```
LINEAR INDEPENDENCE AND BASES[4.3]
```

Theorem:
An indexed set $\left\{v_{1}, \ldots, v_{p}\right\}$ of two or more vectors, with $\boldsymbol{v}_{1} \neq 0$, is linearly dependent if and only if some \boldsymbol{v}_{j} (with $\boldsymbol{j}>$ 1) is a linear combination of the preceding vectors, v_{1}, \ldots, v_{j-1}.As an exercise prove formally this theorem
Definition: Let \boldsymbol{H} be a subspace of a vector space \boldsymbol{V}. An indexed set of vectors $\mathcal{B}=\left\{b_{1}, \ldots, b_{p}\right\}$ in \boldsymbol{V} is a basis for \boldsymbol{H} if:

1. \mathcal{B} is a linearly independent set, and
2. The subspace spanned by \mathcal{B} coincides with H; that is, $\boldsymbol{H}=$ $\operatorname{span}\left\{b_{1}, \ldots, b_{p}\right\}$

Recall: Linear independence

The set $\left\{v_{1}, \ldots, v_{p}\right\}$ is said to be linearly dependent if there exist weights $\boldsymbol{\alpha}_{1}, \ldots, \boldsymbol{\alpha}_{\boldsymbol{p}}$, not all zero, such that

$$
\begin{equation*}
\alpha_{1} v_{1}+\alpha_{2} v_{2}+\ldots+\alpha_{p} v_{p}=0 \tag{1}
\end{equation*}
$$

It is linearly independent otherwise
The above equation is called linear dependence relation among the vectors v_{1}, \cdots, v_{p}
$>$ The set $\boldsymbol{v}_{1}, \boldsymbol{v}_{2}, \cdots, \boldsymbol{v}_{\boldsymbol{p}}$ is linearly dependent if and only if equation (1) has a nontrivial solution, i.e., if there are some weights, $\boldsymbol{\alpha}_{1}, \ldots, \boldsymbol{\alpha}_{p}$, not all zero, such that (1) holds.

In such a case, (1) is called a linear dependence relation among v_{1}, \ldots, v_{p}.
$\xrightarrow{12-2}$ Text: 4.3-Bases
${ }^{12-2}$

The definition of a basis applies to the case when $\boldsymbol{H}=\boldsymbol{V}$, (any vector space is a subspace of itself)
$>$ A basis of \boldsymbol{V} is a linearly independent set that spans \boldsymbol{V}.
$>$ Note that condition (2) implies that each of the vectors b_{1}, \ldots, b_{p} must belong to \boldsymbol{H}, because $\operatorname{span}\left\{b_{1}, \ldots, b_{p}\right\}$ contains b_{1}, \ldots, b_{p}.

Standard basis of \mathbb{R}^{n}

Let e_{1}, \ldots, e_{n} be the columns of the $n \times n$ matrix, I_{n}.
That is,

$$
e_{1}=\left(\begin{array}{c}
1 \\
0 \\
\vdots \\
0
\end{array}\right) ; e_{2}=\left(\begin{array}{c}
0 \\
1 \\
\vdots \\
0
\end{array}\right) ; \cdots ; e_{n}=\left(\begin{array}{c}
0 \\
0 \\
\vdots \\
1
\end{array}\right) ;
$$

$>$ The set $\left\{e_{1}, \cdots, e_{n}\right\}$ is called the standard basis for \mathbb{R}^{n}. > Sometimes the term canonical basis is used

12-5
${ }^{12-5}$
$>$ Given any \boldsymbol{x} in \boldsymbol{H}, we may write

$$
\begin{equation*}
x=\alpha_{1} v_{1}+\ldots+\alpha_{p-1} v_{p-1}+\alpha_{p} v_{p} \tag{2}
\end{equation*}
$$

for suitable scalars $\alpha_{1}, \ldots, \alpha_{p}$.
> Substituting the expression for \boldsymbol{v}_{p} from (1) into (2) it is easy to see that \boldsymbol{x} is a linear combination of $\boldsymbol{v}_{1}, \ldots v_{p-1}$.
$>$ Vector \boldsymbol{x} was arbitrary - Thus $\left\{\boldsymbol{v}_{1}, \ldots, \boldsymbol{v}_{p-1}\right\}$ spans \boldsymbol{H} -
2. If the original spanning set S is linearly independent, then it is already a basis for \boldsymbol{H}.
> Otherwise, one of the vectors in S depends on the others and can be deleted, by part (1).

Repeat this process until the spanning set is linearly independent and hence is a basis for \boldsymbol{H}. (If the spanning set is eventually reduced to one vector, that vector will be nonzero because $\boldsymbol{H} \neq\{0\}$)
12-7

Basis of $\operatorname{Col}(A)$

Theorem:
The pivot columns of a matrix \boldsymbol{A} form a basis for $\operatorname{Col}(A)$.

Proof: Let \boldsymbol{B} be the reduced echelon form of \boldsymbol{A}. The set of pivot columns of \boldsymbol{B} is linearly independent (no vector in the set is a linear combination of the vectors that precede it).

- Since \boldsymbol{A} is row equivalent to \boldsymbol{B}, pivot columns of \boldsymbol{A} are lin. independent too
- Every nonpivot column of \boldsymbol{A} is a linear combination of the pivot columns of \boldsymbol{A}.

Two Views of a Basis:

> In the Spanning Set Theorem, the deletion of vectors from a spanning set stops when the set becomes linearly independent.

- If one more vector is deleted, this vector is not a linear combination of the remaining vectors \rightarrow the smaller set will no longer span V
> Thus a basis is a spanning set that is as small as possible.
A basis is also a linearly independent set that is as large as possible.
$>$ If S is a basis for \boldsymbol{V}, and if \boldsymbol{S} is enlarged by one vector -say, \boldsymbol{w}-from \boldsymbol{V}, then the new set loses linear independence [Explain why]
- Thus the nonpivot columns of a may be discarded from the spanning set for $\operatorname{Col}(A)$, by the Spanning Set Theorem.
- This leaves the pivot columns of \boldsymbol{A} as a basis for $\operatorname{Col}(\boldsymbol{A})$.

Note: The pivot columns of a matrix \boldsymbol{A} are evident when \boldsymbol{A} has been reduced to an echelon form \boldsymbol{B} (standard or reduced). However be sure to use the pivot columns of \boldsymbol{A} itself for the basis of $\operatorname{Col}(\boldsymbol{A})$, not those of \boldsymbol{B}

Dimension and rank

$>$ It can be shown that the number of vectors in a basis of a subspace \boldsymbol{H} is always the same -See Theorems 9 and 10 in sect. 4.5 of text for detailsTake $\boldsymbol{U}=\left[\boldsymbol{u}_{1}, \boldsymbol{u}_{2}, \boldsymbol{u}_{3}\right]$ and a basis $\boldsymbol{B}=\left[\boldsymbol{v}_{1}, \boldsymbol{v}_{2}\right]$ of the space. Show that there is a matrix $G \in \mathbb{R}^{2 \times 3}$ such that $\boldsymbol{U}=V \boldsymbol{G}$. Show that there is a vector \boldsymbol{w} such that $\boldsymbol{G} \boldsymbol{w}=\mathbf{0}$. Conclude that the columns of \boldsymbol{U} must be dependent.
$>$ Hence the definition:
Definition: The dimension of a subspace \boldsymbol{H} is the number of vectors in any basis for \boldsymbol{H}. Special case: If $\boldsymbol{H}=\{0\}, \operatorname{dim}(\boldsymbol{H})$ is zero.
$>$ Notation $\operatorname{dim}(\boldsymbol{H})$

Related (and important) definition
Definition: The rank of a matrix \boldsymbol{A} is the dimension of its column space.
$>$ Notation: $\operatorname{rank}(\boldsymbol{A})$
$>$ Note: $\operatorname{rank}(\boldsymbol{A})=$ number of pivot columns in \boldsymbol{A}.
> Recall from an earlier example that we could find a spanning set of $\operatorname{Nul}(\boldsymbol{A})$ which has as many vectors as there are free variables.
$>$ Therefore $\operatorname{dim}(\operatorname{Nul}(\boldsymbol{A}))=$ number of free variables. Hence the important result

$$
\operatorname{rank}(\boldsymbol{A})+\operatorname{dim}(\operatorname{Nul}(\boldsymbol{A}))=\boldsymbol{n}
$$

> Known as the Rank+Nullity theorem
$>\operatorname{rank}(\boldsymbol{A})=\operatorname{rank}\left(\boldsymbol{A}^{T}\right)$ [row-rank=column rank]
\qquad

