	> The set $\{v_1,, v_p\}$ is said to be linearly dependent if there
	exist weights $lpha_1,,lpha_p$, not all zero, such that
	$lpha_1v_1+lpha_2v_2++lpha_pv_p=0$ (1)
LINEAR INDEPENDENCE AND BASES[4.3]	It is linearly independent otherwise
	The above equation is called linear dependence relation among
	the vectors v_1,\cdots,v_p
	The set v_1, v_2, \dots, v_p is linearly dependent if and only if equation (1) has a nontrivial solution, i.e., if there are some weights, $\alpha_1, \dots, \alpha_p$, not all zero, such that (1) holds.
	> In such a case, (1) is called a linear dependence relation among $v_1,, v_p$.
	12-2 Text: 4.3 – Bases
12-1	12-2

Theorem: An indexed set $\{v_1, ..., v_p\}$ of two or more vectors, with $v_1 \neq 0$, is linearly dependent if and only if some v_j (with j > 1) is a linear combination of the preceding vectors, $v_1, ..., v_{j-1}$.

As an exercise prove formally this theorem

Definition: Let H be a subspace of a vector space V. An indexed set of vectors $\mathcal{B} = \{b_1, ..., b_p\}$ in V is a basis for H if:

- 1. $\boldsymbol{\mathcal{B}}$ is a linearly independent set, and
- 2. The subspace spanned by \mathcal{B} coincides with H; that is, $H = \operatorname{span}\{b_1, ..., b_p\}$

12-3

> The definition of a basis applies to the case when H = V, (any vector space is a subspace of itself)

> A basis of V is a linearly independent set that spans V.

Recall: Linear independence

> Note that condition (2) implies that each of the vectors $b_1, ..., b_p$ must belong to H, because span $\{b_1, ..., b_p\}$ contains $b_1, ..., b_p$.

12-4

Text: 4.3 – Bases

12-4

Standard basis of \mathbb{R}^n

Let $e_1, ..., e_n$ be the columns of the $n \times n$ matrix, I_n .

That is,

$$e_1 = egin{pmatrix} 1 \ 0 \ dots \ 0 \end{pmatrix}; \ e_2 = egin{pmatrix} 0 \ 1 \ dots \ 0 \end{pmatrix}; \ \cdots ; e_n = egin{pmatrix} 0 \ 0 \ dots \ 1 \end{pmatrix};$$

The set {e₁,..., e_n} is called the standard basis for Rⁿ.
 Sometimes the term canonical basis is used

 \blacktriangleright Given any x in H, we may write

$$\boldsymbol{x} = \boldsymbol{\alpha}_1 \boldsymbol{v}_1 + \ldots + \boldsymbol{\alpha}_{p-1} \boldsymbol{v}_{p-1} + \boldsymbol{\alpha}_p \boldsymbol{v}_p \tag{2}$$

e 3

e2

Text: 4.3 - Bases

Text: 4.3 – Bases

for suitable scalars $\alpha_1, ..., \alpha_p$.

> Substituting the expression for v_p from (1) into (2) it is easy to see that x is a linear combination of $v_1, \dots v_{p-1}$.

12-5

 \blacktriangleright Vector x was arbitrary – Thus $\{v_1, ..., v_{p-1}\}$ spans H -

2. If the original spanning set S is linearly independent, then it is already a basis for H.

> Otherwise, one of the vectors in S depends on the others and can be deleted, by part (1).

Repeat this process until the spanning set is linearly independent and hence is a basis for H. (If the spanning set is eventually reduced to one vector, that vector will be nonzero because $H \neq \{0\}$)

12-7

12-7

Spanning set theorem

Theorem: Let
$$S = \{v_1, ..., v_p\}$$
 be a set in V , and let $H = \operatorname{span}\{v_1, ..., v_p\}$.

1. If one of the vectors in S-say, v_k -is a linear combination of the remaining vectors in S, then the set formed from S by removing v_k still spans H.

2. If $H \neq \{0\}$, some subset of S is a basis for H.

Proof: 1. By rearranging the list of vectors in S, if necessary, we may assume that v_k is the last vector of the list, i.e., v_p , so:

$$v_p = a_1 v_1 + \dots + a_{p-1} v_{p-1}$$
 (1)

🚈 Let
$$H = \operatorname{span}\{v_1, v_2, v_3\}$$
 with

$$v_1=egin{pmatrix} -1\ 1\ -1\end{pmatrix}; \quad v_2=egin{pmatrix} 1\ 1\ 0\end{pmatrix}; \quad v_3=egin{pmatrix} 1\ 3\ -1\end{pmatrix};$$

Show that v_3 is a linear combination of the first 2 vectors and then find a basis of H.

12-8

12-8

Basis of Col(A)

Theorem:	The pivot columns of a matrix A form a basis for
	Col(A).

Proof: Let **B** be the reduced echelon form of **A**. The set of pivot columns of **B** is linearly independent (no vector in the set is a linear combination of the vectors that precede it).

	1	*	0	*	*	*	0	*	*	0	*
			1	*	*	*	0	*	*	0	*
B =							1	*	*	0	*
										1	*

• Since A is row equivalent to B, pivot columns of A are lin. independent too

• Every nonpivot column of A is a linear combination of the pivot columns of A.

- Thus the nonpivot columns of a may be discarded from the spanning set for Col(*A*), by the Spanning Set Theorem.
- This leaves the pivot columns of A as a basis for Col(A).

Note: The pivot columns of a matrix A are evident when A has been reduced to an echelon form B (standard or reduced). However be sure to use the pivot columns of A itself for the basis of Col(A), not those of B

12-9	Text: 4.3 – Bases	12-10		Text: 4.3 – Bases
12-9			12-10	

Two Views of a Basis:

▶ In the Spanning Set Theorem, the deletion of vectors from a spanning set stops when the set becomes linearly independent.

 \blacktriangleright If one more vector is deleted, this vector is not a linear combination of the remaining vectors \rightarrow the smaller set will no longer span V

Thus a basis is a spanning set that is as small as possible.

► A basis is also a linearly independent set that is as large as possible.

> If S is a basis for V, and if S is enlarged by one vector -say, w-from V, then the new set loses linear independence [Explain why]

12-11

Dimension and rank

> It can be shown that the number of vectors in a basis of a subspace H is always the same –

See Theorems 9 and 10 in sect. 4.5 of *text* for details

Take $U = [u_1, u_2, u_3]$ and a basis $B = [v_1, v_2]$ of the space. Show that there is a matrix $G \in \mathbb{R}^{2 \times 3}$ such that U = VG. Show that there is a vector w such that Gw = 0. Conclude that the columns of U must be dependent.

► Hence the definition:

Definition: The dimension of a subspace H is the number of vectors in any basis for H. Special case: If $H = \{0\}$, $\dim(H)$ is zero.

> Notation $\dim(H)$

Text: 4.3 – Bases

Text: 4.3 – Bases

> Related (and important) definition

Definition: The rank of a matrix A is the dimension of its column space.

- > Notation: rank(A).
- > Note: rank(A) = number of pivot columns in A.

 \blacktriangleright Recall from an earlier example that we could find a spanning set of Nul(A) which has as many vectors as there are free variables.

> Therefore $\dim(Nul(A)) =$ number of free variables. Hence the important result

$$\mathsf{rank}(A) + \dim(\mathsf{Nul}(A)) = n$$

► Known as the Rank+Nullity theorem

 $rank(A) = rank(A^{T}) [row-rank=column rank]$ 12-13
Text: 4.3 - Bases
12-13