linear self-loop whose weight
is controlled by the forget gate. The output of
the cell can be shut off by the output gate. All
the gating units have a sigmoid nonlinearity,
while the input unit can have any squashing
nonlinearity. The state unit can also be used
as an extra input to the gating units. The
black square indicates a delay of a single time
step.

From Deep Learning by 1 Goodfellow, Y
Bengio, A Courville.

pll of12

Attention, Transformers

Attention:
e Feed an entire sequence of words or tokens at once.
e Measure affinity between each token and every other token.
e Pass a weighted linear combination of tokens to next layer.

e Usually followed by a fully connected layer.

Transformers:
e Encoder/Decoder architecture.

e Encoder & Decoder each consists of a few Attention layers.

Performance:
e Can extract long distance relations better than RNNs.

e Lack of backward feedback loops means faster training.

NNt.22.11.28.119

pl2 of12

