Properties written for columns (easier to write) but are also true for rows

Notation: We let $A=[u, v]$ columns u, and v are in \mathbb{R}^{2}
1 If $v=\alpha u$ then $\operatorname{det}(A)=0$.
> Determinant of linearly dependent vectors is zero
$>$ If any one column is zero then determinant is zero
2 Interchanging columns or rows:

$$
\operatorname{det}[\boldsymbol{v}, \boldsymbol{u}]=-\operatorname{det}[\boldsymbol{u}, \boldsymbol{v}]
$$

3 Linearity:

$$
\operatorname{det}[\boldsymbol{u}, \boldsymbol{\alpha} \boldsymbol{v}+\boldsymbol{\beta} \boldsymbol{w}]=\boldsymbol{\alpha} \operatorname{det}[\boldsymbol{u}, \boldsymbol{v}]+\boldsymbol{\beta} \operatorname{det}[\boldsymbol{u}, \boldsymbol{w}]
$$

Determinants: summary of main results

$>$ A determinant of an $n \times n$ matrix is a real number associated with this matrix. Its definition is complex for the general case \rightarrow We start with $n=2$ and list important properties for this case.

- Determinant of a 2×2 matrix is:
- Notation : $\operatorname{det}(A)$ or $\left|\begin{array}{ll}a & b \\ c & d\end{array}\right| \quad \operatorname{det}\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]=a d-b c$

Next we list the main properties of determinants. These properties are also true for $\boldsymbol{n} \times \boldsymbol{n}$ case to be defined later.
$\operatorname{Det}(A)$ for $n \times n$ case can be defined from GE when permutation is not used: $\operatorname{Det}(A)=$ product of pivots in $G E$. More on this later.

10-2
Text: 3.1-3 - DET
10-2
$>\operatorname{det}(\boldsymbol{A})=$ linear function of each column (individually)
$>\operatorname{det}(A)=$ linear function of each row (individually)
(What is the determinant det $[\boldsymbol{u}, \boldsymbol{v}+\boldsymbol{\alpha u}]$?Determinant of transpose

$$
\operatorname{det}(\boldsymbol{A})=\operatorname{det}\left(\boldsymbol{A}^{\boldsymbol{T}}\right)
$$

5 Determinant of Identity

$$
\operatorname{det}(I)=1
$$

6 Determinant of a diagonal:

$$
\operatorname{det}(D)=d_{1} d_{2} \cdots d_{n}
$$Determinant of a triangular matrix (upper or lower)

$$
\operatorname{det}(T)=a_{11} a_{22} \cdots a_{n n}
$$Determinant of product of matrices [IMPORTANT]

$$
\operatorname{det}(\boldsymbol{A} \boldsymbol{B})=\operatorname{det}(\boldsymbol{A}) \operatorname{det}(\boldsymbol{B})
$$Consequence: Determinant of inverse

$$
\operatorname{det}\left(A^{-1}\right)=\frac{1}{\operatorname{det}(A)}
$$What is the determinant of $\alpha \boldsymbol{A}$ (for 2×2 matrices)?What can you say about the determinant of a matrix which satisfies $A^{2}=I$?Is it true that $\operatorname{det}(\boldsymbol{A}+\boldsymbol{B})=\operatorname{det}(\boldsymbol{A})+\operatorname{det}(\boldsymbol{B})$?

\qquad
\qquad

10-5
. Calculate $\left|\begin{array}{rrr}2 & 3 & 0 \\ 1 & 2 & -1 \\ -1 & 2 & 1\end{array}\right|$
> We will now generalize this definition to any dimension recursively. Need to define following notation.

We will denote by $A_{i j}$ is the $(n-1) \times(n-1)$ matrix obtained by deleting row \boldsymbol{i} and column \boldsymbol{j} from the matrix \boldsymbol{A}.

$$
\begin{aligned}
& \text { Example: If } A=\left[\begin{array}{rrr}
2 & 3 & 0 \\
1 & 2 & -1 \\
-1 & 2 & 1
\end{array}\right] \text { Then: } A_{11}=\left[\begin{array}{cc}
2 & -1 \\
2 & 1
\end{array}\right] ; \\
& A_{12}=\left[\begin{array}{cc}
1 & -1 \\
-1 & 1
\end{array}\right] ; A_{13}=\left[\begin{array}{cc}
1 & 2 \\
-1 & 2
\end{array}\right] ; A_{23}=\left[\begin{array}{cc}
2 & 3 \\
-1 & 2
\end{array}\right]
\end{aligned}
$$

Determinants -3×3 case

$>$ We will define 3×3 determinants from 2×2 determinants: $\left|\begin{array}{lll}a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33}\end{array}\right|=a_{11}\left|\begin{array}{ll}a_{22} & a_{23} \\ a_{32} & a_{33}\end{array}\right|-a_{12}\left|\begin{array}{ll}a_{21} & a_{23} \\ a_{31} & a_{33}\end{array}\right|+a_{13}\left|\begin{array}{lll}a_{21} & a_{22} \\ a_{31} & a_{32}\end{array}\right|$ $>$ This is an expansion of the det. with respect to its 1st row.

1st term $=a_{11} \times$ det of matrix obtained by deleting 1st row and 1st column.

2nd term $=-a_{12} \times$ det of matrix obtained by deleting row 1 and column 2 . Note the sign change.

3rd term $=a_{13} \times$ det of matrix obtained by deleting row 1 and column 3.
\qquad
10-6

Definition The determinant of a matrix $A=\left[a_{i j}\right]$ is the sum $\operatorname{det}(A)=+a_{11} \operatorname{det}\left(A_{11}\right)-a_{12} \operatorname{det}\left(A_{12}\right)+a_{13} \operatorname{det}\left(A_{13}\right)$

$$
-a_{14} \operatorname{det}\left(A_{14}\right)+\cdots+(-1)^{1+n} a_{1 n} \operatorname{det}\left(A_{1 n}\right)
$$

Note the alternating signs
We can write this as :

$$
\operatorname{det}(A)=\sum_{j=1}^{n}(-1)^{1+j} a_{1 j} \operatorname{det}\left(A_{1 j}\right)
$$

This is an expansion with respect to the 1st row.

Generalization: Cofactors

Define $\quad c_{i j}=(-\mathbf{1})^{i+j} \operatorname{det} \boldsymbol{A}_{i j}=$ cofactor of entry i, j
> Then we get a more general expansion formula:

- $\operatorname{det}(\boldsymbol{A})$ can be expanded with respect to i-th as follows

$$
\operatorname{det}(A)=a_{i 1} c_{i 1}+a_{i 2} c_{i 2}+\cdots+a_{i n} c_{i n}
$$

Note \boldsymbol{i} is fixed. Can be done for any \boldsymbol{i} [same result each time]
$>$ Case $i=1$ corresponds to definition given earlier
Similar expressions for expanding w.r.t. column j (now j is fixed)

$$
\operatorname{det}(A)=a_{1 j} c_{1 j}+a_{2 j} c_{2 j}+\cdots+a_{n j} c_{n j}
$$

10-9

Let \boldsymbol{B} be the matrix obtained from a matrix \boldsymbol{A} by multiplying a certain row (or column) of \boldsymbol{A} by a scalar $\boldsymbol{\alpha}$. Use the definition to show that: $\operatorname{det}(\boldsymbol{B})=\alpha \operatorname{det}(\boldsymbol{A})$.What is the computational cost of evaluating the determinant using co-cofactor expansions? [Hint: It is BIG!]

$$
\begin{aligned}
& \text { Compute } \boldsymbol{F}_{2}, \boldsymbol{F}_{3}, \boldsymbol{F}_{4} \\
& \text { when } \boldsymbol{F}_{n} \text { is the } \boldsymbol{n} \text {-th di- } \\
& \text { mensional determinant: }
\end{aligned} \quad \boldsymbol{F}_{n}=\left\lvert\, \begin{array}{rrrrr}
\mathbf{1} & -\mathbf{1} & & & \\
1 & 1 & -\mathbf{1} & & \\
& \ddots & \ddots & \ddots & \\
& & 1 & 1 & -1 \\
& & & 1 & -1
\end{array}\right.
$$

* (continuation) Challenge: Show a recurrence relation between $\boldsymbol{F}_{n}, \boldsymbol{F}_{n-1}$ and \boldsymbol{F}_{n-2}. Do you recognize this relation? Compute the first 8 values of $\boldsymbol{F}_{\boldsymbol{n}}$

Left figure: Area of a parallelogram spanned by points $(0,0),(a, b),(c, d),(a+c, b+d)$ is:
$\left.\operatorname{det}\left[\begin{array}{ll}\boldsymbol{a} & \boldsymbol{c} \\ \boldsymbol{b} & \boldsymbol{d}\end{array}\right] \right\rvert\,$
Right figure:
the points $\left(\boldsymbol{x}_{1}, \boldsymbol{y}_{1}\right),\left(\boldsymbol{x}_{2}, \boldsymbol{y}_{2}\right),\left(\boldsymbol{x}_{3}, \boldsymbol{y}_{3}\right)$ is: $\frac{\frac{1}{2} \operatorname{det}\left[\begin{array}{ccc}1 & 1 & 1 \\ \boldsymbol{x}_{1} & \boldsymbol{x}_{2} & \boldsymbol{x}_{3} \\ \boldsymbol{y}_{1} & \boldsymbol{y}_{2} & \boldsymbol{y}_{3}\end{array}\right]}{\text { thea }}$ 10-13 Text: 3.1-3 - DET

Areas, Volumes, and Mappings

> Determinants are all about areas/volumes - Text has a lot more detail
> See section "Determinants as area or volume" in textSee example 4 in same section
$>$ Linear mappings and determinants [p. 184 in text]
Q: if a region in \mathbb{R}^{2} is transformed linearly (i.e., by a linear mapping
\boldsymbol{T}) - how does its area change?
A: it is multiplied by the \mid determinant | of the matrix representing
\boldsymbol{T}. Stated in next theorem

Volume of parallelepiped spanned by origin and the 3 points $\left(\boldsymbol{x}_{1}, \boldsymbol{y}_{1}, \boldsymbol{z}_{1}\right)$, $\left(x_{2}, y_{2}, z_{2}\right),\left(x_{3}, y_{3}, z_{3}\right)$ is:

$$
\left.\operatorname{det}\left[\begin{array}{lll}
\boldsymbol{x}_{1} & \boldsymbol{x}_{2} & \boldsymbol{x}_{3} \\
\boldsymbol{y}_{1} & \boldsymbol{y}_{2} & \boldsymbol{y}_{3} \\
\boldsymbol{z}_{1} & \boldsymbol{z}_{2} & z_{3}
\end{array}\right] \right\rvert\,
$$

In summary: Volume $\left(\mathbb{R}^{3}\right) /$ area $\left(\mathbb{R}^{2}\right)$ of a box is $|\operatorname{det}(A)|$ when the box edges are the rows of \boldsymbol{A}
10-14

Theorem Let T the linear mapping from/to \mathbb{R}^{2} represented by a matrix A. If S is a parallelogram in \mathbb{R}^{2} then

$$
\{\text { area of } \boldsymbol{T}(S)\}=|\operatorname{det}(A)| \cdot\{\text { area of } S\}
$$

Similarly, if T is the linear mapping from/to \mathbb{R}^{3} represented by a matrix \boldsymbol{A} and S is a parallelipiped in \mathbb{R}^{3} then

$$
\{\text { volume of } \boldsymbol{T}(\boldsymbol{S})\}=|\operatorname{det}(A)| \cdot\{\text { volume of } S\}
$$

Important point: Results also true for any region in \mathbb{R}^{2} (1st part) and \mathbb{R}^{3} (2nd part)

See Example 4 in Section 3.2 which uses this to compute the area of an ellipse.

How to compute determinants in practice?

> Co-factor expansion?? *Not practical*. Instead:
$>$ Perform an LU factorization of \boldsymbol{A} with pivoting.
$>$ If a zero column is encountered LU fails but $\operatorname{det}(\boldsymbol{A})=\mathbf{0}$
> If not get det = product of diagonal entries multiplied by a sign ± 1 depending on how many times we interchanged rows.Compute the determinants of the matrices

$$
A=\left[\begin{array}{ccc}
2 & 4 & 6 \\
1 & 5 & 9 \\
1 & 0 & -12
\end{array}\right] \quad B=\left[\begin{array}{cccc}
0 & -1 & 1 & 2 \\
1 & -2 & -1 & 1 \\
2 & 0 & 2 & 0 \\
-1 & 1 & -1 & -1
\end{array}\right]
$$

10-17

