	A determinant of an $n \times n$ matrix is a real number associate with this matrix. Its definition is complex for the general case \rightarrow V start with $n = 2$ and list important properties for this case.		
DETERMINANTS CHAP. 3	• Determinant of a 2 × 2 matrix is: • Notation : det (A) or $\begin{vmatrix} a & b \\ c & d \end{vmatrix}$ det $\begin{bmatrix} a & b \\ c & d \end{bmatrix} = ad - bd$		
	> Next we list the main properties of determinants. These properties are also true for $n \times n$ case to be defined later.		
	Det(A) for $n \times n$ case can be defined from GE when permutation is not used: Det(A) = product of pivots in GE. More on this later		
10-1	10-2 Text: 3.1-3 – DET		
Properties written for columns (easier to write) but are also true	• det (A) = linear function of each column (individually)		
for rows	 det (A) = linear function of each row (individually) Mhat is the determinant det [u, v + αu]? 		
Notation: We let $A = [u, v]$ columns u , and v are in \mathbb{R}^2 .			
1 If $v = \alpha u$ then det $(A) = 0$.	4 Determinant of transpose		
Determinant of linearly dependent vectors is zero	$\det{(A)} = \det{(A^T)}$		
If any one column is zero then determinant is zero			
2 Interchanging columns or rows:	5 Determinant of Identity		
$\det\left[v,u\right]=-{\rm det}\left[u,v\right]$	$\det\left(I ight)=1$		
3 Linearity:	6 Determinant of a diagonal:		
	$det(D)=d_1d_2\cdots d_n$		

10-4

7 Determinant of a triangular matrix (upper or lower)

 $\det\left(T\right)=a_{11}a_{22}\cdots a_{nn}$

8 Determinant of product of matrices [IMPORTANT]

 $\det\left(AB\right) = \det\left(A\right)\det\left(B\right)$

9 Consequence: Determinant of inverse

 $\det\left(A^{-1}
ight) = rac{1}{\det\left(A
ight)}$

Multiply What is the determinant of αA (for 2×2 matrices)?

Solution What can you say about the determinant of a matrix which satisfies $A^2 = I$?

Is it true that det $(A + B) = \det(A) + \det(B)$? Text: 3.1-3 - DET

▶ We will now generalize this definition to any dimension recursively. Need to define following notation.

We will denote by A_{ij} is the $(n-1) \times (n-1)$ matrix obtained by deleting row i and column j from the matrix A.

10-7

$Determinants - 3 \times 3$ case

 \blacktriangleright We will define 3 imes 3 determinants from 2 imes 2 determinants:

This is an expansion of the det. with respect to its 1st row.

1st term = $a_{11} \times$ det of matrix obtained by deleting 1st row and 1st column.

2nd term $=-a_{12} \times$ det of matrix obtained by deleting row 1 and column 2. Note the sign change.

3rd term = $a_{13} \times$ det of matrix obtained by deleting row 1 and column 3.

10-6

Definition The determinant of a matrix $A = [a_{ij}]$ is the sum det $(A) = + a_{11}$ det $(A_{11}) - a_{12}$ det $(A_{12}) + a_{13}$ det (A_{13}) $- a_{14}$ det $(A_{14}) + \cdots + (-1)^{1+n}a_{1n}$ det (A_{1n})

- Note the alternating signs
- > We can write this as :

$$\det{(A)} = \sum_{j=1}^{n} (-1)^{1+j} a_{1j} \det{(A_{1j})}$$

10-8

This is an expansion with respect to the 1st row.

10-8

10-6

Text: 3.1-3 – DET

Generalization: Cofactors

Define
$$c_{ij} = (-1)^{i+j}$$
det $A_{ij} = cofactor$ of entry i, j

- > Then we get a more general expansion formula:
- $\bullet~ \mathsf{det}\,(A)$ can be expanded with respect to $i\text{-}\mathsf{th}$ as follows

 $\det\left(A
ight)=a_{i1}c_{i1}+a_{i2}c_{i2}+\cdots+a_{in}c_{in}$

- > Note *i* is fixed. Can be done for any *i* [same result each time]
- \blacktriangleright Case i = 1 corresponds to definition given earlier
- > Similar expressions for expanding w.r.t. column j (now j is fixed)

det
$$(A) = a_{1j}c_{1j} + a_{2j}c_{2j} + \dots + a_{nj}c_{nj}$$

10-9

Let B be the matrix obtained from a matrix A by multiplying a certain row (or column) of A by a scalar α . Use the definition to show that: $det(B) = \alpha det(A)$.

What is the computational cost of evaluating the determinant using co-cofactor expansions? [Hint: It is BIG!]

Compute F_2, F_3, F_4 when F_n is the *n*-th dimensional determinant: $F_n = \begin{bmatrix} 1 & -1 \\ 1 & 1 & -1 \\ & \ddots & \ddots & \ddots \\ & 1 & 1 & -1 \\ & & & 1 & -1 \end{bmatrix}$

(continuation) Challenge: Show a recurrence relation between F_n, F_{n-1} and F_{n-2} . Do you recognize this relation? Compute the first 8 values of F_n

10-11

Computing determinants using cofactors

Compute the following deter-	-1	2	0	
minant by using co-factors. Ex-	2	-1	3	
pand with respect to 1st row.	-1	0	2	

Compute the above determinant by using co-factors. Expand with respect to last row. Then expand with respect to last column.

-

Text: 3.1-3 – DET

Compute the following deter	-1	2	0	1	
Compute the following deter- minant [expand with respect to	2	-1	3	2	
	_1	0	2	3	
last row!]	0	-1			

Suppose two rows of A are swapped. Use the above definition to show that the determinant changes signs.

10-10

Inverse of a matrix

10-10

▶ Let $C = \{c_{ij}\}$ the matrix of cofactors. Entry (i, j) of C has cofactor c_{ij} . Then it is easy to prove that:

$$A^{-1} = \frac{1}{\det(A)}C^T$$

Example: Inverse of a 2×2 matrix:

$$\begin{bmatrix} a & b \\ c & d \end{bmatrix}^{-1} = \frac{1}{ad - bc} \begin{bmatrix} d & -b \\ -c & a \end{bmatrix}$$

$$\swarrow \text{ Find the inverses of } : \begin{bmatrix} 2 & 2 \\ -1 & 1 \end{bmatrix} \text{ and } \begin{bmatrix} 2 & 1 & 1 \\ 1 & -1 & 1 \\ 1 & 1 & -2 \end{bmatrix}.$$

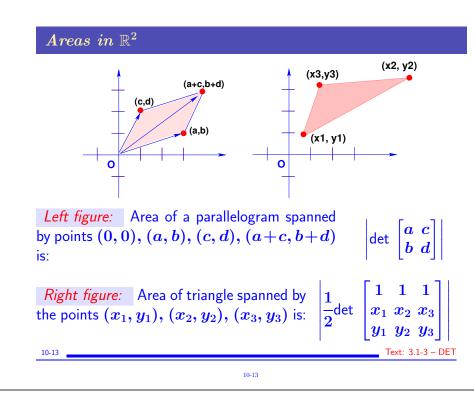
$$\overset{10.12}{}$$
Text: 3.1-3 - DET

10-12

10-11

Text: 3.1-3 – DET

Text: 3.1-3 - DET



Areas, Volumes, and Mappings

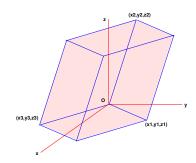
- Determinants are all about areas/volumes Text has a lot more detail
- See section "Determinants as area or volume" in text
- See example 4 in same section
- Linear mappings and determinants [p. 184 in text]
- *Q*: if a region in \mathbb{R}^2 is transformed linearly (i.e., by a linear mapping T) how does its area change?
- *A:* it is multiplied by the | determinant | of the matrix representing *T*. Stated in next theorem

10-15

Volumes in \mathbb{R}^3

10-14

10-16



Volumeof parallelepiped spanned by
origin and the 3 points (x_1, y_1, z_1) ,
 $(x_2, y_2, z_2), (x_3, y_3, z_3)$ is:det $\begin{bmatrix} x_1 & x_2 & x_3 \\ y_1 & y_2 & y_3 \\ z_1 & z_2 & z_3 \end{bmatrix}$

In summary: Volume (\mathbb{R}^3) /area (\mathbb{R}^2) of a box is $|\det(A)|$ when the box edges are the rows of A.

10-14

Theorem Let T the linear mapping from/to \mathbb{R}^2 represented by a matrix A. If S is a parallelogram in \mathbb{R}^2 then

 $\{\text{area of }T(S)\;\}=\left|\det\left(A\right)\right|.\;\{\text{area of }S\;\}$

Similarly, if T is the linear mapping from/to \mathbb{R}^3 represented by a matrix A and S is a parallelipiped in \mathbb{R}^3 then

 $\{ \mathsf{volume of } T(S) \ \} = |\mathsf{det} (A)| \ . \ \{ \mathsf{volume of } S \ \}$

▶ Important point: Results also true for any region in \mathbb{R}^2 (1st part) and \mathbb{R}^3 (2nd part)

See Example 4 in Section 3.2 which uses this to compute the area of an ellipse.

Text: 3.1-3 – DET

Text: 3.1-3 - DET

How to compute determinants in practice?

- ► Co-factor expansion?? *Not practical*. Instead:
- \blacktriangleright Perform an LU factorization of A with pivoting.
- > If a zero column is encountered LU fails but det(A) = 0
- If not get det = product of diagonal entries multiplied by a sign
- ± 1 depending on how many times we interchanged rows.
- Compute the determinants of the matrices

$$A = \begin{bmatrix} 2 & 4 & 6 \\ 1 & 5 & 9 \\ 1 & 0 & -12 \end{bmatrix} \qquad B = \begin{bmatrix} 0 & -1 & 1 & 2 \\ 1 & -2 & -1 & 1 \\ 2 & 0 & 2 & 0 \\ -1 & 1 & -1 & -1 \end{bmatrix}$$
10-17 Text: 3.1-3 - DET