GENERAL VECTOR SPACES AND SUBSPACES [4.1]

General vector spaces

> So far we have seen special spaces of vectors of \boldsymbol{n} dimensions denoted by \mathbb{R}^{n}.
> It is possible to define more general vector spaces
A vector space \boldsymbol{V} over \mathbb{R} is a nonempty set with two operations:

- Addition denoted by ${ }^{\prime}+{ }^{\prime}$. For two vectors \boldsymbol{x} and $\boldsymbol{y}, \boldsymbol{x}+\boldsymbol{y}$ is a member of \boldsymbol{V}
- Multiplication by a scalar For $\boldsymbol{\alpha} \in \mathbb{R}$ and $\boldsymbol{x} \in \boldsymbol{V}, \boldsymbol{\alpha} \boldsymbol{x}$ is a member of \boldsymbol{V}.
$>$ In addition for \boldsymbol{V} to be a vector space the following 8 axioms must be satisfied [note: order is different in text]

1. Addition is commutative $\boldsymbol{u}+\boldsymbol{v}=\boldsymbol{v}+\boldsymbol{u}$
2. Addition is associative $\boldsymbol{u}+(\boldsymbol{v}+\boldsymbol{w})=(\boldsymbol{u}+\boldsymbol{v})+\boldsymbol{w}$
3. \exists zero vector denoted by 0 such that $\forall \boldsymbol{u}, \mathbf{0}+\boldsymbol{u}=\boldsymbol{u}$
4. Any \boldsymbol{u} has an opposite $-\boldsymbol{u}$ such that $\boldsymbol{u}+(-\boldsymbol{u})=\mathbf{0}$
5. $\boldsymbol{1 u}=\boldsymbol{u}$ for any \boldsymbol{u}
6. $(\alpha \beta) u=\alpha(\beta u)$
7. $(\alpha+\beta) u=\alpha u+\beta u$
8. $\alpha(u+v)=\alpha u+\alpha v$
\$ Show that the zero vector in Axiom 3 is unique, and the vector $\boldsymbol{- u}$, ('negative of \boldsymbol{u} '), in Axiom 4 is unique for each \boldsymbol{u} in \boldsymbol{V}.
$>$ For each \boldsymbol{u} in \boldsymbol{V} and scalar $\boldsymbol{\alpha}$ we have

$$
0 u=0 \quad \alpha 0=0 ; \quad-u=(-1) u
$$

Example: Let \boldsymbol{V} be the set of all arrows (directed line segments) in three-dimensional space, with two arrows regarded as equal if they have the same length and point in the same direction. Define addition by the parallelogram rule, and for each \boldsymbol{v} in \boldsymbol{V}, define $\boldsymbol{c} \boldsymbol{v}$ to be the arrow whose length is \boldsymbol{c} times the length of \boldsymbol{v}, pointing in the same direction as \boldsymbol{v} if $\boldsymbol{c}>\mathbf{0}$ and otherwise pointing in the opposite direction.

Note: The definition of \boldsymbol{V} is geometric, using concepts of length and direction. No $\boldsymbol{x} \boldsymbol{y} \boldsymbol{z}$-coordinate system is involved. An arrow of zero length is a single point and represents the zero vector. The negative of \boldsymbol{v} is $(-\mathbf{1}) \boldsymbol{v}$.
$>$ All axioms are verified

More examples

$>$ Set of vectors in \mathbb{R}^{4} with second component equal to zero.
$>$ Set of all poynomials of degree ≤ 3
$>$ Set of all $\boldsymbol{m} \times \boldsymbol{n}$ matrices
$>$ Set of all $\boldsymbol{n} \times \boldsymbol{n}$ upper triangular matrices

Subspaces

$>$ A subset \boldsymbol{H} of vectors of \boldsymbol{V} is a subspace if it is a vector space by itself. Formal definition:
$>$ A subset \boldsymbol{H} of vectors of \boldsymbol{V} is a subspace if

1. \boldsymbol{H} is closed for the addition, which means:

$$
\boldsymbol{x}+\boldsymbol{y} \in \boldsymbol{H} \quad \text { for any } \quad \boldsymbol{x} \in \boldsymbol{H}, \boldsymbol{y} \in \boldsymbol{H}
$$

2. \boldsymbol{H} is closed for the scalar multiplication, which means:

$$
\boldsymbol{\alpha} \boldsymbol{x} \in \boldsymbol{H} \quad \text { for any } \quad \boldsymbol{\alpha} \in \mathbb{R}, \boldsymbol{x} \in \boldsymbol{H}
$$

$>$ Note: If \boldsymbol{H} is a subspace then (1) $\mathbf{0}$ belongs to \boldsymbol{H} and (2) For any $\boldsymbol{x} \in \boldsymbol{H}$, the vector $-\boldsymbol{x}$ belongs to \boldsymbol{H}

- Every vector space is a subspace (of itself and possibly of other larger spaces).
> The set consisting of only the zero vector of \boldsymbol{V} is a subspace of \boldsymbol{V}, called the zero subspace. Notation: $\{0\}$.

Example: Polynomials of the form

$$
p(t)=\alpha_{2} t^{2}+\alpha_{3} t^{3}
$$

form a subspace of the space of polynomials of degree ≤ 3
(Other examples: Examples 3 and 5 (sec. 4.1) from text
Example: Triangular matrices

E Example 8 (sec. 4.1) in text is important
\& Show that the set \boldsymbol{H} of all vectors in \mathbb{R}^{3} of the form $\{a+$ $\boldsymbol{b}, \boldsymbol{a}-\boldsymbol{b}, \boldsymbol{b}\}$ is a subspace of \mathbb{R}^{3}. [Hint: see example 11 from Sec. 4.1 of text]
$>$ Recall: the term linear combination refers to a sum of scalar multiples of vectors, and $\operatorname{span}\left\{v_{1}, \ldots, \boldsymbol{v}_{p}\right\}$ denotes the set of all vectors that can be written as linear combinations of $v_{1}, \cdots, \boldsymbol{v}_{\boldsymbol{p}}$.

A subspace spanned by a set

Theorem: If $\boldsymbol{v}_{1}, \ldots, \boldsymbol{v}_{\boldsymbol{p}}$ are in a vector space \boldsymbol{V}, then

$$
\operatorname{span}\left\{v_{1}, \ldots, v_{p}\right\}
$$

is a subspace of V.
$>\operatorname{span}\left\{v_{1}, \ldots, v_{p}\right\}$ is the subspace spanned (or generated) by $\left\{v_{1}, \ldots, v_{p}\right\}$.
> Given any subspace \boldsymbol{H} of \boldsymbol{V}, a spanning (or generating) set for \boldsymbol{H} is a set $\left\{\boldsymbol{v}_{1}, \ldots, \boldsymbol{v}_{p}\right\}$ in \boldsymbol{H} such that $\boldsymbol{H}=\operatorname{span}\left\{\boldsymbol{v}_{1}, \ldots \boldsymbol{v}_{p}\right\}$.
«0 Prove above theorem for $p=2$, i.e., given \boldsymbol{v}_{1} and \boldsymbol{v}_{2} in a vector space \boldsymbol{V}, then $\boldsymbol{H}=\operatorname{span}\left\{\boldsymbol{v}_{1}, \boldsymbol{v}_{2}\right\}$ is a subspace of \boldsymbol{V}. [Hint: show that \boldsymbol{H} is closed for ' + ' and for scalar multiplication]

NULL SPACES AND COLUMN SPACES [4.2]

Null space of a matrix

Definition: The null space of an $\boldsymbol{m} \times \boldsymbol{n}$ matrix \boldsymbol{A}, written as $\operatorname{Nul}(\boldsymbol{A})$, is the set of all solutions of the homogeneous equation $\boldsymbol{A x}=0$. In set notation,

$$
\operatorname{Nul}(A)=\left\{x: x \in \mathbb{R}^{n} \quad \text { and } \quad A x=0\right\}
$$

Theorem: The null space of an $\boldsymbol{m} \times \boldsymbol{n}$ matrix \boldsymbol{A} is a subspace of \mathbb{R}^{n}
$>$ Equivalently, the set of all solutions to a system $\boldsymbol{A x}=0$ of \boldsymbol{m} homogeneous linear equations in \boldsymbol{n} unknowns is a subspace of \mathbb{R}^{n}
Proof: $\operatorname{Nul}(\boldsymbol{A})$ is by definition a subset of \mathbb{R}^{n}. Must show: $\operatorname{Nul}(\boldsymbol{A})$ closed under + and multipl. by scalars.
$>$ Take \boldsymbol{u} and \boldsymbol{v} any two vectors in $\operatorname{Nul}(\boldsymbol{A})$. Then $\boldsymbol{A} \boldsymbol{u}=0$ and $\boldsymbol{A} \boldsymbol{v}=\mathbf{0}$.
$>$ Need to show that $\boldsymbol{u}+\boldsymbol{v}$ is in $\operatorname{Nul}(\boldsymbol{A})$, i.e., that $\boldsymbol{A}(\boldsymbol{u}+\boldsymbol{v})=0$. Using a property of matrix multiplication, compute

$$
A(u+v)=A u+A v=0+0=0
$$

$>$ Thus $\boldsymbol{u}+\boldsymbol{v} \in \operatorname{Nul}(\boldsymbol{A})$, and $\operatorname{Nul}(\boldsymbol{A})$ is closed under vector addition.
$>$ Finally, if α is any scalar, then $A(\alpha u)=\alpha(A u)=\alpha(0)=0$ which shows that $\boldsymbol{\alpha} \boldsymbol{u}$ is in $\operatorname{Nul}(\boldsymbol{A})$.
$>$ Thus $\operatorname{Nul}(\boldsymbol{A})$ is a subspace of \mathbb{R}^{n}.
\& See Example 1 in Sect. 4.2 of text [determining if a given vector belongs to $\operatorname{Nul}(\boldsymbol{A})$

See Example 2 in Sect. 4.2 of text [determining a subspace by casting as a null space]
$>$ Next we will see how to determine $\operatorname{Nul}(\boldsymbol{A})$. See Example 3 of Sec. 4.2 of text. Details next.
$>$ There is no obvious relation between vectors in $\operatorname{Nul}(\boldsymbol{A})$ and the entries in \boldsymbol{A}.
$>$ We say that $\operatorname{Nul}(\boldsymbol{A})$ is defined implicitly, because it is defined by a condition that must be checked.
$>$ No explicit list or description of the elements in $\operatorname{Nul}(\boldsymbol{A})$, so..
$>\ldots$ we need to solve the equation $\boldsymbol{A x}=\mathbf{0}$ to produce an explicit description of $\operatorname{Nul}(A)$.

Example: Find the null space of the matrix

$$
A=\left[\begin{array}{ccccc}
-3 & 6 & -1 & 1 & -7 \\
1 & -2 & 2 & 3 & -1 \\
2 & -4 & 5 & 8 & -4
\end{array}\right]
$$

$>$ We will find a spanning set for $\operatorname{Nul}(\boldsymbol{A})$.

Solution: first step is to find the general solution of $\boldsymbol{A x}=\mathbf{0}$ in terms of free variables. We know how to do this.
$>$ Get reduced echelon form of augmented matrix $\left[\begin{array}{ll}\boldsymbol{A} & 0\end{array}\right]$:

$$
\left[\begin{array}{cccccc}
1 & -2 & 0 & -1 & 3 & 0 \\
0 & 0 & 1 & 2 & -2 & 0 \\
0 & 0 & 0 & 0 & 0 & 0
\end{array}\right] \rightarrow x_{1}-2 x_{2} \begin{aligned}
-x_{4}+3 x_{5} & =0 \\
x_{3}+2 x_{4}-2 x_{5} & =0 \\
0 & =0
\end{aligned}
$$

$>x_{2}, x_{4}, x_{5}$ are free variables, x_{1}, x_{3} basic variables.
$>$ For any selection of the free variables, can find a vector in $\operatorname{Nul}(\boldsymbol{A})$ by computing x_{1}, x_{3} in terms of these variables:

$$
\begin{aligned}
& x_{1}=2 x_{2}+x_{4}-3 x_{5} \\
& x_{3}=-2 x_{4}+2 x_{5}
\end{aligned}
$$

> OK - but how can we write these using spanning vectors (i.e. as linear combinations of specific vectors?)
$>$ Solution - write \boldsymbol{x} as:

$$
\left|\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4} \\
x_{5}
\end{array}\right|=\left|\begin{array}{ccc}
2 x_{2} & +x_{4}-3 x_{5} \\
x_{2} & & \\
& -2 x_{4}+2 x_{5} \\
x_{4} & x_{5}
\end{array}\right|=x_{2} \underbrace{\left[\begin{array}{c}
2 \\
1 \\
0 \\
0 \\
0
\end{array}\right]}_{u}+x_{4} \underbrace{\left[\begin{array}{c}
1 \\
0 \\
-2 \\
1 \\
0
\end{array}\right]}_{v}+x_{5} \underbrace{\left[\begin{array}{c}
-3 \\
0 \\
2 \\
0 \\
1
\end{array}\right]}_{w}
$$

$>$ General solution is of the form $x_{2} \boldsymbol{u}+x_{4} \boldsymbol{v}+x_{5} \boldsymbol{w}$.
$>$ Every linear combination of $\boldsymbol{u}, \boldsymbol{v}$, and \boldsymbol{w} is an element of $\operatorname{Nul}(\boldsymbol{A})$. Thus $\{u, v, w\}$ is a spanning set for $\operatorname{Nul}(\boldsymbol{A})$, i.e.,

$$
\operatorname{Nul}(A)=\operatorname{span}\{u, v, w\}
$$

© Obtain the vector \boldsymbol{x} of $\operatorname{Nul}(\boldsymbol{A})$ corresponding to the choice: $\boldsymbol{x}_{2}=$ $1, x_{4}=-2, x_{5}=-1$. Verify that indeed it is in the null space, i.e., that $\boldsymbol{A x}=0$
®0 For same example, find a vector in $\operatorname{Nul}(\boldsymbol{A})$ whose last two components are zero and whose first component is 1 . How many such vectors are there (zero, one, or inifintely many?)

Notes:

>1. The spanning set produced by the method in the example is guaranteed to be linearly independent
\& Show this (proof by contradiction)
$>$ 2. When $\operatorname{Nul}(\boldsymbol{A})$ contains nonzero vectors, the number of vectors in the spanning set for $\operatorname{Nul}(\boldsymbol{A})$ equals the number of free variables in the equation $\boldsymbol{A x}=\mathbf{0}$.

Column Space of a matrix

Definition: The column space of an $\boldsymbol{m} \times \boldsymbol{n}$ matrix \boldsymbol{A}, written as $\operatorname{Col}(\boldsymbol{A})$ (or $\boldsymbol{C}(\boldsymbol{A})$), is the set of all linear combinations of the columns of \boldsymbol{A}. If $\boldsymbol{A}=\left[a_{1} \cdots a_{n}\right]$, then

$$
\operatorname{Col}(A)=\operatorname{span}\left\{a_{1}, \ldots, a_{n}\right\}
$$

Theorem:

The column space of an $\boldsymbol{m} \times \boldsymbol{n}$ matrix \boldsymbol{A} is a subspace of \mathbb{R}^{m}.
$>$ A vector in $\operatorname{Col}(\boldsymbol{A})$ can be written as $\boldsymbol{A} \boldsymbol{x}$ for some \boldsymbol{x} [Recall that $\boldsymbol{A} \boldsymbol{x}$ stands for a linear combination of the columns of $\boldsymbol{A}]$.

That is:

$$
\operatorname{Col}(A)=\left\{b: b=A \boldsymbol{x} \quad \text { for some } \boldsymbol{x} \text { in } \mathbb{R}^{n}\right\}
$$

$>$ The notation $\boldsymbol{A x}$ for vectors in $\operatorname{Col}(\boldsymbol{A})$ also shows that $\operatorname{Col}(\boldsymbol{A})$ is the range of the linear transformation $\boldsymbol{x} \rightarrow \boldsymbol{A} \boldsymbol{x}$.
$>$ The column space of an $\boldsymbol{m} \times \boldsymbol{n}$ matrix \boldsymbol{A} is all of \mathbb{R}^{m} if and only if the equation $\boldsymbol{A} \boldsymbol{x}=\boldsymbol{b}$ has a solution for each \boldsymbol{b} in $\mathbb{R}^{\boldsymbol{m}}$

* Let

$$
A=\left[\begin{array}{cccc}
2 & 4 & -2 & 1 \\
-2 & -5 & 7 & 3 \\
3 & 7 & -8 & 6
\end{array}\right], \quad u=\left[\begin{array}{c}
3 \\
-2 \\
-1 \\
0
\end{array}\right], \quad v=\left[\begin{array}{c}
3 \\
-1 \\
3
\end{array}\right]
$$

a. Determine if \boldsymbol{u} is in $\operatorname{Nul}(\boldsymbol{A})$. Could \boldsymbol{u} be in $\operatorname{Col}(\boldsymbol{A})$?
b. Determine if \boldsymbol{v} is in $\operatorname{Col}(\boldsymbol{A})$. Could \boldsymbol{v} be in $\operatorname{Nul}(\boldsymbol{A})$?
> General remarks and hints:

1. $\operatorname{Col}(A)$ is a subspace of $\mathbb{R}^{m}[m=3$ in above example]
2. $\operatorname{Nul}(\boldsymbol{A})$ is a subspace of $\mathbb{R}^{n}[n=4$ in above example]
3. To verify that a given vector \boldsymbol{x} belongs to $\operatorname{Nul}(\boldsymbol{A})$ all you need to do is check if $\boldsymbol{A x}=\mathbf{0}$
4. To verify if $b \in \operatorname{Col}(\boldsymbol{A})$ all you need to do is check if the linear system $\boldsymbol{A} \boldsymbol{x}=\boldsymbol{b}$ has a solution.
