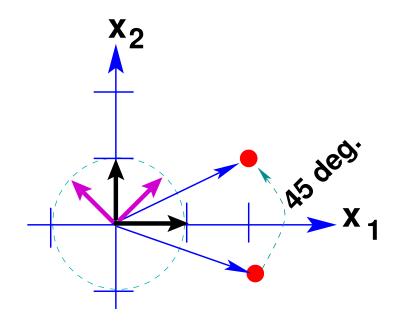
APPLICATION: ROTATION AND TRANSLATIONS [2.7]

Application: Rotations and translations in \mathbb{R}^2

In the form of exercises. Try to answer all questions before class [see textbook for help]

Consider the mapping that sends any point x in \mathbb{R}^2 into a point y in \mathbb{R}^2 that is rotated from x by an angle θ . Is the mapping linear?



Find the matrix representing the mapping. [Hint: observe how the canonical basis is transformed.]

[See Example 4 in Sect. 5.7 of text], See HW-2,...]

3-2 _____ Text: 2.7 – Mappings2

Solution: [see a previous HW]

- \blacktriangleright See how e_1 are e_2 are changed.
- $lacksymbol{ iny} e_1 ext{ becomes } a_1 = egin{bmatrix} \cos heta \ \sin heta \end{bmatrix}$
- $ightharpoonup e_2$ becomes $a_2 = egin{bmatrix} \cos(\pi/2 + heta) \ \sin(\pi/2 + heta) \end{bmatrix} = egin{bmatrix} -\sin heta \ \cos heta \end{bmatrix}$
- \blacktriangleright The columns of A are a_1, a_2 ; Therefore:

$$A = egin{bmatrix} \cos heta & -\sin heta \ \sin heta & \cos heta \end{bmatrix}$$

Text: 2.7 – Mappings2

$Rotations \ and \ translations \ in \ \mathbb{R}^2$

- Another very important operation: Translation or shift
- Recall: Not a linear mapping but called affine mapping
- This will require a little artifice.
- How can you now represent a translation via a matrix-vector product? [Hint: add an artificial component of 1 at the end of vector $m{x}$]
- Called Homogeneous coordinates
- \triangleright See Example 4 of Sect. 2.7 of text and then Example 6.

13-4 Text: 2.7 – Mappings2

Solution: Call $f = [f_1; f_2]$ the translation vector

- Let $\hat{x}=egin{bmatrix} x_1 \ x_2 \ 1 \end{bmatrix}$; Also write resulting vector \hat{y} similarly as: $\hat{y}=egin{bmatrix} y_1 \ y_2 \ 1 \end{bmatrix}$
- lacksquare We want: $\hat{m{y}}_1 = m{x}_1 + m{f}_1, \quad \hat{m{y}}_2 = m{x}_2 + m{f}_2$
- $A = \left[egin{array}{cccc} 1 & 0 & f_1 \ 0 & 1 & f_2 \ 0 & 0 & 1 \end{array}
 ight]$ Then the matrix is clearly:
- Indeed, we do have:

$$\left[egin{array}{ccc|c} 1 & 0 & f_1 \ 0 & 1 & f_2 \ 0 & 0 & 1 \end{array}
ight] imes \left[egin{array}{c} x_1 \ x_2 \ 1 \end{array}
ight] = \left[egin{array}{c} x_1 + f_1 \ x_2 + f_2 \ 1 \end{array}
ight] = \hat{y}$$

13-5

$Rotations \ and \ translations \ in \ \mathbb{R}^2$

- The most important mapping in real life is a combination of Rotation and Translation.
- Find a mapping that combines rotation followed by translation
- ➤ Hint: use the Homogeneous coordinates introduced above

Solution:

1. Rotation: Since this must leave the 1 at end of \hat{x} unchanged the matrix is

$$R = egin{bmatrix} \cos heta & -\sin heta & 0 \ \sin heta & \cos heta & 0 \ 0 & 0 & 1 \end{bmatrix}$$

Text: 2.7 – Mappings2

2. Translation: The translation matrix is (see above)

$$T = \left[egin{array}{cccc} 1 & 0 & f_1 \ 0 & 1 & f_2 \ 0 & 0 & 1 \end{array}
ight]$$

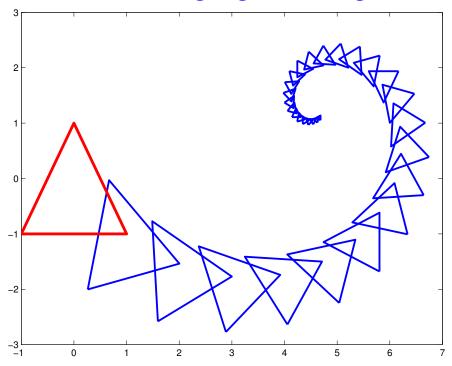
3. Compound the two: This corresponds to product of matrices!

$$A = TR = egin{bmatrix} \cos heta & -\sin heta & f_1 \ \sin heta & \cos heta & f_2 \ 0 & 0 & 1 \end{bmatrix}$$

- Does the order matter? Reason from the geometry and then from the derivation of your matrix
- ightharpoonup One more operation: scaling by a weight lpha for example lpha=0.3. This corresponds to simply multiplying all coordinates by lpha
- See Composite transformations in text. See Example 6 in Sec. 2.7 in text. Implement the example in matlab [represent the triangle with vertices a=(-1, -1), b=(1, -1), c=(0,1). Ignore shading]

13-8 ______ Text: 2.7 – Mappings2

Practice. Continuing with Example 6 from <u>text</u> [previous exercise.] Generate the following figure using what you just learned.



Details: Scaling = 0.9; Rotation angle: $\theta = \pi/12$; Translation vector (0.9, -0.9). Repeat: 30 times.

Challenge question: The triangles seem to vanish into a limit point. What is this point?

13-9 Text: 2.7 – Mappings2