APPLICATION: ROTATION AND TRANSLATIONS [2.7]

13-1

Application: Rotations and translations in \mathbb{R}^{2}
> In the form of exercises. Try to answer all questions before class [see textbook for help]Consider the mapping that sends any point \boldsymbol{x} in \mathbb{R}^{2} into a point \boldsymbol{y} in \mathbb{R}^{2} that is rotated from \boldsymbol{x} by an angle $\boldsymbol{\theta}$. Is the mapping linear?
Find the matrix representing the mapping. [Hint: observe how the canonical basis is transformed.]
[See Example 4 in Sect. 5.7 of text , See HW-2,..]
\qquad
${ }^{13-2}$

Rotations and translations in \mathbb{R}^{2}

> Another very important operation: Translation or shift
> Recall: Not a linear mapping - but called affine mapping
$>$ This will require a little artifice.
⓪ How can you now represent a translation via a matrix-vector product? [Hint: add an artificial compoment of 1 at the end of vector $\boldsymbol{x}]$
> Called Homogeneous coordinates
$>$ See Example 4 of Sect. 2.7 of text and then Example 6.

Solution:
Call $f=\left[f_{1} ; f_{2}\right]$ the translation vector
Let $\hat{x}=\left[\begin{array}{c}x_{1} \\ x_{2} \\ 1\end{array}\right] ; \quad \begin{aligned} & \text { Also write resulting } \\ & \text { vector } \hat{y} \text { similarly as: }\end{aligned} \hat{y}=\left[\begin{array}{c}y_{1} \\ y_{2} \\ 1\end{array}\right]$
We want: $\hat{\boldsymbol{y}}_{1}=x_{1}+f_{1}, \quad \hat{\boldsymbol{y}}_{2}=x_{2}+f_{2}$

Then the matrix is clearly:

$$
A=\left[\begin{array}{lll}
1 & 0 & f_{1} \\
0 & 1 & f_{2} \\
0 & 0 & 1
\end{array}\right]
$$

$>$ Indeed, we do have:

$$
\left[\begin{array}{lll}
1 & 0 & f_{1} \\
0 & 1 & f_{2} \\
0 & 0 & 1
\end{array}\right] \times\left[\begin{array}{c}
x_{1} \\
x_{2} \\
1
\end{array}\right]=\left[\begin{array}{c}
x_{1}+f_{1} \\
x_{2}+f_{2} \\
1
\end{array}\right]=\hat{y}
$$

Translation: The translation matrix is (see above)

$$
T=\left[\begin{array}{ccc}
1 & 0 & f_{1} \\
0 & 1 & f_{2} \\
0 & 0 & 1
\end{array}\right]
$$

3. Compound the two: This corresponds to product of matrices!

$$
A=T R=\left[\begin{array}{ccc}
\cos \theta & -\sin \theta & f_{1} \\
\sin \theta & \cos \theta & f_{2} \\
0 & 0 & 1
\end{array}\right]
$$

Rotations and translations in \mathbb{R}^{2}

> The most important mapping in real life is a combination of Rotation and Translation.Find a mapping that combines rotation followed by translation
> Hint: use the Homogeneous coordinates introduced above

Solution:

1. Rotation: Since this must leave the 1 at end of $\hat{\boldsymbol{x}}$ unchanged the matrix is

$$
R=\left[\begin{array}{ccc}
\cos \theta & -\sin \theta & 0 \\
\sin \theta & \cos \theta & 0 \\
0 & 0 & 1
\end{array}\right]
$$

\qquad
${ }^{13-6}$

Does the order matter? Reason from the geometry and then from the derivation of your matrix
One more operation: scaling by a weight α for example $\alpha=0.3$. This corresponds to simply multiplying all coordinates by αSee Composite transformations in text. See Example 6 in Sec. 2.7 in text. Implement the example in matlab [represent the triangle with vertices $\mathrm{a}=(-1,-1), \mathrm{b}=(1,-1), \mathrm{c}=(0,1)$. Ignore shading]

Practice. Continuing with Example 6 from text [previous exercise.] Generate the following figure using what you just learned.

Details: Scaling $=0.9$; Rotation angle: $\theta=\pi / 12$; Translation vector ($0.9,-0.9$). Repeat: 30 times.

* Challenge question: The triangles seem to vanish into a limit point. What is this point?

13-9 Text: 2.7 - Mappings2

