GENERAL VECTOR SPACES AND SUBSPACES [4.1]

General vector spaces

11-2

So far we have seen special spaces of vectors of n dimensions – denoted by \mathbb{R}^n .

It is possible to define more general vector spaces

A vector space V over \mathbb{R} is a nonempty set with two operations:

- Addition denoted by '+'. For two vectors x and y, x + y is a member of V
- Multiplication by a scalar For $lpha \in \mathbb{R}$ and $x \in V$, lpha x is a member of V.

> In addition for V to be a vector space the following 8 axioms must be satisfied [note: order is different in text]

- 1. Addition is commutative u + v = v + u
- 2. Addition is associative u + (v + w) = (u + v) + w
- 3. \exists zero vector denoted by 0 such that $\forall u$, 0 + u = u
- 4. Any u has an opposite -u such that u + (-u) = 0
- 5. 1u = u for any u
- 6. $(\alpha\beta)u = \alpha(\beta u)$

11-3

- 7. $(\alpha + \beta)u = \alpha u + \beta u$
- 8. $\alpha(u+v) = \alpha u + \alpha v$

Show that the zero vector in Axiom 3 is unique, and the vector -u, ('negative of u'), in Axiom 4 is unique for each u in V.

\blacktriangleright For each u in V and scalar α we have

$$0u = 0$$
 $lpha 0 = 0$; $-u = (-1)u$.

Example: Let V be the set of all arrows (directed line segments) in three-dimensional space, with two arrows regarded as equal if they have the same length and point in the same direction. Define addition by the parallelogram rule, and for each v in V, define cv to be the arrow whose length is c times the length of v, pointing in the same direction as v if c > 0 and otherwise pointing in the opposite direction.

Note: The definition of V is geometric, using concepts of length and direction. No xyz-coordinate system is involved. An arrow of zero length is a single point and represents the zero vector. The negative of v is (-1)v.

All axioms are verified

11-4

More examples

- > Set of vectors in \mathbb{R}^4 with second component equal to zero.
- \blacktriangleright Set of all poynomials of degree ≤ 3
- \blacktriangleright Set of all m imes n matrices
- \blacktriangleright Set of all n imes n upper triangular matrices

Subspaces

11-6

> A subset H of vectors of V is a subspace if it is a vector space by itself. Formal definition:

A subset H of vectors of V is a subspace if
1. H is closed for the addition, which means:
x + y ∈ H for any x ∈ H, y ∈ H
2. H is closed for the scalar multiplication, which means:
αx ∈ H for any α ∈ ℝ, x ∈ H

Note: If H is a subspace then (1) 0 belongs to H and (2) For any $x \in H$, the vector -x belongs to H

Every vector space is a subspace (of itself and possibly of other larger spaces).

The set consisting of only the zero vector of V is a subspace of V, called the zero subspace. Notation: $\{0\}$.

Example: Polynomials of the form

$$p(t)=lpha_2t^2+lpha_3t^3$$
 ,

form a subspace of the space of polynomials of degree ≤ 3

Other examples: Examples 3 and 5 (sec. 4.1) from text

Example: Triangular matrices

Example 8 (sec. 4.1) in *text* is important

11-8

Show that the set H of all vectors in \mathbb{R}^3 of the form $\{a + b, a - b, b\}$ is a subspace of \mathbb{R}^3 . [Hint: see example 11 from Sec. 4.1 of <u>text</u>]

▶ Recall: the term linear combination refers to a sum of scalar multiples of vectors, and $\operatorname{span}\{v_1, ..., v_p\}$ denotes the set of all vectors that can be written as linear combinations of v_1, \cdots, v_p .

A subspace spanned by a set

Theorem: If $v_1, ..., v_p$ are in a vector space V, then $\operatorname{span}\{v_1, ..., v_p\}$

is a subspace of V.

11-9

> $\operatorname{span}\{v_1, ..., v_p\}$ is the subspace spanned (or generated) by $\{v_1, ..., v_p\}$.

For Given any subspace H of V, a spanning (or generating) set for H is a set $\{v_1, ..., v_p\}$ in H such that $H = \operatorname{span}\{v_1, ..., v_p\}$.

Prove above theorem for p = 2, i.e., given v_1 and v_2 in a vector space V, then $H = \operatorname{span}\{v_1, v_2\}$ is a subspace of V. [Hint: show that H is closed for '+' and for scalar multiplication]

NULL SPACES AND COLUMN SPACES [4.2]

Null space of a matrix

11-11

Definition: The null space of an $m \times n$ matrix A, written as Nul(A), is the set of all solutions of the homogeneous equation Ax = 0. In set notation,

$$\mathsf{Nul}(A) = \{x: x \in \mathbb{R}^n \text{ and } Ax = 0\}.$$

Theorem: The null space of an $m \times n$ matrix A is a subspace of \mathbb{R}^n

Equivalently, the set of all solutions to a system Ax = 0 of m homogeneous linear equations in n unknowns is a subspace of \mathbb{R}^n

Proof: Nul(A) is by definition a subset of \mathbb{R}^n . Must show: Nul(A) closed under + and multipl. by scalars.

 \blacktriangleright Take u and v any two vectors in Nul(A). Then Au = 0 and Av = 0.

Need to show that u + v is in Nul(A), i.e., that A(u + v) = 0. Using a property of matrix multiplication, compute

$$A(u+v) = Au + Av = 0 + 0 = 0$$

Thus $u + v \in Nul(A)$, and Nul(A) is closed under vector addition.

Finally, if α is any scalar, then $A(\alpha u) = \alpha(Au) = \alpha(0) = 0$ which shows that αu is in Nul(A).

> Thus Nul(A) is a subspace of \mathbb{R}^n .

See Example 1 in Sect. 4.2 of text [determining if a given vector belongs to Nul(A)

See Example 2 in Sect. 4.2 of *text* [determining a subspace by casting as a null space]

Next we will see how to determine Nul(A). See Example 3 of Sec. 4.2 of <u>text</u>. Details next.

> There is no obvious relation between vectors in Nul(A) and the entries in A.

> We say that Nu(A) is defined implicitly, because it is defined by a condition that must be checked.

> No explicit list or description of the elements in Nul(A), so...

> ... we need to solve the equation Ax = 0 to produce an explicit description of Nul(A).

Example: Find the null space of the matrix

$$A = egin{bmatrix} -3 & 6 & -1 & 1 & -7 \ 1 & -2 & 2 & 3 & -1 \ 2 & -4 & 5 & 8 & -4 \end{bmatrix}$$

> We will find a spanning set for Nul(A).

11-13

Solution: first step is to find the general solution of Ax = 0 in terms of free variables. We know how to do this.

> Get reduced echelon form of augmented matrix $[A \ 0]$:

$$egin{bmatrix} 1 & -2 & 0 & -1 & 3 & 0 \ 0 & 0 & 1 & 2 & -2 & 0 \ 0 & 0 & 0 & 0 & 0 \end{bmatrix} egin{array}{rll} egin{array}{rll} x_1 - 2x_2 & -x_4 & +3x_5 = 0 \ egin{array}{rll} x_3 + 2x_4 & -2x_5 = 0 \ 0 = 0 \ \end{array} egin{array}{rll} egin{array}{rll} x_3 + 2x_4 & -2x_5 = 0 \ 0 = 0 \ \end{array} egin{array}{rll} egin{array}{rll} x_3 + 2x_4 & -2x_5 = 0 \ 0 = 0 \ \end{array} egin{array}{rll} egin{array}{rll} x_1 - 2x_2 & -x_4 & +3x_5 = 0 \ \end{array} egin{array}{rll} egin{array}{rll} x_1 - 2x_2 & -x_4 & +3x_5 = 0 \ \end{array} egin{array}{rll} egin{array}{rll} x_1 - 2x_2 & -x_4 & +3x_5 = 0 \ \end{array} egin{array}{rll} egin{array}{rll} x_1 - 2x_2 & -x_4 & +3x_5 = 0 \ \end{array} egin{array}{rll} egin{array}{rll} x_1 - 2x_2 & -x_4 & +3x_5 = 0 \ \end{array} egin{array}{rll} egin{array}{rll} x_1 - 2x_2 & -x_4 & +3x_5 = 0 \ \end{array} egin{array}{rll} x_1 - 2x_2 & -x_4 & +3x_5 = 0 \ \end{array} egin{array}{rll} egin{array}{rll} x_1 - 2x_2 & -x_4 & +3x_5 = 0 \ \end{array} egin{array}{rll} x_1 - 2x_2 & -x_4 & -2x_5 = 0 \ \end{array} egin{array}{rll} egin{array}{rll} x_1 - 2x_2 & -x_4 & -2x_5 = 0 \ \end{array} egin{array}{rll} x_1 - 2x_2 & -x_4 & -2x_5 = 0 \ \end{array} egin{array}{rll} x_1 - 2x_2 & -x_4 & -2x_5 = 0 \ \end{array} egin{array}{rll} x_1 - 2x_2 & -x_4 & -2x_5 = 0 \ \end{array} egin{array}{rll} x_1 - 2x_2 & -x_4 & -2x_5 = 0 \ \end{array} egin{array}{rll} x_1 - 2x_2 & -x_4 & -2x_5 & -x_4 & -2x_5 & -x_4 & -x_5 & -x_5 & -x_6 &$$

• x_2, x_4, x_5 are free variables, x_1, x_3 basic variables.

11-14

For any selection of the free variables, can find a vector in Nul(A) by computing x_1, x_3 in terms of these variables:

➤ OK - but how can we write these using spanning vectors (i.e. as linear combinations of specific vectors?)

 \blacktriangleright Solution - write x as:

11-15

> General solution is of the form $x_2u + x_4v + x_5w$.

Every linear combination of u, v, and w is an element of Nul(A). Thus $\{u, v, w\}$ is a spanning set for Nul(A), i.e.,

$$\mathsf{Nul}(A) = \mathrm{span}\{u,v,w\}$$

Obtain the vector x of Nul(A)corresponding to the choice: $x_2 = 1, x_4 = -2, x_5 = -1$. Verify that indeed it is in the null space, i.e., that Ax = 0

For same example, find a vector in Nul(A) whose last two components are zero and whose first component is 1. How many such vectors are there (zero, one, or inifintely many?)

Notes:

▶ 1. The spanning set produced by the method in the example is guaranteed to be linearly independent

Show this (proof by contradiction)

> 2. When Nul(A) contains nonzero vectors, the number of vectors in the spanning set for Nul(A) equals the number of free variables in the equation Ax = 0.

11-16

Column Space of a matrix

11-17

Definition: The column space of an $m \times n$ matrix A, written as Col(A) (or C(A)), is the set of all linear combinations of the columns of A. If $A = [a_1 \cdots a_n]$, then

$$\mathsf{Col}(A) = \mathrm{span}\{a_1,...,a_n\}$$

Theorem:The column space of an $m \times n$ matrix A is a subspaceof \mathbb{R}^m .

> A vector in Col(A) can be written as Ax for some x [Recall that Ax stands for a linear combination of the columns of A].

That is:
$$\mathsf{Col}(A) = \{b: b = Ax \ \ ext{for some } x \ ext{in} \ \ \mathbb{R}^n\}$$

The notation Ax for vectors in $\operatorname{Col}(A)$ also shows that $\operatorname{Col}(A)$ is the range of the linear transformation $x \to Ax$.

The column space of an m imes n matrix A is all of \mathbb{R}^m if and only if the equation Ax = b has a solution for each b in \mathbb{R}^m

🖾 Let

11-18

$$A = egin{bmatrix} 2 & 4 & -2 & 1 \ -2 & -5 & 7 & 3 \ 3 & 7 & -8 & 6 \end{bmatrix}, \hspace{1em} u = egin{bmatrix} 3 \ -2 \ -1 \ -1 \ 0 \end{bmatrix}, \hspace{1em} v = egin{bmatrix} 3 \ -1 \ 3 \end{bmatrix}$$

a. Determine if u is in Nul(A). Could u be in Col(A)?

b. Determine if v is in Col(A). Could v be in Nul(A) ?

General remarks and hints:

- 1. $\mathsf{Col}(A)$ is a subspace of \mathbb{R}^m [m = 3 in above example]
- 2. $\operatorname{Nul}(A)$ is a subspace of \mathbb{R}^n [n = 4 in above example]
- 3. To verify that a given vector x belongs to Nul(A) all you need to do is check if Ax = 0

4. To verify if $b \in Col(A)$ all you need to do is check if the linear system Ax = b has a solution.