ORTHOGONALITY AND LEAST-SQUARES [CHAP. 6]

Inner products and Norms

14-2

Inner product or dot product of 2 vectors u and v in \mathbb{R}^n :

$$u.v=u_1v_1+u_2v_2+\cdots+u_nv_n$$

$$\checkmark \text{ Calculate } u.v \text{ when } u = \begin{bmatrix} 1 \\ -2 \\ 2 \\ 0 \end{bmatrix} \qquad v = \begin{bmatrix} 1 \\ 0 \\ -1 \\ 5 \end{bmatrix}$$

If u and v are vectors in \mathbb{R}^n then we can regard u and v as $n \times 1$ matrices. The transpose u^T is a $1 \times n$ matrix, and the matrix product $u^T v$ is a 1×1 matrix = a scalar.

> Then note that $u.v = v.u = u^Tv = v^Tu$

Text: 6.1-3 – LS0

Length of a vector in \mathbb{R}^n

Euclidean norm of a vector
$$u$$
 is $\|u\| = \sqrt{u.u}$, i.e., $\|u\| = (u.u)^{1/2} = \sqrt{u_1^2 + u_2^2 + \ldots + u_n^2}$

14 - 3

If we identify v with a geometric point in the plane, then ||v|| is the standard notion of the length of the line segment from 0 to v.

- This follows from the Pythagorean Theorem applied to a triangle..
- > A vector of length one is often called a unit vector

► The process of dividing a vector by its length to create a vector of unit length (a unit vector) is called normalizing

Mormalize
$$v = [1; -2; 2; 0]$$
. [Matlab notation used]

Important properties

For any scalar lpha, the length of lpha v is |lpha| times the length of v: $\|lpha v\| = |lpha| \|v\|$

► The length of the sum of any two vectors does not exceed the sum of the lengths of the vectors (Triangle inequality)

 $\|u+v\| \le \|u\|+\|v\|$

The Cauchy-Schwartz inequality :

 $|u.v| \leq \|u\|\|v\|$

14-4

Distance in \mathbb{R}^n

Definition: The distance between u and v, two vectors in \mathbb{R}^n is the length of the vector u - v

 \blacktriangleright Written as dist(u,v) or d(u,v)

$$d(u,v) = \|u-v\|$$

$$\checkmark$$
 Distance between $u=egin{pmatrix}1\\1\end{pmatrix}$ and $v=egin{pmatrix}4\\-3\end{pmatrix}$

See illustration in Example 4 of <u>text</u>.

Orthogonality

- 1. Two vectors u and v are orthogonal if u.v = 0. Common notation: $u \perp v$
- 2. A system of vectors $S = \{v_1, \ldots, v_n\}$ is orthogonal if $v_i.v_j = 0$ for $i \neq j$.

Pythagoras theorem:

$$u \perp v \quad \Leftrightarrow \quad \|u+v\|^2 = \|u\|^2 + \|v\|^2$$

That is, two vectors \boldsymbol{u} and \boldsymbol{v} are orthogonal if and only if

$$\|u+v\|^2 = \|u\|^2 + \|v\|^2$$

Orthogonal systems (continued)

14-7

Show that the following system is orthogonal

$$v_1 = egin{bmatrix} 1 \ 1 \ -1 \end{bmatrix} \quad v_2 = egin{bmatrix} 0 \ 1 \ 1 \end{bmatrix} \quad v_3 = egin{bmatrix} 2 \ -1 \ 1 \end{bmatrix}$$

Theorem: If $S = \{v_1, ..., v_p\}$ is an orthogonal set of nonzero vectors in \mathbb{R}^n , then S is linearly independent. Hence S is a basis of span(S).

Definition: An orthogonal basis of a subspace W is a basis of W that is also an orthogonal set.

Let $S = \{v_1, ..., v_p\}$ be an orthogonal basis of a subspace W. Then a vector x in W is a linear combination of the v_i 's:

$$x=lpha_1v_1+lpha_2v_2+...+lpha_pv_p$$

How can you get the α_i 's? [Hint: Compute the inner product of x with each v_i .]

Read Section 6.2 of *text* – specifically the paragraph on orthogonal projection (p. 342) for a geometric interpretation.

> We say that a system of vectors $S = \{v_1, ..., v_p\}$ is orthonormal if it is orthogonal and in addition each v_i has unit length, i.e., $||v_i|| = 1$.

14 - 8

A brief introduction to least-squares

Consider the following problem: find a member of the subspace $L = \operatorname{span}\{u\}$ that is closest to a vector y that does not belong to L. How would you solve this geometrically?

14 - 9

 \blacktriangleright The solution \hat{y} is best approximatiob of y from L

Answer: The line joining y to the best approximation \hat{y} should be orthogonal to u:

$$y-\hat{y}\perp u$$

Text: 6.1-3 – LS0

- > Since Write \hat{u} is in L, we can write $\hat{u} = \alpha u$.
- > Expand the orthogonality condition: $u.y u.(lpha u) = 0 \rightarrow$

$$lpha=rac{u.y}{u.u}$$

- Solve the problem when $u = \begin{bmatrix} 3 \\ 1 \end{bmatrix}$ $y = \begin{bmatrix} 2 \\ 3 \end{bmatrix}$ and provide a geometric illustration.
- See Example 3 in Section 6.2 of *text*.

Least-Squares systems – Background

- \blacktriangleright Recall orthogonality: $x\perp y$ if x.y=0
- \blacktriangleright Equivalently $x \perp y$ if $y^T x = 0$ or $x^T y = 0$

A zero vector is trivially orthogonal to any vector.

> A vector x is orthogonal to a subspace S if:

14-11

$$x\perp y$$
 for all $y\in S$

If $A = [a_1, a_2, \cdots, a_n]$ is a basis of S then
 $x \perp S \iff A^T x = 0 \iff x^T A = 0$

> The space of all vectors orthogonal to S is a subspace.

14-12

Notation: S^{\perp}

 \blacktriangleright Two subspaces S_1, S_2 are orthogonal to each other when

 $x \perp y$ for all x in S_1 , for all y in S_2

$$\operatorname{Nul}(A) \perp \operatorname{Col}(A^T)$$
 and
 $\operatorname{Nul}(A^T) \perp \operatorname{Col}(A)$

▶ Indeed: Ax = 0 means $(A^T)^T x = 0$. So if $x \in Nul(A)$, it is ⊥ to the columns of A^T , i.e., to the range of A^T . Second result: replace A by A^T .

Find the subspace of all vectors that are orthogonal to $\mathrm{span}\{v_1,v_2\}$ where

$$[v_1,v_2] = egin{bmatrix} 1 & 1 \ -1 & 0 \ 1 & -1 \end{bmatrix}$$

14-13

Least-Squares systems

Problem: Given: an $m \times n$ matrix and a right-hand side b in \mathbb{R}^m , find $x \in \mathbb{R}^n$ which minimizes:

$$\|b - Ax\|$$

Assumption: m > n and rank(A) = n ('A is of full rank')

Find equivalent conditions to this assumption

Theorem If A has full rank then $A^T A$ is invertible.

Proof We need to prove: $A^T A x = 0$ implies x = 0. Assume $A^T A x = 0$. Then $x^T A^T A x = 0$ – i.e., $(Ax)^T A x = 0$, or $||Ax||^2 = 0$. This means Ax = 0. But since the columns of A are independent x must be zero. QED.

Proof See text.

Illustration of theorem: x^* is the best approximation to the vector b from the subspace span $\{A\}$ if and only if $b - Ax^*$ is \bot to the whole subspace span $\{A\}$. This in turn is equivalent to $A^T(b - Ax^*) = 0 \triangleright A^TAx = A^Tb$. Note: span $\{A\} = \text{Col}(A) = \text{column space of } A$

Normal equations

The system

14 - 17

$$A^T A x = A^T b$$

is called the system of normal equations for the matrix A and rhs bIts solution is the solution of the least-squares problem $\min ||b - Ax||$

Find the least solution by solving the normal equations when:

$$A = \begin{bmatrix} 1 & 1 & 0 \\ 2 & -1 & 1 \\ 1 & 1 & -2 \\ 0 & 2 & 1 \end{bmatrix} \qquad b = \begin{bmatrix} 2 \\ 0 \\ 4 \\ 1 \end{bmatrix}$$

Application: Linear data fitting

Experimental data (not accurate) provides measurements y_1, \ldots, y_m of an unknown linear function ϕ at points t_1, \ldots, t_m . Problem: find the 'best' possible approximation to ϕ .

Must find:

$$\phi(t)=eta_0+eta_1 t$$
 s.t. $\phi(t_j)pprox y_j, j=1,\ldots,m$

 \blacktriangleright Least-squares approximation sense: Find ϕ such that

$$|\phi(t_1)-y_1|^2+|\phi(t_2)-y_2|^2+\dots+|\phi(t_m)-y_m|^2={\sf Min}$$

14-18

➤ We want to find best fit in least-squares sense for the equations

14-19

> Using matrix notation this means: find 'best' approximation to vector y from linear combinations of vectors f_1, f_2 , where

$$egin{aligned} y = egin{pmatrix} y_1 \ y_2 \ dots \ y_m \end{pmatrix}, & f_1 = egin{pmatrix} 1 \ 1 \ dots \ 1 \end{pmatrix}, & f_2 = egin{pmatrix} t_1 \ t_2 \ dots \ t_m \end{pmatrix} \end{aligned}$$

14-20

$$oldsymbol{F}=[oldsymbol{f}_1,oldsymbol{f}_2], \hspace{1em} x=inom{eta_0}{eta_1}$$

- > We want to find x such ||Fx y|| is minimum.
- Least-squares linear system. $m{F}$ is $m{m} imes m{2}.$

The vector x_* minimizes ||y - Fx|| if and only if it is the solution of the normal equations:

$$F^T F x = F^T y$$