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Recall: Linear independence

»  The set {v1,...,Up} is said to be linearly dependent if there
exist weights oy, ..., oy, not all zero, such that

o117 + agv2 + .. + v, = 0 (1)

» |t is linearly independent otherwise
» The above equation is called linear dependence relation among

the vectors v1,:++ , vy

» The set vy,v2,++ ,vp is linearly dependent if and only if
equation (1) has a nontrivial solution, i.e., if there are some weights,
Qt1, ...y Qp, NOt all zero, such that (1) holds.

» In such a case, (1) is called a linear dependence relation among

vl, .00’ vp.
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Theorem: | An indexed set {v1, ..., vp} of two or more vectors,

with v1 7 0, is linearly dependent if and only if some v; (with 3 >
1) is a linear combination of the preceding vectors, v, ...y Vj_1.

&

As an exercise prove formally this theorem

Definition: | Let H be a subspace of a vector space V. An indexed

set of vectors B = {b1,...,b,} in V is a basis for H if:
1. B is a linearly independent set, and

2. The subspace spanned by B coincides with H; that is, H =
span{by, ..., by}
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»  The definition of a basis applies to the case when H = V', (any
vector space is a subspace of itself)

» A basis of V' is a linearly independent set that spans V.

» Note that condition (2) implies that each of the vectors by, ..., b,
must belong to H, because span{by, ..., by} contains by, ..., b,
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Standard basis of R"

Let ey, ..., €, be the columns of the n X n matrix, I,,.

That is,

0 1 0
€1 — y €2 — : 9 y En = )
\0/ \0 \1/
» The set {e1,++- ,e,} is l%
called the standard basis for IR".
»  Sometimes the term canoni- , X,
cal basis is used e, ®2
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Spanning set theorem

Theorem: | Let S = {v1,...,v,} beasetinV, and let H =
span{vi, ..., v, }.
1. If one of the vectors in S—say, vi—is a linear combination of the

remaining vectors in S, then the set formed from S by removing
vy, still spans H.

2.1f H # {0}, some subset of S is a basis for H.

Proof: 1. By rearranging the list of vectors in S, if necessary, we
may assume that vy is the last vector of the list, i.e., v, so:

Vp = a1V1 + oo + Qp_1Up_1 (1)
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»  Given any x in H, we may write

r = oqv1 + ... +0p_1Up_1 + O, (2)
for suitable scalars i, ..., o

»  Substituting the expression for v, from (1)) into (2) it is easy to
see that « is a linear combination of vy, ...v,_1 .

» Vector x was arbitrary — Thus {v1, ..., vp_1} spans H -

2. If the original spanning set S is linearly independent, then it is
already a basis for H.

»  Otherwise, one of the vectors in S depends on the others and
can be deleted, by part (1).

» Repeat this process until the spanning set is linearly independent
and hence is a basis for H. (If the spanning set is eventually reduced
to one vector, that vector will be nonzero because H # {0}) W
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| Let H = span{wv;, v2, v3} with

—1 1 1
V1 = 1 sy V2 = 1 sy U3 = 3 9
—1 0 —1

Show that v3 is a linear combination of the first 2 vectors and then
find a basis of H.
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Basis of Col(A)

The pivot columns of a matrix A form a basis for
Theorem: I

Col(A).

Proof: Let B be the reduced 1 %0 % %« *x0 % x 0 %
echelon form of A. The set of pivot 1 % % %« 0 % x 0 %
columns of B is linearly independent | B — 1 %« % 0 %
(no vector in the set is a linear combi- 1 %
nation of the vectors that precede it).

e Since A is row equivalent to B, pivot columns of A are lin. independent too

® Every nonpivot column of A is a linear combination of the pivot columns of A.
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® Thus the nonpivot columns of a may be discarded from the spanning set for

Col(A), by the Spanning Set Theorem.
e This leaves the pivot columns of A as a basis for Col(A). []

Note: The pivot columns of a matrix A are evident when A has
been reduced to an echelon form B (standard or reduced). However
be sure to use the pivot columns of A itself for the basis of Col(A),
not those of B
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Two Views of a Basis:

» In the Spanning Set Theorem, the deletion of vectors from a
spanning set stops when the set becomes linearly independent.

» |f one more vector is deleted, this vector is not a linear combina-
tion of the remaining vectors — the smaller set will no longer span

v

»  Thus a basis is a spanning set that is as small as possible.

» A basis is also a linearly independent set that is as large as
possible.

» |If S is a basis for V', and if S is enlarged by one vector —say,
w—from V', then the new set loses linear independence [Explain why]
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Dimension and rank

» |t can be shown that the number of vectors in a basis of a
subspace H is always the same —

#| See Theorems 9 and 10 in sect. 4.5 of text for details

#] Take U = [uq,ug,us] and a basis B = [vq, v3] of the space.
Show that there is a matrix G € R?*3 such that U = V G. Show
that there is a vector w such that Gw = 0. Conclude that the
columns of U must be dependent.

» Hence the definition:

Definition: The dimension of a subspace H is the number of vectors
in any basis for H. Special case: If H = {0}, dim(H) is zero.

»  Notation dim(H)
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» Related (and important) definition

Definition: The rank of a matrix A is the dimension of its column
space.

» Notation: rank(A).
» Note: rank(A) = number of pivot columns in A.

» Recall from an earlier example that we could find a spanning set
of Nul(A) which has as many vectors as there are free variables.

»  Therefore dim(Nul(A)) = number of free variables. Hence the

important result

rank(A) + dim(Nul(A)) = n

»  Known as the Rank-+Nullity theorem
» rank(A) = rank(A”) [row-rank=column rank]
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