
LINEAR INDEPENDENCE AND BASES[4.3]
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Recall: Linear independence

ä The set {v1, ..., vp} is said to be linearly dependent if there
exist weights α1, ..., αp, not all zero, such that

α1v1 + α2v2 + ...+ αpvp = 0 (1)

ä It is linearly independent otherwise
ä The above equation is called linear dependence relation among
the vectors v1, · · · , vp

ä The set v1, v2, · · · , vp is linearly dependent if and only if
equation (1) has a nontrivial solution, i.e., if there are some weights,
α1, ..., αp, not all zero, such that (1) holds.

ä In such a case, (1) is called a linear dependence relation among
v1, ..., vp.
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Theorem: An indexed set {v1, ..., vp} of two or more vectors,

with v1 6= 0, is linearly dependent if and only if some vj (with j >
1) is a linear combination of the preceding vectors, v1, ..., vj−1.

- As an exercise prove formally this theorem

Definition: LetH be a subspace of a vector space V . An indexed

set of vectors B = {b1, ..., bp} in V is a basis for H if:

1.B is a linearly independent set, and

2. The subspace spanned by B coincides with H; that is, H =
span{b1, ..., bp}
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ä The definition of a basis applies to the case when H = V , (any
vector space is a subspace of itself)

ä A basis of V is a linearly independent set that spans V .

ä Note that condition (2) implies that each of the vectors b1, ..., bp
must belong to H , because span{b1, ..., bp} contains b1, ..., bp.
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Standard basis of Rn

Let e1, ..., en be the columns of the n× n matrix, In.

That is,

e1 =


1
0
...
0

 ; e2 =


0
1
...
0

 ; · · · ; en =


0
0
...
1

 ;

ä The set {e1, · · · , en} is
called the standard basis for Rn.
ä Sometimes the term canoni-
cal basis is used
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Spanning set theorem

Theorem: Let S = {v1, ..., vp} be a set in V , and let H =

span{v1, ..., vp}.

1. If one of the vectors in S–say, vk–is a linear combination of the
remaining vectors in S, then the set formed from S by removing
vk still spans H .

2. If H 6= {0}, some subset of S is a basis for H .

Proof: 1. By rearranging the list of vectors in S, if necessary, we
may assume that vk is the last vector of the list, i.e., vp, so:

vp = a1v1 + ...+ ap−1vp−1 (1)
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ä Given any x in H , we may write

x = α1v1 + ...+ αp−1vp−1 + αpvp (2)

for suitable scalars α1, ..., αp.

ä Substituting the expression for vp from (1) into (2) it is easy to
see that x is a linear combination of v1, ...vp−1 .

ä Vector x was arbitrary – Thus {v1, ..., vp−1} spans H -

2. If the original spanning set S is linearly independent, then it is
already a basis for H .

ä Otherwise, one of the vectors in S depends on the others and
can be deleted, by part (1).

ä Repeat this process until the spanning set is linearly independent
and hence is a basis for H . (If the spanning set is eventually reduced
to one vector, that vector will be nonzero because H 6= {0})
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- Let H = span{v1, v2, v3} with

v1 =

−11
−1

 ; v2 =

1
1
0

 ; v3 =

 1
3
−1

 ;

Show that v3 is a linear combination of the first 2 vectors and then
find a basis of H .
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Basis of Col(A)

Theorem:
The pivot columns of a matrix A form a basis for
Col(A).

Proof: Let B be the reduced

echelon form of A. The set of pivot

columns of B is linearly independent

(no vector in the set is a linear combi-

nation of the vectors that precede it).

B =

1 ∗ 0 ∗ ∗ ∗ 0 ∗ ∗ 0 ∗
1 ∗ ∗ ∗ 0 ∗ ∗ 0 ∗

1 ∗ ∗ 0 ∗
1 ∗

• Since A is row equivalent to B, pivot columns of A are lin. independent too

• Every nonpivot column of A is a linear combination of the pivot columns of A.
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• Thus the nonpivot columns of a may be discarded from the spanning set for

Col(A), by the Spanning Set Theorem.

• This leaves the pivot columns of A as a basis for Col(A).

Note: The pivot columns of a matrix A are evident when A has
been reduced to an echelon form B (standard or reduced). However
be sure to use the pivot columns of A itself for the basis of Col(A),
not those of B
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Two Views of a Basis:

ä In the Spanning Set Theorem, the deletion of vectors from a
spanning set stops when the set becomes linearly independent.

ä If one more vector is deleted, this vector is not a linear combina-
tion of the remaining vectors→ the smaller set will no longer span
V

ä Thus a basis is a spanning set that is as small as possible.

ä A basis is also a linearly independent set that is as large as
possible.

ä If S is a basis for V , and if S is enlarged by one vector –say,
w–from V , then the new set loses linear independence [Explain why]
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Dimension and rank

ä It can be shown that the number of vectors in a basis of a
subspace H is always the same –

- See Theorems 9 and 10 in sect. 4.5 of text for details

- Take U = [u1, u2, u3] and a basis B = [v1, v2] of the space.
Show that there is a matrix G ∈ R2×3 such that U = V G. Show
that there is a vector w such that Gw = 0. Conclude that the
columns of U must be dependent.

ä Hence the definition:

Definition: The dimension of a subspace H is the number of vectors
in any basis for H . Special case: If H = {0}, dim(H) is zero.

ä Notation dim(H)
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ä Related (and important) definition

Definition: The rank of a matrix A is the dimension of its column
space.

ä Notation: rank(A).

ä Note: rank(A) = number of pivot columns in A.

ä Recall from an earlier example that we could find a spanning set
of Nul(A) which has as many vectors as there are free variables.

ä Therefore dim(Nul(A)) = number of free variables. Hence the
important result

rank(A) + dim(Nul(A)) = n

ä Known as the Rank+Nullity theorem

ä rank(A) = rank(AT) [row-rank=column rank]
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