GENERAL VECTOR SPACES AND SUBSPACES [4.1]

11.1

- 1. Addition is commutative u + v = v + u
- 2. Addition is associative u + (v + w) = (u + v) + w
- 3. \exists zero vector denoted by 0 such that $\forall u$, 0+u=u
- 4. Any u has an opposite -u such that u+(-u)=0
- 5. 1u = u for any u
- 6. $(\alpha\beta)u = \alpha(\beta u)$
- 7. $(\alpha + \beta)u = \alpha u + \beta u$
- 8. $\alpha(u+v) = \alpha u + \alpha v$

Show that the zero vector in Axiom 3 is unique, and the vector -u, ('negative of u'), in Axiom 4 is unique for each u in V.

11-3 Text: 4.1 – Vspaces

General vector spaces

- \triangleright So far we have seen special spaces of vectors of n dimensions denoted by \mathbb{R}^n .
- ➤ It is possible to define more general vector spaces

A vector space V over $\mathbb R$ is a nonempty set with two operations:

- ullet Addition denoted by '+'. For two vectors $oldsymbol{x}$ and $oldsymbol{y},\,oldsymbol{x}+oldsymbol{y}$ is a member of $oldsymbol{V}$
- ullet Multiplication by a scalar For $lpha\in\mathbb{R}$ and $x\in V$, lpha x is a member of V.
- \blacktriangleright In addition for V to be a vector space the following 8 axioms must be satisfied [note: order is different in text]

11-2 Text: 4.1 – Vspaces

11-2

 \triangleright For each u in V and scalar α we have

$$0u = 0$$
 $\alpha 0 = 0$; $-u = (-1)u$.

Example: Let V be the set of all arrows (directed line segments) in three-dimensional space, with two arrows regarded as equal if they have the same length and point in the same direction. Define addition by the parallelogram rule, and for each v in V, define cv to be the arrow whose length is c times the length of v, pointing in the same direction as v if c>0 and otherwise pointing in the opposite direction.

Note: The definition of V is geometric, using concepts of length and direction. No xyz-coordinate system is involved. An arrow of zero length is a single point and represents the zero vector. The negative of v is (-1)v.

All axioms are verified

11-4 ______ Text: 4.1 – Vspaces

More examples

- \triangleright Set of vectors in \mathbb{R}^4 with second component equal to zero.
- \triangleright Set of all poynomials of degree ≤ 3
- \blacktriangleright Set of all $m \times n$ matrices
- \blacktriangleright Set of all $n \times n$ upper triangular matrices

11-5 Text: 4.1 – Vspaces

11-5

- Every vector space is a subspace (of itself and possibly of other larger spaces).
- The set consisting of only the zero vector of V is a subspace of V, called the zero subspace. Notation: $\{0\}$.

Example: Polynomials of the form

$$p(t) = \alpha_2 t^2 + \alpha_3 t^3$$

form a subspace of the space of polynomials of degree ≤ 3

Other examples: Examples 3 and 5 (sec. 4.1) from text

Example: Triangular matrices

Subspaces

- ightharpoonup A subset H of vectors of V is a subspace if it is a vector space by itself. Formal definition:
- ➤ A subset *H* of vectors of *V* is a subspace if
- $1. \, \boldsymbol{H}$ is closed for the addition, which means:

$$x+y\in H$$
 for any $x\in H, y\in H$

2. \boldsymbol{H} is closed for the scalar multiplication, which means:

$$lpha x \in H$$
 for any $lpha \in \mathbb{R}, x \in H$

Note: If H is a subspace then (1) 0 belongs to H and (2) For any $x \in H$, the vector -x belongs to H

1-6 Text: 4.1 – Vspaces

11-6

- Example 8 (sec. 4.1) in text is important
- Show that the set H of all vectors in \mathbb{R}^3 of the form $\{a+b,a-b,b\}$ is a subspace of \mathbb{R}^3 . [Hint: see example 11 from Sec. 4.1 of text]
- Recall: the term linear combination refers to a sum of scalar multiples of vectors, and $\operatorname{span}\{v_1,...,v_p\}$ denotes the set of all vectors that can be written as linear combinations of v_1, \cdots, v_p .

11-7 ______ Text: 4.1 – Vspaces

11-8

Text: 4.1 - Vspaces

A subspace spanned by a set

Theorem: If $v_1,...,v_p$ are in a vector space V, then

$$\mathrm{span}\{v_1,...,v_p\}$$

is a subspace of V.

- $ightharpoonup \operatorname{span}\{v_1,...,v_p\}$ is the subspace spanned (or generated) by $\{v_1,...,v_p\}$.
- ightharpoonup Given any subspace H of V, a spanning (or generating) set for H is a set $\{v_1,...,v_p\}$ in H such that $H=\operatorname{span}\{v_1,...v_p\}$.
- Prove above theorem for p=2, i.e., given v_1 and v_2 in a vector space V, then $H=\operatorname{span}\{v_1,v_2\}$ is a subspace of V. [Hint: show that H is closed for '+' and for scalar multiplication]

11-9 Text: 4.1 – Vspaces

11-9

NULL SPACES AND COLUMN SPACES [4.2]

11-10

Null space of a matrix

Definition: The null space of an $m \times n$ matrix A, written as $\operatorname{Nul}(A)$, is the set of all solutions of the homogeneous equation Ax = 0. In set notation,

$$\mathsf{Nul}(A) = \{x: x \in \mathbb{R}^n \;\; \mathsf{and} \;\; Ax = 0\}.$$

Theorem: The null space of an m imes n matrix A is a subspace of \mathbb{R}^n

ightharpoonup Equivalently, the set of all solutions to a system Ax=0 of m homogeneous linear equations in n unknowns is a subspace of \mathbb{R}^n

Proof: $\operatorname{Nul}(A)$ is by definition a subset of \mathbb{R}^n . Must show: $\operatorname{Nul}(A)$ closed under + and multipl. by scalars.

lacksquare Take u and v any two vectors in $\operatorname{Nul}(A)$. Then Au=0 and Av=0.

11-11 ______ Text: 4.2 – Vspaces2

Need to show that u+v is in $\operatorname{Nul}(A)$, i.e., that A(u+v)=0. Using a property of matrix multiplication, compute

$$A(u+v) = Au + Av = 0 + 0 = 0$$

- ightharpoonup Thus $u+v\in \operatorname{Nul}(A)$, and $\operatorname{Nul}(A)$ is closed under vector addition.
- ightharpoonup Finally, if lpha is any scalar, then $A(\alpha u)=\alpha(Au)=\alpha(0)=0$ which shows that αu is in Nul(A).
- ightharpoonup Thus $\operatorname{Nul}(A)$ is a subspace of \mathbb{R}^n .

See Example 1 in Sect. 4.2 of text [determining if a given vector belongs to Nul(A)

See Example 2 in Sect. 4.2 of **text** [determining a subspace by casting as a null space]

Next we will see how to determine Nul(A). See Example 3 of Sec. 4.2 of text. Details next.

11-12 _____ Text: 4.2 - Vspaces2

- ightharpoonup There is no obvious relation between vectors in $\operatorname{Nul}(A)$ and the entries in A.
- ightharpoonup We say that Nul(A) is defined implicitly, because it is defined by a condition that must be checked.
- \blacktriangleright No explicit list or description of the elements in Nul(A), so..
- ightharpoonup ... we need to solve the equation Ax=0 to produce an explicit description of $\operatorname{Nul}(A)$.

Example: Find the null space of the matrix

$$A = \begin{bmatrix} -3 & 6 & -1 & 1 & -7 \\ 1 & -2 & 2 & 3 & -1 \\ 2 & -4 & 5 & 8 & -4 \end{bmatrix}$$

 \blacktriangleright We will find a spanning set for Nul(A).

11-13 ______ Text: 4.2 – Vspaces2

11-13

- ➤ OK but how can we write these using spanning vectors (i.e. as linear combinations of specific vectors?)
- \triangleright Solution write x as:

$$egin{array}{c|cccc} egin{array}{c} 2x_2 & +x_4 & -3x_5 \ x_2 & x_2 & x_2 \ x_4 & x_5 \ \end{array} = x_2 egin{bmatrix} 2 \ 1 \ 0 \ 0 \ 0 \ \end{array} + x_4 egin{bmatrix} 1 \ 0 \ -2 \ 1 \ 0 \ \end{array} + x_5 egin{bmatrix} -3 \ 0 \ 2 \ 0 \ 1 \ \end{array} \end{array}$$

- ightharpoonup General solution is of the form $x_2u+x_4v+x_5w$.
- ightharpoonup Every linear combination of u, v, and w is an element of $\operatorname{Nul}(A)$. Thus $\{u, v, w\}$ is a spanning set for $\operatorname{Nul}(A)$, i.e.,

$$\mathsf{Nul}(A) = \mathrm{span}\{u,v,w\}$$

Solution: first step is to find the general solution of Ax = 0 in terms of free variables. We know how to do this.

 \triangleright Get reduced echelon form of augmented matrix $[A \ 0]$:

$$\begin{bmatrix} 1 & -2 & 0 & -1 & 3 & 0 \\ 0 & 0 & 1 & 2 & -2 & 0 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix} \rightarrow \begin{matrix} \boldsymbol{x_1} - 2x_2 & -x_4 & +3x_5 = 0 \\ \boldsymbol{x_3} + 2x_4 & -2x_5 = 0 \\ 0 = 0 \end{matrix}$$

- $\succ x_2, x_4, x_5$ are free variables, x_1, x_3 basic variables.
- For any selection of the free variables, can find a vector in Nul(A) by computing x_1, x_3 in terms of these variables:

$$egin{array}{l} oldsymbol{x_1} = 2x_2 + x_4 - 3x_5 \ oldsymbol{x_3} = -2x_4 + 2x_5 \end{array}$$

11-14 Text: 4.2 – Vspaces

11-14

- Obtain the vector x of $\operatorname{Nul}(A)$ corresponding to the choice: $x_2=1, x_4=-2, x_5=-1$. Verify that indeed it is in the null space, i.e., that Ax=0
- For same example, find a vector in Nul(A) whose last two components are zero and whose first component is 1. How many such vectors are there (zero, one, or inifintely many?)

Notes:

- ➤ 1. The spanning set produced by the method in the example is guaranteed to be linearly independent
- Show this (proof by contradiction)
- lacksquare 2. When $\operatorname{Nul}(A)$ contains nonzero vectors, the number of vectors in the spanning set for $\operatorname{Nul}(A)$ equals the number of free variables in the equation Ax=0.

11-16 Text: 4.2 – Vspaces2

1-15 Text: 4.2 – Vspaces

11-1

11-

Column Space of a matrix

Definition: The column space of an $m \times n$ matrix A, written as $\operatorname{Col}(A)$ (or C(A)), is the set of all linear combinations of the columns of A. If $A = [a_1 \cdots a_n]$, then

$$\mathsf{Col}(A) = \mathrm{span}\{a_1,...,a_n\}$$

Theorem:

The column space of an $m \times n$ matrix A is a subspace of \mathbb{R}^m .

A vector in Col(A) can be written as Ax for some x [Recall that Ax stands for a linear combination of the columns of A].

That is:

$$\mathsf{Col}(A) = \{b: b = Ax \mid \mathsf{for some} \ x \ \mathsf{in} \mid \mathbb{R}^n\}$$

11-17

11-17

Text: 4.2 – Vspaces2

11-18

- General remarks and hints:
- 1. $\mathsf{Col}(A)$ is a subspace of \mathbb{R}^m [m=3 in above example]
- 2. $\operatorname{Nul}(A)$ is a subspace of \mathbb{R}^n [n=4 in above example]
- 3. To verify that a given vector x belongs to $\operatorname{Nul}(A)$ all you need to do is check if Ax=0
- 4. To verify if $b \in \mathsf{Col}(A)$ all you need to do is check if the linear system Ax = b has a solution.

The notation Ax for vectors in $\operatorname{Col}(A)$ also shows that $\operatorname{Col}(A)$ is the range of the linear transformation $x \to Ax$.

ightharpoonup The column space of an m imes n matrix A is all of \mathbb{R}^m if and only if the equation Ax = b has a solution for each b in \mathbb{R}^m

🙇 Let

$$A = egin{bmatrix} 2 & 4 & -2 & 1 \ -2 & -5 & 7 & 3 \ 3 & 7 & -8 & 6 \end{bmatrix}, \quad u = egin{bmatrix} 3 \ -2 \ -1 \ 0 \end{bmatrix}, \quad v = egin{bmatrix} 3 \ -1 \ 3 \end{bmatrix}$$

- a. Determine if u is in Nul(A). Could u be in Col(A)?
- b. Determine if v is in Col(A). Could v be in Nul(A)?