ORTHOGONALITY AND LEAST-SQUARES [CHAP. 6]

Inner products and Norms

$>$ Inner product or dot product of 2 vectors \boldsymbol{u} and \boldsymbol{v} in \mathbb{R}^{n} ：

$$
u . v=u_{1} v_{1}+u_{2} v_{2}+\cdots+u_{n} v_{n}
$$

（⿴囗十凵 Calculate $u . v$ when $u=\left[\begin{array}{c}1 \\ -2 \\ 2 \\ 0\end{array}\right] \quad v=\left[\begin{array}{c}1 \\ 0 \\ -1 \\ 5\end{array}\right]$
$>$ If \boldsymbol{u} and \boldsymbol{v} are vectors in \mathbb{R}^{n} then we can regard \boldsymbol{u} and \boldsymbol{v} as $n \times 1$ matrices．The transpose \boldsymbol{u}^{T} is a $1 \times n$ matrix，and the matrix product $\boldsymbol{u}^{T} \boldsymbol{v}$ is a 1×1 matrix $=$ a scalar．
$>$ Then note that $\quad u . v=v . u=u^{T} v=v^{T} u$

Length of a vector in \mathbb{R}^{n}

Euclidean norm of a vector \boldsymbol{u} is $\|u\|=\sqrt{\boldsymbol{u} . \boldsymbol{u}}$, i.e.,

$$
\|u\|=(u . u)^{1 / 2}=\sqrt{u_{1}^{2}+u_{2}^{2}+\ldots+u_{n}^{2}}
$$

$>$ This is the length of vector \boldsymbol{u}
$>$ If we identify \boldsymbol{v} with a geometric point in the plane, then $\|\boldsymbol{v}\|$ is the standard notion of the length of the line segment from 0 to \boldsymbol{v}.
$>$ This follows from the Pythagorean Theorem applied to a triangle..
> A vector of length one is often called a unit vector
> The process of dividing a vector by its length to create a vector of unit length (a unit vector) is called normalizing

* Normalize $v=[1 ;-2 ; 2 ; 0]$. [Matlab notation used]

Important properties

$>$ For any scalar $\boldsymbol{\alpha}$, the length of $\boldsymbol{\alpha} \boldsymbol{v}$ is $|\boldsymbol{\alpha}|$ times the length of \boldsymbol{v} :

$$
\|\alpha v\|=|\alpha|\|v\|
$$

> The length of the sum of any two vectors does not exceed the sum of the lengths of the vectors (Triangle inequality)

$$
\|u+v\| \leq\|u\|+\|v\|
$$

> The Cauchy-Schwartz inequality :

$$
|u . v| \leq\|u\|\|v\|
$$

Distance in \mathbb{R}^{n}

Definition: The distance between \boldsymbol{u} and \boldsymbol{v}, two vectors in \mathbb{R}^{n} is the length of the vector $\boldsymbol{u}-\boldsymbol{v}$
$>$ Written as $\operatorname{dist}(u, v)$ or $d(u, v)$

$$
d(u, v)=\|u-v\|
$$

* Distance between $u=\binom{1}{1}$ and $v=\binom{4}{-3}$
> See illustration in Example 4 of text .

Orthogonality

1. Two vectors \boldsymbol{u} and \boldsymbol{v} are orthogonal if $\boldsymbol{u} . \boldsymbol{v}=\mathbf{0}$.

Common notation: $\boldsymbol{u} \perp \boldsymbol{v}$
2. A system of vectors $\boldsymbol{S}=\left\{\boldsymbol{v}_{1}, \ldots, \boldsymbol{v}_{n}\right\}$ is orthogonal if $\boldsymbol{v}_{\boldsymbol{i}} \cdot \boldsymbol{v}_{j}=$ 0 for $i \neq j$.

Pythagoras theorem:

$$
u \perp v \quad \Leftrightarrow \quad\|u+v\|^{2}=\|u\|^{2}+\|v\|^{2}
$$

That is, two vectors \boldsymbol{u} and \boldsymbol{v} are orthogonal if and only if

$$
\|u+v\|^{2}=\|u\|^{2}+\|v\|^{2}
$$

Orthogonal systems (continued)

* Show that the following system is orthogonal

$$
v_{1}=\left[\begin{array}{c}
1 \\
1 \\
-1
\end{array}\right] \quad v_{2}=\left[\begin{array}{l}
0 \\
1 \\
1
\end{array}\right] \quad v_{3}=\left[\begin{array}{c}
2 \\
-1 \\
1
\end{array}\right]
$$

Theorem: If $S=\left\{\boldsymbol{v}_{1}, \ldots, \boldsymbol{v}_{\boldsymbol{p}}\right\}$ is an orthogonal set of nonzero vectors in \mathbb{R}^{n}, then S is linearly independent. Hence S is a basis of $\operatorname{span}(S)$.

Definition: An orthogonal basis of a subspace \boldsymbol{W} is a basis of \boldsymbol{W} that is also an orthogonal set.

Let $S=\left\{v_{1}, \ldots, \boldsymbol{v}_{p}\right\}$ be an orthogonal basis of a subspace \boldsymbol{W}. Then a vector \boldsymbol{x} in \boldsymbol{W} is a linear combination of the $\boldsymbol{v}_{\boldsymbol{i}}$'s:

$$
x=\alpha_{1} v_{1}+\alpha_{2} v_{2}+\ldots+\alpha_{p} v_{p}
$$

How can you get the $\boldsymbol{\alpha}_{\boldsymbol{i}}$'s? [Hint: Compute the inner product of \boldsymbol{x} with each \boldsymbol{v}_{i}.]
« Read Section 6.2 of text - specifically the paragraph on orthogonal projection (p. 342) for a geometric interpretation.
$>$ We say that a system of vectors $S=\left\{v_{1}, \ldots, v_{p}\right\}$ is orthonormal if it is orthogonal and in addition each $\boldsymbol{v}_{\boldsymbol{i}}$ has unit length, i.e., $\left\|\boldsymbol{v}_{\boldsymbol{i}}\right\|=$ 1.

A brief introduction to least-squares

> Consider the following problem: find a member of the subspace $L=\operatorname{span}\{u\}$ that is closest to a vector \boldsymbol{y} that does not belong to L. How would you solve this geometrically?

$>$ The solution $\hat{\boldsymbol{y}}$ is best approximatiob of \boldsymbol{y} from \boldsymbol{L}
Answer: The line joining \boldsymbol{y} to the best approximation $\hat{\boldsymbol{y}}$ should be orthogonal to \boldsymbol{u} :

$$
y-\hat{y} \perp u
$$

$>$ Since Write $\hat{\boldsymbol{u}}$ is in \boldsymbol{L}, we can write $\hat{\boldsymbol{u}}=\boldsymbol{\alpha} \boldsymbol{u}$.
$>$ Expand the orthogonality condition: u.y-u.($\alpha u)=0 \rightarrow$

$$
\alpha=\frac{u . y}{u . u}
$$

(囚0) Solve the problem when $\boldsymbol{u}=\left[\begin{array}{l}3 \\ 1\end{array}\right] \quad \boldsymbol{y}=\left[\begin{array}{l}2 \\ 3\end{array}\right]$ and provide a geometric illustration.
$>$ See Example 3 in Section 6.2 of text .

Least-Squares systems - Background

$>$ Recall orthogonality: $\boldsymbol{x} \perp \boldsymbol{y}$ if $\boldsymbol{x} . \boldsymbol{y}=\mathbf{0}$
$>$ Equivalently $\boldsymbol{x} \perp \boldsymbol{y}$ if $\boldsymbol{y}^{T} \boldsymbol{x}=0$ or $\boldsymbol{x}^{T} \boldsymbol{y}=\mathbf{0}$
$>$ A zero vector is trivially orthogonal to any vector.
$>$ A vector \boldsymbol{x} is orthogonal to a subspace S if:

$$
\boldsymbol{x} \perp \boldsymbol{y} \text { for all } \boldsymbol{y} \in \boldsymbol{S}
$$

\rangle If $A=\left[a_{1}, a_{2}, \cdots, a_{n}\right]$ is a basis of S then

$$
x \perp S \quad \leftrightarrow \quad A^{T} x=0 \quad \leftrightarrow \quad x^{T} A=0
$$

The space of all vectors orthogonal to S is a subspace.

Notation: \boldsymbol{S}^{\perp}
$>$ Two subspaces S_{1}, S_{2} are orthogonal to each other when

$$
x \perp y \quad \text { for all } x \text { in } S_{1}, \quad \text { for all } y \text { in } S_{2}
$$

Show that

$$
\begin{aligned}
& \operatorname{Nul}(\boldsymbol{A}) \perp \operatorname{Col}\left(\boldsymbol{A}^{T}\right) \quad \text { and } \\
& \operatorname{Nul}\left(\boldsymbol{A}^{T}\right) \perp \operatorname{Col}(\boldsymbol{A})
\end{aligned}
$$

$>$ Indeed: $\boldsymbol{A x}=0$ means $\left(A^{T}\right)^{T} \boldsymbol{x}=0$. So if $\boldsymbol{x} \in \operatorname{Nul}(A)$, it is \perp to the columns of \boldsymbol{A}^{T}, i.e., to the range of \boldsymbol{A}^{T}. Second result: replace \boldsymbol{A} by \boldsymbol{A}^{T}.
© Find the subspace of all vectors that are orthogonal to $\operatorname{span}\left\{\boldsymbol{v}_{1}, \boldsymbol{v}_{2}\right\}$ where

$$
\left[v_{1}, v_{2}\right]=\left[\begin{array}{cc}
1 & 1 \\
-1 & 0 \\
1 & -1
\end{array}\right]
$$

Least-Squares systems

Problem: Given: an $\boldsymbol{m} \times \boldsymbol{n}$ matrix and a right-hand side \boldsymbol{b} in \mathbb{R}^{m}, find $\boldsymbol{x} \in \mathbb{R}^{n}$ which minimizes:

$$
\|b-A x\|
$$

Assumption: $m>n$ and $\operatorname{rank}(A)=n$ (' \boldsymbol{A} is of full rank')

« Find equivalent conditions to this assumption
Theorem If \boldsymbol{A} has full rank then $\boldsymbol{A}^{T} \boldsymbol{A}$ is invertible.
Proof We need to prove: $\boldsymbol{A}^{T} \boldsymbol{A} \boldsymbol{x}=0$ implies $\boldsymbol{x}=\mathbf{0}$.
Assume $\boldsymbol{A}^{T} \boldsymbol{A} \boldsymbol{x}=0$. Then $\boldsymbol{x}^{T} \boldsymbol{A}^{T} \boldsymbol{A} \boldsymbol{x}=0$ - i.e., $(\boldsymbol{A} \boldsymbol{x})^{T} \boldsymbol{A} \boldsymbol{x}=$ 0 , or $\|\boldsymbol{A} \boldsymbol{x}\|^{2}=0$. This means $\boldsymbol{A} \boldsymbol{x}=0$. But since the columns of \boldsymbol{A} are independent \boldsymbol{x} must be zero. QED.

Theorem Let \boldsymbol{A} be an $\boldsymbol{m} \times \boldsymbol{n}$ matrix of rank \boldsymbol{n}. Then \boldsymbol{x}^{*} is the solution of the least-squares problem min $\|\boldsymbol{b}-\boldsymbol{A} \boldsymbol{x}\|$

$$
\begin{array}{ll}
\text { if and only if } & b-\boldsymbol{A} \boldsymbol{x}^{*} \perp \operatorname{Col}(\boldsymbol{A}) \\
\text { if and only if } & A^{T}\left(\boldsymbol{b}-\boldsymbol{A} \boldsymbol{x}^{*}\right)=0 \\
& \\
\text { if and only if } & \boldsymbol{A}^{T} \boldsymbol{A} \boldsymbol{x}^{*}=\boldsymbol{A}^{T} b
\end{array}
$$

Proof See text.

Illustration of theorem: \boldsymbol{x}^{*} is the best approximation to the vector \boldsymbol{b} from the subspace $\operatorname{span}\{\boldsymbol{A}\}$ if and only if $\boldsymbol{b}-\boldsymbol{A} \boldsymbol{x}^{*}$ is \perp to the whole subspace $\operatorname{span}\{A\}$. This in turn is equivalent to $A^{T}(b-$ $\left.A x^{*}\right)=0>\boldsymbol{A}^{T} \boldsymbol{A x}=\boldsymbol{A}^{T} b$. Note: $\operatorname{span}\{A\}=\operatorname{Col}(A)=$ column space of \boldsymbol{A}

Normal equations

> The system

$$
A^{T} A x=A^{T} b
$$

is called the system of normal equations for the matrix \boldsymbol{A} and rhs \boldsymbol{b}
$>$ Its solution is the solution of the least-squares problem min $\| b-$ Ax $\|$
$\boxed{\boxed{0}}$ Find the least solution by solving the normal equations when:

$$
A=\left[\begin{array}{ccc}
1 & 1 & 0 \\
2 & -1 & 1 \\
1 & 1 & -2 \\
0 & 2 & 1
\end{array}\right] \quad b=\left[\begin{array}{l}
2 \\
0 \\
4 \\
1
\end{array}\right]
$$

Application: Linear data fitting

Experimental data (not accurate) provides measurements y_{1}, \ldots, y_{m} of an unknown linear function ϕ at points t_{1}, \ldots, t_{m}. Problem: find the 'best' possible approximation to ϕ.
> Must find:

$$
\phi(t)=\beta_{0}+\beta_{1} t \text { s.t. } \quad \phi\left(t_{j}\right) \approx y_{j}, j=1, \ldots, m
$$

> Question: Close in what sense?
$>$ Least-squares approximation sense: Find ϕ such that $\left|\phi\left(t_{1}\right)-y_{1}\right|^{2}+\left|\phi\left(t_{2}\right)-y_{2}\right|^{2}+\cdots+\left|\phi\left(t_{m}\right)-y_{m}\right|^{2}=\operatorname{Min}$
> We want to find best fit in least-squares sense for the equations

$$
\begin{aligned}
\boldsymbol{\beta}_{0}+\boldsymbol{\beta}_{1} t_{1} & =\boldsymbol{y}_{1} \\
\boldsymbol{\beta}_{0}+\boldsymbol{\beta}_{1} t_{2} & =\boldsymbol{y}_{2} \\
\vdots & =\vdots \\
\boldsymbol{\beta}_{0}+\boldsymbol{\beta}_{1} t_{m} & =\boldsymbol{y}_{m}
\end{aligned}
$$

> Using matrix notation this means: find 'best' approximation to vector \boldsymbol{y} from linear combinations of vectors f_{1}, f_{2}, where

$$
y=\left(\begin{array}{c}
y_{1} \\
y_{2} \\
\vdots \\
y_{m}
\end{array}\right), \quad f_{1}=\left(\begin{array}{c}
1 \\
1 \\
\vdots \\
1
\end{array}\right), \quad f_{2}=\left(\begin{array}{c}
t_{1} \\
t_{2} \\
\vdots \\
t_{m}
\end{array}\right)
$$

> Define

$$
F=\left[f_{1}, f_{2}\right], \quad x=\binom{\beta_{0}}{\beta_{1}}
$$

$>$ We want to find x such $\|F x-y\|$ is minimum.
$>$ Least-squares linear system. \boldsymbol{F} is $\boldsymbol{m} \times \mathbf{2}$.
The vector \boldsymbol{x}_{*} mininizes $\|\boldsymbol{y}-\boldsymbol{F} \boldsymbol{x}\|$ if and only if it is the solution of the normal equations:

$$
\boldsymbol{F}^{T} \boldsymbol{F} \boldsymbol{x}=\boldsymbol{F}^{T} \boldsymbol{y}
$$

